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Abstract. Minimal keys and antikeys play a very important role in the theory of the design of rela-
tional databases. The minimal key and antikey results have been widely investigated. Hypergraphs
theory [2] is an important subfield of discrete mathematics with many relevant applications in both
theoretical and applied computer science. A set of minimal keys and a set of antikeys form simple
hypergrahps. In this paper, we are to investigate the minimal keys of relation schemes. We charac-
terize the set of all minimal keys of relation schemes in terms of hypergraphs. The set of antikeys is
also studied in this paper.

Tém tat. Khéa téi tiéu va phan khéa déng mét vai tro rat quan trong trong 1y thuyét thiét ké
co s& dir liéu quan hé. Céc két qua vé khéa tdi tiéu va phdn khéa da duoc nghién ciru nhieu. Ly
thuyét sieu do thi [2] 14 mot trong linh vure quan trong cia todn roi rac véi nhieu tmg dung quan
trong déi véi tin hoc. Téap céc khéa tdi tiéu va tap cdc phan khéa c¢é dang siéu dé thi don. Trong
bai bdo nay, chiing toi nghién ciru vé khoéa téi tiéu clia so do quan hé. Chiing t6i diic trung tap tat
cé khéa t6i tiéu cla so d6 quan hé theo quan diém siéu dé thi. Ngoai ra, tdp phén khéa cling dwoc
nghién ctru trong bai bao nay.

1. INTRODUCTION

In this section we briefly present the main concepts of the theory of relational databases
which will be needed in sequel. The concepts and facts given in this section can be found in
[1,3=5].

Let U be a nonempty finite set of atiributes (e.g. name, age etc) and R = {h1,..., hn}
be a relation over U. A functional dependency (FD for short) over U is a statement of form
X — Y, where X, Y CU. The FD X — Y holds in a relation R if

(Vhi, hj € R)((Va € X)(hi(a) = hj(a)) = (Vb € Y)(hi(b) = hj(b))).

We also say that R satisfies the FD X — Y.

Let Fr be a family of all FDs that holds in R. Then F' = Fg satisfies
(F1) X - X € F,

(F2) X =Y eFRY—-ZecF)=(X—>ZcF),

(F3) X =Y e FRXCVWCY)=(V-oWeF),

(F4) X Y e FRV-oWeF) = (XUV-SYUWEF).

A family of FDs satisfying (F1) - (F4) is called an f — family over U.
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Clearly, Fg is an f-family over U. It is known [1] that if F' is an arbitrary f-family, then
there is a relation R over U such that Fr = F.

Give a family F of FDs over U, there exists a unique minimal f-family F'* that contains
F. Tt can be seen that F'" contains all FDs which can be derived from F by the rules (F1) -
(F4).

A relation scheme s is a pair (U, F'), where U is a nonempty finite set of attributes and F
is a set of FDs over U. X T is called the closure of X on s. It is obvious that X — Y € F* if
andonly if Y C X .

Let s = (U, F) be a relation scheme and K C U. Then K is a keyof sif K - U € F™.
K is a minimal key of s if K is a key of s and any proper subset of K is not a key of s.

Denote ICs the set of all minimal keys of s. Evidently, ICs is a Sperner system over U (i.e.
for every A, B € K implies A  B).

Let JC be a Sperner system over U. We define the set of antikeys of IC, denoted by IC 1,
as follows:

K1'={AecPU)|(BeK)=(BZA)and (ACC)= (AB € K)(BCC)}.

It is easy to see that X! is also a Sperner system over U.

2. HYPERGRAPHS AND TRANSVERSALS

Let U be a nonempty finite set and put P(U) for the family of all subsets of U. The family
H={F;| E; ¢ P(U),i=1,2,...,m} is called a hypergraph over U if E; # () holds for all i
(in [2] it is required that the union of E;s is U, in this paper we do not require this).

The elements of U are called vertices, and the sets Fy, . .., F,, the edges of the hypergraph
H.

A hypergraph H is called simple if it satisfies

\V/Ei,Ej EHZEigEj :>El:E]

It can be seen that simple hypergraphs are Sperner systems. Clearly, s and IC; ! are simple
hypergraphs.

Let ‘H be a hypergraph over U. Then min(H) denotes the set of minimal edges of H with
respect to set inclusion, i.e.,

min(H) = {El eEH |/E|E] ceH:E; C Ei},
and max(H) denotes the set of maximal edges of H with respect to set inclusion, i.e.,
max(H) = {El €eH |/E|E] €EH: Ej ) El}
It is clear that, min(H) and max(H) are simple hypergraphs. Furthermore, min(H) and
max(H) are uniquely determined by H.
A set T C U is called a transversal of H (sometimes it is called hitting set) if it meets all
edges of H, i.e.,
VEeH:TNE+#0.

Denote by Trs(H) the family of all transversals of H. A transversal T' of H is called minimal
if no proper subset 7" of T' is a transversal.
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The family of all minimal transversals of H is called the transversal hypergraph of H, and
denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.
Proposition 2.1. ([2]) Let H and G two simple hypergraphs over U. Then H = Tr(G) if and
only if G = Tr(H).
Proposition 2.2. ([5]) Let H be a hypergraph over U. Then
Tr(H) = Tr(min(H)).

The following algorithm finds the family of all minimal transversals of a given hypergraph
(by induction).
Algorithm 2.3. ([3])

Input: let H = {F1,..., K} be a hypergraph over U.

Output: Tr(H).

Method:

Step 0. We set L1 := {{a} | a € E1}. Tt is obvious that £ = Tr({E1}).

Step g+1. (¢ < m) Assume that

['q :SqU{Bl,...,th},

where BiNE,1 =0,i=1,...,t,and Sg={A € L, | AN Ey1 # 0}
For each ¢ (i = 1,...,t,) constructs the set {B; U {b} | b € E,11}. Denote them by
AL ALGE =1, t,). Let
Lo =SqU{AL | AeS; = A A1 <i <y, 1 <p<ri}.

Theorem 2.4. ([3]) For everyq (1 < q<m) Ly =Tr({En, ..., Eq}), e, Loy = Tr(H).
It can be seen that the determination of T'»(H) based on our algorithm does not depend
on the order of F1,..., E,,.

Remark 2.5.([3]) Denote L4 = Sq U {B1,..., By }, and I, (1 < ¢ < m — 1) be the number of
elements of L. It can be seen that the worst-case time complexity of our algorithm is

m—1
O(U* - Y tquy),
q=0

where [p = {5 = 1 and

w lg—tqg, iflg>tg;
T, if 1, = t,.

Clearly, in each step of our algorithm [,q is a simple hypergraph. It is known that the size
of arbitrary simple hypergraph over U cannot be greater than Cy[ln/ 2]7 where n = |U]. Cy[ln/ 2]
is asymptotically equal to ont1/2 / <7T.7’L)1/ 2. From this, the worst-case time complexity of our
algorithm cannot be more than exponential in the number of attributes. In cases for which
lg <ln(g=1,...,m—1), it is easy to see that the time complexity of our algorithm is
not greater than O(|U|? - [H| - |Tr(H)|?). Thus, in these cases this algorithm finds 77 (H) in
polynomial time in U], |H| and |Tr(H)|. Obviously, if the number of elements of H is small,
then this algorithm is very effective. It only requires polynomial time in |U].

The following proposition is obvious.
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Proposition 2.6.([3|) The time complexity of finding Tr(H) of a given hypergraph H is (in
general) exponential in the number of elements of U.
Proposition 2.6 is still true for a simple hypergraph.

3. MINIMAL KEYS

In this section, we investigate the minimal keys of relation schemes. We give some descrip-
tions of the set of all minimal keys of relation schemes in terms of hypergraphs.

Let s = (U, F) be a relation scheme. We set £, = {X T | X C U}, i.e., L is the set of all
closures of s. We define the family M as follows

M =L —{U}.
Then M, = {U — A| A € M} is called the complemented family of M.
Lemma 3.1. Let s = (U, F) be a relation scheme. Then, if A € M, then U — A is not the
key of s.
Proof. Assume that A € M,. Thus, U — A € M,. By the definition of M, we have
(U-MT=U-A
and
U—-—A#U.

Consequently, U — A is not a key of s.
The lemma. is proved. [ |

Lemma 3.2. Let s = (U, F) be a relation scheme. Then, A € Trs(Ks) if and only if U — A
s not the key of s.
Proof. Suppose that U — A is a key of s. From this and the hypothesis A € Trs(KC;), we have

AN (U - A) £0.
This is a conflict.
Conversely, assume that A & Trs(Ks). If there exists K € K, such that AN K = () then

U — A is a key of s, which contradicts the hypothesis U — A is not the key of s.
The lemma. is proved. [ |

Theorem 3.3. Let s = (U, F) be a relation scheme. Then
Tr(Ks) = min(Ms).

Proof. Suppose that A € Tr(K;). By Lemma 3.2 we obtain which U — A is not a key of s.
Clearly, A # 0 and (U — A)™ # A. On the other hand, we have also

U-(U—-A"NK#0 YK €K,
Hence, if
U-AcC(U—-A)"

then
ADU—(U—A)f
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This contradicts with the hypothesis A € Tr(K,). Consequently, (U — A)"T = U — A, ie.,
U—Aec M, Thus, Ac M,.

Now we assume that there exists a B C A and B # 0 such that B € M. Then, according
to Lemma 3.1 we have U — B is not a key of s. By Lemma 3.2 we obtain B € Trs(Ks), which
contradicts the fact that A € Tr(K,). Therefore, A € min(Mj) holds.

Conversely, assume that A € min(M,). Hence, A € M. By Lemma 3.1 we have U — A
is not a key of s. Thus, according to Lemma 3.2 we obtain A € Trs(Ks). Suppose that there
is a B C A such that B € Tr(K,). By the above proof we obtain B € M,. This contradicts
with the fact that A € min(Mj,). Hence, A € Tr(KC,) holds.

The theorem is proved. [ |

By Proposition 2.1 and Theorem 3.3, the following corollary is immediate.

Corollary 3.4. Let s = (U, F') be a relation scheme. Then
K = Tr(min(My)).

Theorem 3.5. Let s = (U, F') be a relation scheme. Then
Ks = Tr(min(L, — {0})).

Proof. 1t is clear that from the definiton of M, and Corollary 3.4.
The theorem is proved. [ |

4. ANTIKEYS

In this section, we study the set of antikeys by hypergraphs. We present connections
between the set of antikeys and the set of closures of relation schemes.
Let A be a family of subsets of U. We define

min(A) = {4; € A|AA; 1 A; C A}
and

max(A) = {4; € A|AA; 1 A; D A}

Lemma 4.1. Let A be a family of subsets of U. Then

min(A4) = max(A).

Proof. We shall prove that min(A) = max(A). Suppose A € min(.A). Hence, A € min(A).
This means that

VBeA:B¢ A
or

VBe A:B 3 A

Thus, we obtain A € max(.A).
On the other hand, let A € max(.A). By an argument analogous to the previous one, we

get A € min(A).
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The lemma. is proved. [ |
Theorem 4.2. Let s = (U, F') be a relation scheme. Then

Tr(ICs) = max(M,).

Proof According to Theorem 3.3 we have

Tr(Cs) = min(M,).
From this and Lemma 4.1, we obtain

Tr(ICs) = max(M,).

The theorem is proved. [ |
The Theorem 4.2 means that

YXt cU3AeTr(K,): Xt C A
Note that the following result is known [4].
Proposition 4.3. Let s = (U, F) be a relation scheme. Then
Kot =Tr(Ks).

Therefore, by Theorem 4.2 and Proposition 4.3, the following corollary is evident.

Corollary 4.4. Let s = (U, F') be a relation scheme. Then
K1 = max(M,).

5. CONCLUSION

We have characterized the set of all minimal keys of relation schemes in terms of hyper-
graphs. Futhermore, the set of antikeys is also studied in this paper. We present connections
between the set of antikeys and the set of closures of relation schemes.
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