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Abstract. Multi-attributes decision-making problem in dynamic neutrosophic environment is an

open and highly-interesting research area with many potential applications in real life. The concept of

the dynamic interval-valued neutrosophic set and its application for the dynamic decision-making are

proposed recently, however the inter-dependence among criteria or preference is not dealt with in the

proposed operations to well treat inter-dependence problems. Therefore, the definitions, mathemati-

cal operations and its properties are mentioned and discussed in detail. Then, Choquet integral-based

distance between dynamic inteval-valued neutrosophic sets is defined and used to develop a new de-

cision making model based on the proposed theory. A practical application of proposed approach

is constructed and tested on the data of lecturers’ performance collected from Vietnam National

University (VNU) to illustrate the efficiency of new proposal.

Keywords. Multi-attributes decision-making; Dynamic interval-valued neutrosophic environment;

Choquet integral.

1. INTRODUCTION

Dynamic decision-making (DDM) problem has attracted many researchers thanks to
its potential application in real life. One successful approach for this problem is applying
neutrosophic set that has the capability of solving indeterminacy in DDM [2, 5, 16]. Recently,
Thong NT et al. [16] has introduced a model that deals with dynamic decision-making
problems with time constraints. The authors proposed the new concept called dynamic
interval-valued neutrosophic set (DIVNS), and developed a decision-making model based on
new neutrosophic set concept [16]. However, a very common DDM which is dynamic multi-
criteria decision-making (DMCDM) is not well treated, particularly inter-dependent among
criteria or preference is not dealt with, etc. [11].
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The limitation of legacy aggregation operators based on additive measurements within
a set of criteria is that they did not handle the impact of the interdependent attributes in
criteria set. This fact leads to new approximate aggregation operators that use the fuzzy
measurement to handle the dependency between multiple criteria [7]. Choquet integral-based
aggregation operator has been applied [8, 9], and it has improved the weakness of simple
weighted sum method. For example, if we consider a set of four alternatives {x1, x2, x3, x4}
where each alternative xi is evaluated with three criteria to maximize: x1 = (18; 10; 10),
x2 = (10, 18, 10), x3 = (10, 10, 18), x4 = (14, 11, 12), in truth, the alternative x4 is not a
selected solution with a weighted sum operator, however this alternative is the most balanced
alternative and it would likely be a good option. This shortcoming has been overcome by
defining a new operator using Choquet integral to make fuzzy measurement [6].

This study utilises the Choquet integral on DIVNS to improve decision making model.
A novel aggregation operator named dynamic interval-valued neutrosophic Choquet opera-
tor aggregation (DIVNCOA) is proposed, that solves the problem of inter-dependent among
criteria in dynamic interval-valued neutrosophic set. DIVNCOA improves the legacy aggre-
gation operator introduced in [11]. Particularly, the definitions, mathematical operations
and its properties are proposed and discussed in detail firstly. Then, Choquet integral-based
aggregate operator between dynamic interval-valued neutrosophic sets is defined; and a deci-
sion making model is developed based on the proposed measure. A practical application was
constructed and tested on data of lecturers’ performance collected from Vietnam National
University (VNU), to illustrate the efficiency of new proposal.

The rest of this document is structured as follows: Section 2 reviews briefly the DIVSNs
concept and Choquet integral fundamental. Section 3 presents the Choquet integral-based
operators. Section 4 expresses a new decision-making model for DDM and a practical appli-
cation and Section 5 summarizes the findings.

2. PRELIMINARIES

At first, the definitions of Choquet integral and DIVNSs are reminded as the fundamental
for further discussion. Besides, an important fuzzy measure based on Choquet integral is
also defined and this measure is applied for decision making model mentioned in the next
section.

2.1. Dynamic interval-valued neutrosophic set

Definition 1. [17] Let U be a universe of discourse. A is an Interval Neutrosophic set
expressed by

A =
{
x, 〈[TLA (x), TUA (x)], [ILA(x), IUA (x)], [FLA (x), FUA (x)]〉|x ∈ U

}
(1)

where [TLA (x), TUA (x)] ⊆ [0, 1], [ILA(x), IUA (x)] ⊆ [0, 1], [FLA (x), FUA (x)] ⊆ [0, 1] represent truth,
indeterminacy, and falsity membership functions of an element.

Definition 2. [16] Let U be a universe of discourse. A is a dynamic interval-valued neu-
trosophic set (DIVNS) expressed by

A =
{
x, 〈[TLx (t), TUx (t)], [ILx (t), IUx (t)], [FLx (t), FUx (t)]〉|x ∈ U

}
, (2)
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where,
t = {t1, t2, ..., tk},
TLx (t) < TUx (t)],
ILx (t) < IUx (t),
FLx (t) < FUx (t)

and [TLx (t), TUx (t)],
[ILx (t), IUx (t)], [FLx (t), FUx (t)] ⊆ [0, 1].

And for convenience, we call
∼
n = 〈[TLx (t), TUx (t)], [ILx (t), IUx (t)], [FLx (t), FUx (t)]〉 a dyna-

mic interval-valued neutrosphic element (DIVNE).

2.2. Choquet integral

The Choquet integral has been introduced as the useful operator to overcome the limi-
tation of additive measure for fuzzy information. In DMCDM, a fuzzy measure based on
Choquet integral is presented as follows.

Definition 3. [8] Let (x, P, µ) be a measurable space and µ : P → [0, 1] be fuzzy measure if
the following conditions are satisfied:

1. µ(∅) = 0;

2. µ(A) ≤ µ(B) whenever A ⊂ B;

3. If A1 ⊂ A2 ⊂ ... ⊂ An;An ∈ P then µ(
⋃∞
An

) = limn→∞ µ(An);

4. If A1 ⊃ A2 ⊃ ... ⊃ An;An ∈ P then µ(
⋃∞
An

) = limn→∞ µ(An).

In practice, Sugeno [3] has proposed a refinement by adding a property, and the simplification
of gλ fuzzy measure is as follows

µ(A ∪B) = µ(A) + µ(B) + gλµ(a)µ(b), gλ ∈ (−1,∞)

for all A,B ∈ P and A ∩B = ∅.

Definition 4. ([8]) Let X = {x1, x2, ..., xv} be a set, λ-fuzzy measure defined on X is shown
by Eq. (3)

µ(X) =


1

λ

( ∏
xl∈X

(
1 + λµ(xl)

)
− 1
)
, if λ 6= 0,∑

xl∈X
(xl), if λ = 0

(3)

where xi ∩ xj = ∅, ∀i 6= j|i, j = 1, 2, 3, . . . , v.

Definition 5. ([15]) Let X = {x1, x2, . . . , xv} be a finite set and µ is a fuzzy measure. The
Choquet integral of a function g : X → [0, 1] with respect to fuzzy measure µ can be shown
by Eq. (4) ∫

gdµ =

v∑
l=1

(
µ
(
Gξ(l)

)
− µ

(
Gξ(l−1)

))
⊕ g
(
xξ(l)

)
, (4)

where ξ(1), ξ(2), . . . , ξ(l), . . . , ξ(v) is a permutation of 1, 2, . . . , v such that

g(xξ(1)) ≤ . . . ≤ g(xξ(l)) ≤ . . . ≤ g(xξ(v)), Gξ(l) = xξ(1), xξ(2), . . . , xξ(l), and Gξ(0) = ∅.
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3. SCORE FUNCTION AND DYNAMIC INTERVAL VALUED
NEUTROSOPHIC CHOQUET AGGREGATION OPERATOR

In this section, a new score function for DIVNEs is proposed and new dynamic interval
- valued Choquet aggregation operators are developed based on the previous operations and
fuzzy measure above.

3.1. Score function for DIVNS

Definition 6. The score function of DIVNE
∼
n is defined as

score(
∼
n) =

1

k

k∑
l=1

((
TL(tl) + TU (tl)

2
+
(

1− I
L(tl) + IU (tl)

2

)
+
(

1− F
L(tl) + FU (tl)

2

))/
3

)
(5)

where t = t1, t2, . . . , tk.

3.2. Weighted score function for DIVNS

Definition 7. The weighted score function of DIVNE
∼
n is defined as

score(
∼
n) =

1

k

k∑
l=1

wl×

((
TL(tl) + TU (tl)

2
+
(

1−I
L(tl) + IU (tl)

2

)
+
(

1−F
L(tl) + FU (tl)

2

))/
3

)
(6)

where t = t1, t2, . . . , tk, wl is weight of times and
k∑
l=1

wl = 1.

Obviously, score(
∼
n) ∈ [0, 1]. If score(

∼
n1) ≥ score(

∼
n2) then

∼
n1 ≥

∼
n2.

3.3. The DIVNCOA operator

DIVNCOA is proposed as an aggregation operator that considers the inter-dependence
among elements in dynamic interval-valued neutrosophic environment. This operator is
defined based on Choquet integral mentioned in Section 2.2.

Definition 8. Let
∼
nl(l = 1, 2, . . . , v) be a collection of DIVNEs, X = {x1, x2, . . . , xv} be a

set of attributes and µ be a measure on X, the DIVNCOA operator is defined as

DIVNCOAµ,λ =
∼
n1,
∼
n2, . . . ,

∼
nv =

(
⊕v1
(
µ
(
Gξ(l)

)
− µ

(
Gξ(l−1)

))∼
n
λ

ξ(l)

) 1
λ

, (7)

where λ > 0, µξ(l) = µ
(
Gξ(l)

)
− µ

(
Gξ(l−1)

)
. And ξ(1), ξ(2), . . . , ξ(l), . . . , ξ(v) is a per-

mutation of l = 1, 2, . . . , v such that g(xξ(1)) ≤ g(xξ(2)) ≤, . . . ,≤ g(xξ(l) ≤, . . . ,≤ g(xξ(v),
Gξ(0) = ∅ and Gξ(l) = {xξ(1), xξ(2), . . . , xξ(l)}.
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Theorem 1. When
∼
nl (l = 1, 2, . . . , v) is a collection of DIVNEs, then the aggregated value

obtained by the DIVNCOA operator is also a DIVNE, and

DIVNCOAµ,λ =

(
⊕v1
(
µ
(
Gξ(l)

)
− µ

(
Gξ(l−1)

))∼
n
λ

ξ(l)

) 1
λ

=

{[(
1−

v∏
l=1

(
1−

(
TLξ(l)(t)

)λ)µξ(l)) 1
λ

,

(
1−

v∏
l=1

(
1−

(
TUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

v∏
l=1

(
1−

(
1− ILξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
v∏
l=1

(
1−

(
1− IUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

v∏
l=1

(
1−

(
1− FLξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
v∏
l=1

(
1−

(
1− FUξ(l)(t)

)λ)µξ(l)) 1
λ
]}

.

(8)

Proof. Theorem 1 is proven by inductive method.

When v = 1, the result is trivial outcome of Definiton 8.

When v = 2, from the operation relations of DIVNE [11], one has:

(
µξ(1)

∼
n
λ

ξ(1)

) 1
λ

={[(
1−

(
1−

(
TLξ(1)(t)

)λ)µξ(1)) 1
λ

,

(
1−

(
1−

(
TUξ(1)(t)

)λ)µξ(1)) 1
λ
]
,

[
1−

(
1−

(
1−

(
1− ILξ(1)(t)

)λ)µξ(1)) 1
λ

, 1−
(

1−
(

1−
(
1− IUξ(1)(t)

)λ)µξ(1)) 1
λ
]
,[

1−
(

1−
(

1−
(
1− FLξ(1)(t)

)λ)µξ(1)) 1
λ

, 1−
(

1−
(

1−
(
1− FUξ(1)(t)

)λ)µξ(1)) 1
λ
]}

.

(
µξ(2)

∼
n
λ

ξ(2)

) 2
λ

={[(
1−

(
1−

(
TLξ(2)(t)

)λ)µξ(2)) 2
λ

,

(
1−

(
1−

(
TUξ(2)(t)

)λ)µξ(2)) 2
λ
]
,

[
1−

(
1−

(
1−

(
1− ILξ(2)(t)

)λ)µξ(2)) 2
λ

, 1−
(

1−
(

1−
(
1− IUξ(2)(t)

)λ)µξ(2)) 2
λ
]
,[

1−
(

1−
(

1−
(
1− FLξ(2)(t)

)λ)µξ(2)) 2
λ

, 1−
(

1−
(

1−
(
1− FUξ(2)(t)

)λ)µξ(2)) 2
λ
]}

.
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Assume that Equation (8) holds for v = j, we have

DIVNCOAµ,λ{
∼
n1,
∼
n2, . . . ,

∼
nl} ={[(

1−
j∏
l=1

(
1−

(
TLξ(l)(t)

)λ)µξ(l)) 1
λ

,

(
1−

j∏
l=1

(
1−

(
TUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j∏
l=1

(
1−

(
1− ILξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j∏
l=1

(
1−

(
1− IUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j∏
l=1

(
1−

(
1− FLξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j∏
l=1

(
1−

(
1− FUξ(l)(t)

)λ)µξ(l)) 1
λ
]}

.

For m = j + 1, according to the inductive hypothesis, we have

DIVNCOAµ,λ{
∼
n1,
∼
n2, . . . ,

∼
nl} ={[(

1−
j∏
l=1

(
1−

(
TLξ(l)(t)

)λ)µξ(l)) 1
λ

,

(
1−

j∏
l=1

(
1−

(
TUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j∏
l=1

(
1−

(
1− ILξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j∏
l=1

(
1−

(
1− IUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j∏
l=1

(
1−

(
1− FLξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j∏
l=1

(
1−

(
1− FUξ(l)(t)

)λ)µξ(l)) 1
λ
]}

.

⊕

{[(
1−

(
1−

(
T j+1
ξ(j+1)(t)

)λ)µξ(j+1)

) 1
λ

,

(
1−

(
1−

(
TUξ(j+1)(t)

)λ)µξ(j+1)

) 1
λ
]
,

[
1−

(
1−

(
1−

(
1− Ij+1

ξ(j+1)(t)
)λ)µξ(j+1)

) 1
λ

, 1−
(

1−
(

1−
(
1− IUξ(j+1)(t)

)λ)µξ(j+1)

) 1
λ
]
,[

1−
(

1−
(

1−
(
1− F j+1

ξ(j+1)(t)
)λ)µξ(j+1)

) 1
λ

, 1−
(

1−
(

1−
(
1− FUξ(j+1)(t)

)λ)µξ(j+1)

) 1
λ
]}

=

{[(
1−

j+1∏
l=1

(
1−

(
TLξ(l)(t)

)λ)µξ(l)) 1
λ

,

(
1−

j+1∏
l=1

(
1−

(
TUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j+1∏
l=1

(
1−

(
1− ILξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j+1∏
l=1

(
1−

(
1− IUξ(l)(t)

)λ)µξ(l)) 1
λ
]
,

[
1−

(
1−

j+1∏
l=1

(
1−

(
1− FLξ(l)(t)

)λ)µξ(l)) 1
λ

, 1−
(

1−
j+1∏
l=1

(
1−

(
1− FUξ(l)(t)

)λ)µξ(l)) 1
λ
]}

.

From above equations, we have that equation (8) holds for all natural numbers m, and
Theorem 1 is proved. �
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Theorem 2. The DIVNCOA operator has the following desirable properties:

1. (Idempotency) Let
∼
nl =

∼
n (∀l = 1, 2, . . . , v) and

∼
n =

{[
TL(t), TU (t)

]
,

[
IL(t), IU (t)

]
,

[
FL(t), FU (t)

]}
then

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}

=

{[
TL(t), TU (t)

]
,

[
IL(t), IU (t)

]
,

[
FL(t), FU (t)

]}
.

2. (Boundedness) Let
∼
n
−

=

{[
TL

−
(t), TU

−
(t)

]
,

[
IL

+
(t), IU

+
(t)

]
,

[
FL

+
(t), FU

+
(t)

]}
;

∼
n
+

=

{[
TL

+
(t), TU

+
(t)

]
,

[
IL

−
(t), IU

−
(t)

]
,

[
FL

−
(t), FU

−
(t)

]}
then

∼
n
−
≤ DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}
≤ ∼n

+
.

3. (Commutativity) If
{≈
n1,
≈
n2, . . . ,

≈
nv
}

is a permutation of
{∼
n1,
∼
n2, . . . ,

∼
nv
}

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}

= DIVNCOAµ,λ

{≈
n1,
≈
n2, . . . ,

≈
nv
}
.

4. (Monotonity) If
∼
nl ≤

≈
nl for ∀l ∈ {1, 2, . . . , v}, then

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}
≤ DIVNCOAµ,λ

{≈
n1,
≈
n2, . . . ,

≈
nv
}
.

Proof. Suppose (1, 2, ..., v) is a permutation such that
∼
n1 ≤

∼
n2 ≤ ... ≤

∼
nv.

1. For
∼
n =

{[
∼
T
L

(t),
∼
T
U

(t)

]
,

[
∼
I
L

(t),
∼
I
U

(t)

]
,

[
∼
F
L

(t),
∼
F
U

(t)

]}
, according to Definition 4, it

follows that

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}

={[(
1−

v∏
l=1

(
1−

(
TLξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ

,

(
1−

v∏
l=1

(
1−

(
TUξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ
]
,

[(
1−

(
1−

v∏
l=1

(
1−

(
1− ILξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ
)
,

(
1−

(
1−

v∏
l=1

(
1−

(
1− IUξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ
)]
,

[(
1−

(
1−

v∏
l=1

(
1−

(
1− FLξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ
)
,

(
1−

(
1−

v∏
l=1

(
1−

(
1− FUξ(l)(t)

)λ)∑v
l=1 µ(Gξ(l)−Gξ(l−1))

) 1
λ
)]}

.
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Since
∑v

l=1 µ(Gξ(l) −Gξ(l−1)) = 1, thus,

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}

=

{[
TL(t), TU (t)

]
,

[
IL(t), IU (t)

]
,

[
FL(t), FU (t)

]}
.

2. For any
∼
Tl = [

∼
T
L

l ,
∼
T
U

l ],
∼
Il = [

∼
I
L

l ,
∼
I
U

l ] and
∼
Fl = [

∼
F
L

l ,
∼
F
U

l ], l = 1, 2, ..., v, we have

∼
T
L−

≤
∼
T
L

l ≤
∼
T
L+

;
∼
I
L−

≤
∼
I
L

l ≤
∼
I
L+

;
∼
F
L−

≤
∼
F
L

l ≤
∼
F
L+

;

∼
T
U−

≤
∼
T
U

l ≤
∼
T
U+

;
∼
I
U−

≤
∼
I
U

l ≤
∼
I
U+

;
∼
F
U−

≤
∼
F
U

l ≤
∼
F
U+

.

Since f = xθ (0 < θ < 1) is a monotone increasing function when x > 0 and values in the
DIVNCOA operator are all valued in [0, 1], therefore,(

1−
(

1−
(∼
T
L−

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

+

(
1−

(
1−

(∼
T
U−

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

≤
(

1−
v∏
l=1

(
1−

(∼
T
L

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

+

(
1−

v∏
l=1

(
1−

(∼
T
U

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

≤
(

1−
(

1−
(∼
T
L+

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

+

(
1−

(
1−

(∼
T
U+

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

.

Since
∑v

l=1 µ(Gξ(l) −Gξ(l−1)) = 1, the above equation is equivalent to

∼
T
L−

+
∼
T
U−

≤
(

1−
v∏
l=1

(
1−

(∼
T
L

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

+

(
1−

v∏
l=1

(
1−

(∼
T
U

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

≤
∼
T
L+

+
∼
T
U+

.

Analogously, we have

∼
I
L−

+
∼
I
U−

≤

(
1−

(
1−

v∏
l=1

(
1−

(
1−

∼
I
L

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

)

+

(
1−

(
1−

v∏
l=1

(
1−

(
1−

∼
I
U

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

)

≤
∼
I
L+

+
∼
I
U+

.
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and
∼
F
L−

+
∼
F
U−

≤

(
1−

(
1−

v∏
l=1

(
1−

(
1−

∼
F
L

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

)

+

(
1−

(
1−

v∏
l=1

(
1−

(
1−

∼
F
U

ξ(l)(t)
)λ)∑v

l=1 µ(Gξ(l)−Gξ(l−1))
) 1
λ

)

≤
∼
F
L+

+
∼
F
U+

.

Since score(
∼
n
−

) ≤ score(
∼
n) ≤ score(

∼
n
+

), thus,
∼
n
−
≤ DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}
≤ ∼n

+
.

3. Suppose (ξ(1), ξ(2), ..., ξ(v)) is a permutation of both {≈n1,
≈
n2, ...,

≈
nv} and {∼n1,

∼
n2, ...,

∼
nv}

such that
∼
nξ(1) ≤

∼
nξ(2) ≤, ...,≤

∼
nξ(v), Gξ(l) = xξ(1), xξ(2), ..., xξ(l), then

DIVNCOAµ,λ

{∼
n1,
∼
n2, . . . ,

∼
nv
}

= DIVNCOAµ,λ

{≈
n1,
≈
n2, . . . ,

≈
nv
}

= ⊕vl=1

((
µ(Gξ(l))− µ(Gξ(l−1))

∼
nξ(l)

))
.

4. It is easily observed from Theorem 1.

Theorem 2 is proved. �

4. APPLICATION IN DMCDM UNDER DYNAMIC INTERVAL VALUED
NEUTROSOPHIC ENVIRONMENT

The operators have been blueimplemented for the DMCDM problem to illustrate its
potential application. blueExtending from the existing DMCDM methods on dynamic inter-
val valued neutrosophic environment, herein the interaction relationship among attributes
is considered. It is to remind that the characteristics of the alternatives are represented
by DIVNEs. In this case, the correctness of a DMCDM problem is verified based on new
Choquet aggregation operators and its practicality is considered.

4.1. Approaches based on the DIVNCOA operator for DMCDM

Assume A = {A1, A2, . . . , Av} and C = {C1, C2, . . . , Cn} and D = {D1, D2, . . . , Dh} are
sets of alternatives, attributes, and decision makers. For a decision maker Dq, q = 1, 2, . . . , h
the evaluation characteristic of an alternative Am, m = 1, 2, . . . , v, on an attribute Cp, p =
1, 2, . . . , n, in time sequence t = {t1, t2, . . . , tk} is represented by a decision matrix Dq

(
tl
)

=(
dqmp(t)

)
v×n, l = 1, 2, . . . , k, where dqmp(t) =

〈
xqdmp(t),

(
T q(dmp, t), I

q(dmp, t), F
q(dmp, t)

)〉
,

t = {t1, t2, . . . , tk} taken by DIVNSs evaluated by decision maker Dq.

Step 1. Reorder the decision matrix.

With respect to attributes C = {C1, C2, . . . , Cn}, reorder DIVNEs dqmp ofA = {A1, A2, . . . ,
Av} rated by decision makers D = {D1, D2, . . . , Dh} from smallest to largest, according to
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their score function values calculated by Equation (9)

score(
∼
n) =

1

h
× 1

k

h∑
r

ωr ×
k∑
l=1

wl ×

((
TL(tl) + TU (tl)

2
+
(

1− IL(tl) + IU (tl)

2

)
+
(

1− FL(tl) + FU (tl)

2

))/
3

)
,

the reorder sequence for Am, m = 1, . . . , v, is
(
ξ(1), ξ(2), . . . , ξ(v)

)
.

Step 2. Calculate fuzzy measures of n attributes.

Use the formula measurement stated in the Equation (3) to calculate the fuzzy measure
of C, where the interaction among all attributes is taken into account.

Step 3. Aggregate decision information by the DIVNCOA operator and score values for
alternatives.

Aggregate DIVNEs of Am, m = 1, . . . , v, stated in Equation (8), with consideration of
all attributes C = {C1, C2, . . . , Cn} as proved by theorem, the average values obtained by
the DIVNCOA operator are also DIVNEs; and score values for alternatives calculated by
(9).

Step 4. Place all alternatives in order.

Rank all alternatives by selecting the best fit by their score function values between
Am, m = 1, . . . , v, described in Equation (9).

4.2. Practical application

This section presents an application of the new method proposed in previous sections,
particularly it is used to evaluate the performance of lecturers in a Vietnamese university,
ULIS-VNU. This problem is DMCDM problem, that includes five alternatives present to
five lecturers A1, . . . , A5, and three decision makers D1, . . . , D3, each lecturer’s performance
is estimated by six criteria: The total of publications, the teaching student evaluations, the
personality characteristics, the professional society, teaching experience and the fluency of
foreign language, are symbolized as, (C1), (C2), (C3), (C4), (C5), (C6) respectively.

The set of linguistic label S = {VeGo, Go, Me, Po, VePo} in t = {t1, t2, t3} is

VeGo = VeryGood = ([0.6, 0.7], [0.2, 0.3], [0.2, 0.3]),

Go = Good = ([0.5, 0.6], [0.4, 0.5], [0.3, 0.4]),

Me = Medium = ([0.3, 0.5], [0.4, 0.6], [0.4, 0.5]),

Po = Poor = ([0.2, 0.3], [0.5, 0.6], [0.6, 0.7]),

VePo = VeryPoor = ([0.1, 0.2], [0.6, 0.7], [0.7, 0.8]).

And Table 1 presents rating of decision makers to lecturers by criteria at three periods.

Step 1. Using Equation (9) to calculate score function values. Values shown in Table 2.

According to score function between criteria and alternatives, the reordered decision is
given by Table 3.

Step 2. First, if all inter-related attributes from the fuzzy measures are given as follows:
µ(C1) = 0.2, µ(C2) = 0.42, µ(C3) = 0.22, µ(C4) = 0.3, µ(C5) = 0.1, µ(C6) = 0.15, According
to Equation (3), the value of λ is obtained λ = −0.60. Thus, we have:
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Table 1. Rating of decision makers for criteria to lecturers

Criteria L
e
c Decision makers

t1 t2 t3
D1 D2 D3 D1 D2 D3 D1 D2 D3

C1

A1 Me Go Go Go Go Go Go VeGo Go
A2 Go Go VeGo VeGo Go VeGo VeGo Go VeGo
A3 Me Go Go Go Go Go Go Go VeGo
A4 Go Me Go Go Go Go Go Go Go
A5 Me Go Me Go Go Me Go Go Go

C2

A1 Go Go Go VeGo Go Go Go Go Go
A2 VeGo Go VeGo Me Go Go VeGo Go Go
A3 VeGo Go Go Go Me Go Go Me Go
A4 Go Go Go Go VeGo Go Go Go VeGo
A5 VeGo Go Go Go VeGo Go Go Go Me

C3

A1 VeGo VeGo Go Go VeGo Go Go Me Go
A2 Go VeGo Go VeGo Go VeGo Go Go VeGo
A3 Go VeGo VeGo Go Go Go Go VeGo Go
A4 Go Go Go VeGo Go Go VeGo Go Go
A5 VeGo Go Go Go VeGo Go Go Go Go

C4

A1 Me Go Me Go Go Me Me Go Me
A2 Go Me Go Go Me Go Go Me Go
A3 Go Go Go Go Go Me Go Go VeGo
A4 Me Po Me Go Me Me Go Go Me
A5 Me Me Po Me Me Me Me Go Me

C5

A1 Me Go Me Me Go Go Go Me Go
A2 Go VeGo Go VeGo Go Go Go VeGo Go
A3 Go Go Me Go Go Go Go VeGo Go
A4 VeGo Go Go VeGo Go Go VeGo Go Go
A5 Go Go Go Go Go Go Go VeGo Go

C6

A1 VeGo Go Go VeGo Go VeGo VeGo Go VeGo
A2 Go Go Go Go VeGo Go Go Go VeGo
A3 VeGo Go VeGo VeGo Go VeGo VeGo Go VeGo
A4 Go VeGo Go Go VeGo Go Go Go Go
A5 Go Go Go VeGo Go Go Go VeGo Go

µ(C1, C2) = 0.5696,

µ(C1, C2, C3) = 0.7144,

µ(C1, C2, C3, C4) = 0.8858,

µ(C1, C2, C3, C4, C5) = 0.9327,

µ(C1, C2, C3, C4, C5, C6) = 1.

And µξ(1) = 0.2, µξ(2) = 0.3696, µξ(3) = 0.1448, µξ(4) = 0.1714, µξ(5) = 0.0469,
µξ(6) = 0.0673.
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Table 2. The Score for Lecturers - Criterias

A\C C1 C2 C3 C4 C5 C6

A1 0.587 0.598 0.617 0.527 0.54 0.657
A2 0.657 0.617 0.657 0.55 0.628 0.613
A3 0.587 0.576 0.628 0.587 0.587 0.672
A4 0.572 0.613 0.613 0.502 0.628 0.613
A5 0.55 0.602 0.613 0.479 0.598 0.613

Table 3. The recordered decision

Criteria L
e
c

Decision makers
t1 t2 t3
D1 D2 D3 D1 D2 D3 D1 D2 D3

C1

A1 Me Go Me Go Go Me Me Go Me
A2 Go Me Go Go Me Go Go Me Go
A3 VeGo Go Go Go Me Go Go Me Go
A4 Me Po Me Go Me Me Go Go Me
A5 Me Me Po Me Me Me Me Go Me

C2

A1 Me Go Me Me Go Go Go Me Go
A2 Go Go Go Go VeGo Go Go Go VeGo
A3 Me Go Go Go Go Go Go Go VeGo
A4 Go Me Go Go Go Go Go Go Go
A5 Me Go Me Go Go Me Go Go Go

C3

A1 Me Go Go Go Go Go Go VeGo Go
A2 VeGo Go VeGo Me Go Go VeGo Go Go
A3 Go Go Go Go Go Me Go Go VeGo
A4 Go Go Go Go VeGo Go Go Go VeGo
A5 Go Go Go Go Go Go Go VeGo Go

C4

A1 Go Go Go VeGo Go Go Go Go Go
A2 Go VeGo Go VeGo Go Go Go VeGo Go
A3 Go Go Me Go Go Go Go VeGo Go
A4 Go Go Go VeGo Go Go VeGo Go Go
A5 VeGo Go Go Go VeGo Go Go Go Me

C5

A1 VeGo VeGo Go Go VeGo Go Go Me Go
A2 Go Go VeGo VeGo Go VeGo VeGo Go VeGo
A3 Go VeGo VeGo Go Go Go Go VeGo Go
A4 Go VeGo Go Go VeGo Go Go Go Go
A5 VeGo Go Go Go VeGo Go Go Go Go

C6

A1 VeGo Go Go VeGo Go VeGo VeGo Go VeGo
A2 Go VeGo Go VeGo Go VeGo Go Go VeGo
A3 VeGo Go VeGo VeGo Go VeGo VeGo Go VeGo
A4 VeGo Go Go VeGo Go Go VeGo Go Go
A5 Go Go Go VeGo Go Go Go VeGo Go
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Step 3. With λ = 1, we have following score values of lecturers depicted in Table 4.

Table 4. The Scores of Lecturers

Lecturers Proposed Method Ranking

A1 0.999998824 4
A2 0.999999293 1
A3 0.999999262 2
A4 0.99999895 3
A5 0.999998584 5

Step 4. From the values in Table 4, we have the ranking of lecturers as A2 � A3 � A4 �
A1 � A5.

Compare proposed method with TOPSIS method [11], it is able to demonstrate the ad-
vantages and to show the proposed method’s application. Table 5 shows that the hierarchical
order of the five lectures by TOPSIS method is A2 � A3 � A4 � A1 � A5 then A2 is the best
lecturer. The result is identical to our method. This means that the method in simplest form
can handle DMCDM problem. Moreover, it is more flexible than the method introduced by
Thong et al. [11] because the new method considers the inter-dependence among criteria or
preference.

Table 5. Closeness coefficient

Lecturers TOPSIS method Ranking

A1 0.339 4
A2 0.367 1
A3 0.351 2
A4 0.345 3
A5 0.338 5

5. CONCLUSIONS

This paper introduced a new modification of Choquet aggregation operator under the
Dynamic inteval valued neutrosophic environment in which the interdependency between
criteria are observed and two score function have also been defined for DIVNSs. Furthermore,
we have presented a new decision making method based on proposed theories and have tested
its potential application by evaluating lecturers’ performance in the ULIS-VNU. The testing
result shows the efficiency of decision making model using new proposal measures for dynamic
decision-making problem under dynamic neutrosophic environment constrained by time.
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