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Abstract. During last years, lots of the fuzzy rule based classifier (FRBC) design methods have been
proposed to improve the classification accuracy and the interpretability of the proposed classification
models. In view of that trend, genetic design methods of linguistic terms along with their (triangular
and trapezoidal) fuzzy sets based semantics for FRBCs, using hedge algebras as the mathematical
formalism, have been proposed. Those hedge algebras based design methods utilize semantically
quantifying mapping values of linguistic terms to generate their fuzzy sets based semantics so as to
make use of the existing fuzzy sets based classification reasoning methods for data classification. If
there exists a classification reasoning method which bases merely on the semantic parameters of hedge
algebras, fuzzy sets based semantics of the linguistic terms in the fuzzy classification rule bases can
be replaced by hedge algebras-based semantics. This paper presents a FRBC design method based on
hedge algebras approach by introducing a hedge algebra based classification reasoning method with
multi-granularity fuzzy partitioning for data classification so that the semantics of linguistic terms
in the rule bases can be hedge algebras-based semantics. Experimental results over 17 real world
datasets are compared to the existing methods based on hedge algebras and the state-of-the-art fuzzy
set theory-based approaches, showing that the proposed FRBC in this paper is an effective classifier
and produces good results.

Keywords. Classification Reasoning; Fuzzy Rule Based Classifier; Fuzziness Interval; Hedge Alge-
bras; Multi-Granularity; Semantically Quantifying Mapping Values.

1. INTRODUCTION

Fuzzy rule based systems (FRBSs) have been studied and applied efficiently in many
different fields such as fuzzy control, data mining, etc. Unlike classical classifiers based
on the statistical and probabilistic approaches [3, 8, 27, 32] which are the “black boxes”
lacking of interpretability, the advantage of the FRBC model is that end-users can use the
high interpretability fuzzy rule-based knowledge extracted automatically from data as their
knowledge.

In the FRBC design based on the fuzzy set theory approaches [1, 2, 6, 7, 21, 22, 23,
24, 35, 36, 38, 39, 41], the fuzzy partitions from which fuzzy rules are extracted are com-
monly pre-designed using fuzzy sets and then linguistic terms are intuitively assigned to
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fuzzy sets. Furthermore, fuzzy partitions can be generated automatically from data by using
discretization or granular computing mechanisms [37]. No matter how they are designed,
the problem of the linguistic term design is not clearly studied although fuzzy rule bases
are represented by linguistic terms with their fuzzy set based semantics. Many techniques
have been proposed to achieve compact fuzzy rule systems with accuracy and interpreta-
bility trade-off extracted from data, such as using artificial neural network [33] or genetic
algorithm [1, 2, 7, 21, 36, 38, 39, 41] by adjusting fuzzy set parameters to achieve the opti-
mal fuzzy partitions and to select the optimal fuzzy rule based systems. However, the fuzzy
set based semantics of linguistic terms are not preserved, leading to the affectedness of the
interpretability of the fuzzy rule bases of classifiers.

Hedge algebras (HAs) [9, 11, 12, 14, 17, 18] provide a mathematical formalism for desig-
ning the order based semantic structure of term domains of linguistic variables that can be
applied to various application domains in the real life, such as fuzzy control [10, 26, 28, 29],
expert systems [12], data mining [5, 13, 15, 16, 25, 40], fuzzy database [19, 42], image pro-
cessing [20], timetabling [31], etc. The crucial idea of the hedge algebra based approach is
that it reflects the nature of fuzzy information by the fuzziness of information. In [13, 15],
HAs are utilized to model and design the linguistic terms for FRBCs. They exploit the
inherent semantic order of linguistic terms that allows generating semantic constraints bet-
ween linguistic terms and their integrated fuzzy sets. More specifically, when given values of
fuzziness parameters, the semantically quantifying mapping (SQM) values of linguistic terms
are computed and then associated fuzzy sets of linguistic terms are automatically generated
from their own semantics. So, linguistic terms along with their fuzzy sets based semantics
are generated by a procedure. Based on this formalism, an efficient fuzzy rule based classifier
design method is developed.

As set forth above, HAs can be utilized to design eminent FRBCs. However, we may
wonder that why the semantics of linguistic terms in the fuzzy classification rule bases
of FRBCs designed by the HAs based methodology are still fuzzy sets based semantics.
The answer is that although linguistic terms are designed by HAs, the fuzzy set based
classification reasoning methods proposed in the prior researches [21, 23, 24| are made use
for data classification. If there is a classification reasoning method for data classification
which bases merely on semantic parameters of hedge algebras, fuzzy sets based semantics
of linguistic terms in the fuzzy classification rule bases can be replaced with hedge algebras
based semantics. In response to that question, a classification reasoning method merely
based on HAs for FRBC is presented in this paper. The idea is based on the Takagi-Sugeno-
Hedge algebras fuzzy model proposed in [26] to improve the forecast control based on models
in such a way that membership functions of individual linguistic terms in Takagi-Sugeno
fuzzy model are replaced with the closeness of semantically quantifying mapping values of
adjacent linguistic values. That result is enhanced to build a classification reasoning method
based on HAs which enables fuzzy sets based semantics of the linguistic terms in the fuzzy
rule bases to be replaced with hedge algebras based semantics. Furthermore, the design of
information granules plays an important role in designing FLRBCs, i.e., it is the basis for
generating interpretable FLRBCs and impacts on the classification performance. Because
of the semantic inheritance, with linguistic terms that are induced from the same primary
term, the shorter the term, the more generality it has and vice versa. Therefore, with
the single-granularity structure, all linguistic terms just appear in a fuzzy partition leading
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to the semantics of shorter terms are reduced and become more specific. Contrarily, the
multi-granularity structure retains the generality of shorter linguistic terms in the rule bases
because linguistic terms which have the same length form a fuzzy partition. That is why a
hedge algebra based classification reasoning method with multi-granularity fuzzy partitioning
for data classification is introduced in this paper. Experimental results over 17 real world
datasets show the efficiency of the multi-granularity structure design in comparison with the
single one as well as show the efficiency of the proposed classifier in comparison with the
state-of-the-art methods based on hedge algebras and fuzzy set theory.

The rest of the paper is organized as follows: Section 2 presents fuzzy rule based clas-
sifier design based on hedge algebras and the proposed hedge algebras based classification
reasoning method for the FRBCs. Section 3 presents experimental evaluation studies and
discussions. Conclusions and remarks are included in Section 4.

2. FUZZY RULE BASED CLASSIFIER DESIGN BASED ON
HEDGE ALGEBRAS

2.1. Hedge algebras for the semantic representation of linguistic terms

To formalize the nature structure of the linguistic variables, a mathematic structure,
so-called the hedge algebra, has been introduced and examined by N. C. Ho et al. [17, 18].
Assume that X is a linguistic variable and the linguistic value domain of X' is Dom(X). A
hedge algebra AX of X is a structure AX = (X, G, C, H, <), where X is a set of linguistic
terms of X and X C Dom(X); G is a set of two generator terms ¢~ and ¢*, where ¢~ is
the negative primary term, ¢* is the positive primary term and ¢~ < ¢™; C is a set of term
constants, C' = {0, W, 1}, satisfying the relation order 0 < ¢~ < W < ¢t < 1; 0 and
1 are the least and the greatest terms, respectively; W is the neutral term; H is a set of
hedges of X, where H = H- UH™", H- and H* are the set of negative and positive hedges,
respectively; < is an order relation induced by the inherent semantics of terms of X.

When a hedge acts on a non-constant term, a new linguistic term is induced. Each
linguistic term x in X is represented as the string representation, i.e., either x = ¢ or
z = hp...hic, where c € {¢7, ¢"} U C and hj € H, j =1, ..., m. All linguistic terms
generated from z by using the hedges in H can be abbreviated as H(z). If all linguistic
terms in X and all hedges in H have a linear order relation, respectively, AX is the linear
hedge algebras. AX is built from some characteristics of the inherent semantics of linguistic
terms which are expressed by the semantic order relationship “<” of X.

Two primary terms ¢~ and ¢’ possess their own converse semantic tendencies. For
convenience, ¢ possesses the positive tendency and it has positive sign written as sign(c™t)
= +41. Similarly, ¢~ possesses the negative tendency and it has negative sign written as
sign(c”) = —1. As the semantic order relationship, we have ¢~ < ¢*. For example, “old”
possesses the positive tendency, “young” possesses the negative tendency and “young” <
“old”.

Each hedge possesses tendency to decrease or increase the semantics of two primary
terms. For example, “very young” < “young” and “old” < “very old”, the hedge wvery
makes the semantics of “young” and “old” increased. “young” < “less young” and “less
old” < “old”, the hedge less makes the semantics of “young” and “old” decreased. It is said
that very is the positive hedge and less is the negative hedge. We denote the H~ = {h_,,
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..., h_1} is a set of negative hedges where h_y < ... < h_9 <h_1, H" = {hy, ..., hy} is a
set of positive hedges where by < hy < ... < h,and H = H-UH*. If h e H,sign(h) = —1
and if h € H*, sign(h) = +1. If both hedges h and k in H~ or H*, we say that h and k
are compatible, whereas, h and k are inverse each other.

Each hedge possesses tendency to decrease or increase the semantics of other hedge. If
k makes the semantic of A increased, k is positive with respect to h, whereas, if k¥ makes
the sematic of h decreased, k is negative with respect to h. The negativity and positivity of
hedges do not depend on the linguistic terms on which they act. For example, V is positive
with respect to L, we have x < Lx then Lz < VLx, or Lx < x then VLx < Lz. One hedge
may have a relative sign with respect to another. sign(k, h) = +1 if k strengthens the effect
tendency of h, whereas, sign(k, h) = —1 if k weakens the effect tendency of h. Thus, the
sign of term x, * = hyhm—1. .. hahic, is defined by

sign(z) = sign(hm, hm—1) X ... x sign(hg, hi) x sign(hi) x sign(c).

The meaning of the sign of term is that sign(hz) = +1 — = < hz and sign(hz) =—1 —
hr < x.

Semantic inheritance in generating linguistic terms by using hedges: When a new lin-
guistic term hx is generated from a linguistic term x by using the hedge h, the semantic of
the new linguistic term is changed but it still conveys the original semantic of x. This means
that the semantic of hz is inherited from zx.

As set forth above, HAs are the qualitative models. Therefore, to apply HAs to solve the
real world problems, some characteristics of HAs need to be characterized by quantitative
concepts based on qualitative term semantics.

On the semantic aspect, H(z), x € X, is the set of linguistic terms generated from z and
their semantics are changed by using the hedges in H but still convey the original semantic
of z. So, H(x) reflects the fuzziness of z and the length of H(z) can be used to express the
fuzziness measure of x, denoted by fm(x). When H(x) is mapped to an interval in [0, 1]
following the order structure of X by a mapping v, it is called the fuzziness interval of x
and denoted by ().

A function fm: X — [0, 1] is said to be a fuzziness measure of AX provided that it
satisfies the following properties:

(FM1) fm(c™) + fm(ct) =1 and > fm(hu) = fm (u) for Vu € X;
heH

(FM2) fm(z) = 0 for all H(x) = z, especially, fm(0) = fm(W) = fm(1) = 0;

fr(he) _ fm (hy)
fm(@) _ fm(y)

on any particular linguistic term on X is called the fuzziness measure of the hedge h,
denoted by u(h).

(FM3) Vz,y € X, Vh € H, the proportion

which does not depend

From (FM1) and (FM3), the fuzziness measure of linguistic term x = hy,...hjc can be
computed recursively that fm(x) = p(hp)... p(hi)fm(c), where > p(h) = 1 and ¢ €
heH

{¢7, ¢t}
Semantically quantifying mappings (SQMs): The semantically quantifying mapping of
AX is a mapping v : X — [0, 1] which satisfies the following conditions:



A HEDGE ALGEBRAS BASED CLASSIFICATION REASONING METHOD 323

(SQM1) It preserves the order based structure of X, i.e., z <y — v(z) < v(y),Vz € X;
(SQM2) It is one-to-one mapping and v(z) is dense in [0, 1].
Let fm be a fuzziness measure on X. v(x) is computed recursively based on fm as follows:

L o(W)=0= fm(c), v(cT)=0—afm(c) = Bfm(c”), v(ct) =0+ afm(ch);

2. v(hjz) = v (x) + sign (h;x) ( i fm(hix) —w (hjz) fm (hjx)> )

i=sign(j)

Wherej S [_Q)p] = {j -9 S] Spa ] 7é 0} and
w(hjz) = %[1 + sign(h;x)sign(hph;z)(8 — a)] € {a, B}.

2.2. Fuzzy rule based classifier design based on hedge algebras
A fuzzy rule based classifier design problem P is defined as: A set P = {(d,, Cp)| d, €

D, C, e C,p=1,...,m} of m patterns, where d, = [dp1,dp2,...,dpn] is the row p',
C = {Cs|s =1, ..., M} is the set of M class labels, n is the number of features of the
dataset P.

The fuzzy rule based system of the FRBCs used in this paper is the set of weighted fuzzy
rules in the following form [21, 23, 24|

Rule R, : IF X7 is Ag1 AND ... AND X, is A;,, THEN C, with CF,, for ¢=1,...,N,
1)
where X = {X;, j =1,...,n} is the set of n linguistic variables corresponding to n features
of the dataset P, A, ; is the linguistic terms of the jt feature F;, Oy is a class label and
CF ', is the rule weight of R,. The rule R, is abbreviated as the following short form

A, = C, with CF,, for ¢=1,...,N, (2)

where A, is the antecedent part of the qh-rule.

Solving the problem P is to extract from P a set S of fuzzy rules in the form (1) in order
to achieve a compact FRBC based on S comes with high classification accuracy and suitable
interpretability. The general method of FRBC design with the semantics of linguistic terms
based on the hedge algebras comprises two following phases [15, 16]:

1. Genetically design linguistic terms along with their fuzzy-set-based semantics for each
feature of the designated dataset in such a way that only semantic parameter values
are adjusted, as a result, near optimal semantic parameter values are achieved by the
interaction between semantics of linguistic terms and the data.

2. An evolutionary algorithm is applied to select near optimal fuzzy classification rule
based systems having a quite suitable interpretability—accuracy trade-offs from data
by using a given near optimal semantic parameter values provided by the first phase
for fuzzy rule based classifiers.
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HAs provides a formalism basis for generating quantitative semantics of linguistic terms
from their qualitative semantics. This formalism is applied to genetically design linguistic
terms along with the integrated fuzzy set based semantics for fuzzy rule based classifiers.
Hereafter are the summaries of two above steps:

Each feature j* of the designated dataset is associated with an hedge algebra AX 1
induces all linguistic terms Xj ) with the maximum length k; having the order based
inherent semantics of linguistic terms. Given a value of the semantic parameters 11, which
includes fuzziness measures fm(c;) and p(h;;) of the negative primary term ¢; and hjg,
respectively, and a positive integer k; for limiting the designed term lengths, quantifying
mapping values v(z;;),r;; € Xj . for all k < k; and the kj-similarity intervals &, (Xj;) of
linguistic terms in X s, 2 are computed and they constitute a unique fuzzy partition of the
4t attribute. After fuzzy partitions of all attributes are constructed, fuzzy rule conditions
will be specified based on these partitions.

Among the kj-similarity intervals of a given fuzzy partition, there is a unique interval
Sy, (xj’i(i)) containing j*-component dy; of d, pattern. All kj;-similarity intervals which
contain d,, ; component define a hyper-cube H,, and fuzzy rules are only induced from this
type of hyper-cube. A fuzzy rule generated from H, for the class C), of d,, is so-called a basic
fuzzy rule and it has the following form

IF X1 is L1,i(1) AND ... AND Xn is L i(n) THEN Cp. (Rb)

Only one basic fuzzy rule which has the length n can be generated from the data pattern
dp. To generate the fuzzy rule with the length L < n, so-called the secondary rules, some
techniques should be used for generating fuzzy combinations, for example, generate all k-
combinations (1 < k < L) from the given set of n features of dataset P.

IF X isx

) AND ... AND X;, is z, ;(j,) THEN Cj, (Rona)

J1,5(J1 Jti(ge

where 1 < j; < ...< j; < n. The consequence class Cy of the rule R, is determined by the
c (A = C},) 20, 21] of R,

confidence measure

Cy = argmax(c(A, = Ch) | h=1,...,M). (3)

The confidence of a fuzzy rule is computed as

Ay = Cr) = > tia,dp) /D ia,(dy), (4)
p=1

dpeCh,

where 114, (dp) is the compatibility grade of the pattern d,, with the antecedent of the rule
R, and commonly computed as

fa, (d H tq,j (d (5)

As trying to generate all possible combinations, the maximum of number fuzzy combi-
L L
nations is Y C}, so the maximum of the secondary rules is m x > C%.
i=1 i=1
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To eliminate less important rules, a screening criterion is used to select a subset Sy with
NRy fuzzy rules from the candidate rule set, called an initial fuzzy rule set. Candidate rules
are divided into M groups, sort rules in each group by a screening criterion. Select from each
group NBj rules, so the number of initial fuzzy rules is NRy = NBg x M. The screening
criterion can be the confidence ¢, the support s or ¢ x s. The confidence is computed by the
formula (4), the support is computed as following formula [20]

s(Ag=Cp) = D pa,(dy)/m. (6)
dpeCh,

To improve the accuracy of classifiers, each fuzzy rule is assigned a rule weight and it is
commonly computed by the following formula [20]

CFy=c(Ay= Cy) — cq2nds (7)
where ¢, 2,4 is computed as
Cgond = max(c(Ag = Class h) | h=1,...,M; h # C,). (8)

The classification reasoning method commonly used to classify the data pattern d, is
Single Winner Rule (SWR). The winner rule R, € S (a classification rule set) is the rule
which has the maximum of the product of the compatibility grade pa,(d,) and the rule
weight CF (A, = (), and the classified class C,, is the consequence part of this rule.

pa, (dp) x CF,, = argmax (qu(dp) x CFy | Ry € S). (9)

This fuzzy rule generation process is called the initial fuzzy rule set generation procedure
IFRG(II, P, NRy, L) [15], where II is a set of semantic parameter values and L is the
maximum of rule length.

Each specific dataset needs a different set of semantic parameter values to adapt to the
data distribution of it, i.e., the quality of the classifier is improved. Thus, an evolutionary
algorithm is needed to find optimal semantic parameter values for a specific dataset. When
having optimal semantic parameter values, they are used to extract an initial fuzzy rule set
and an evolutionary algorithm used to find a subset of the fuzzy classification rules S from
S having a suitable interpretability—accuracy trade-offs for FRBCs.

2.3. Hedge algebras based reasoning method for fuzzy rule based classifier

Up to now, fuzzy rule based classifier design methods, using the hedge algebra metho-
dology [13, 15] induce fuzzy sets based semantics of linguistic terms for FRBCs because the
authors would like to make use of the fuzzy set based classification reasoning method pro-
posed in the fuzzy set based approaches [21, 23, 24]. This research aims at proposing hedge
algebras based classification reasoning method with multi-granularity fuzzy partitioning for
FRBCs and shows the efficiency of the proposed ones by the experiments on a considerable
real world datasets.

In [26], the authors propose a Takagi-Sugeno-Hedge algebra fuzzy model to improve
the forecast control based on the models by using the closeness of semantically quantifying
mapping values of adjacent linguistic terms instead of the grade of the membership function
of each individual linguistic term. That idea is summarized as follows:
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e v(z;), v(zp) and v(xg) are the SQM values of the linguistic terms z;, xo and zj with
the semantic order x; < zg < xp, respectively.

e 7; which is the closeness of v(z;) to v(zg) is defined as n; =

which is the closeness of v(z3) to v(xp) is defined as ny =
Mk = 1and 0 <7, mp < 1.

That idea is advanced to apply to make the hedge algebra based classification reasoning
methods for FRBCs in two cases as follows.

In case of single granularity structure

In the single granularity structure design, all linguistic terms X, with different term
length k (1 < k < k;) appear at the same level k;. Therefore, at the level k; of the jth-feature
of the designated dataset, there are the SQM values of all linguistic terms X ) with the
semantic order v(2;,;—1) < v(zji) < v(2jit+1), Tji € Xx;). For a data point dp,; of the data
pattern d,, (has been normalized to [0, 1]), the closeness of dj, ; to v(z;,;) is defined as:

e If dy; is between v(x;;) and v(z;;11) then ng, , = o lj0) = v (i)
’ dpj — v (zji1)
v (@jiv1) = v (24)

e If d, ; is between v(z;;-1) and v(w;;) then ng, . = o (@) —d
Jyit PsJ

il k=2

v('O) w(Ve) v('c') (L) v(IW) wLc) v(;f) wreh  vl)

Figure 1. The position of data point d, ; at the level k; = 2 in the single granularity structure

Figure 1 shows the position of data point d, ; between the SQM values of the linguistic
terms in case k; is 2. In this example, d, ; is between v(Ve™) and v(c¢™), so the closeness of
v(Le)—v(e)

v(Lem) —dpj

In case of multi-granularity structure

dp; tov(cT) is Nd, ; =

In the multi-granularity structure design, linguistic terms with the same term length
X} (including two constants 0 and 1) which have the partial order make a separate fuzzy
partition. At the level & (0 <k < kj), there are SQM values of linguistic terms X}, with the
partial semantic order, i.e., v(:nﬁl-fl) < v( ) <oz k), @ ;“l € Xp.

For a data point d, ; of the data pattern dy, the closeness of d), ; to v(ac;?’i) is defined as:

- U($§z) - U(:U?,ifl)_
= - :
dpj —v (xj,zel)

U(QC?,@‘H) - U<33§z)

U($§,z‘+1) —dp,j

e If d,; is between v(x;?’i) and v(z¥ x7;q) then ng,

e If d,; is between v(z¥, ;) and v( ;) then ng,

7,4—1
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d,
ri k=2

v{oz) wVe) v(Le) v(Lc) ZD) v('12)

k=1

W0 "e) W) W) W)

Figure 2. The position of data point d, ; at the level k£ = 2 in the multi-granularity structure

For example, Figure 2 shows the position of data point d,; between SQM values of
linguistic terms in case k; is 2. In this case, d,; is between v(Vc™) and v(Lc™), so the
v(Let) —v(Le)

v(Let) —dp;

We can see that the generality of shorter linguistic terms are preserved with the multi-
granularity structure design. The predictability can be improved by high generality classi-
fiers, whereas, high specificity classifiers are good for the particular data. The problem of
finding a suitable trade-off between the generality and the specificity of linguistic terms can
be given out with the multi-granularity structure design method.

After the formula of the closeness measure of a data point to a specified SQM value of a
linguistic term is defined, it is used to compute the compatibility grade of a data pattern d,
with the antecedent of the rule R, as follows:

closeness of dy, j to v(Lc™) is g, ; =

+ The compatibility grade pg, (dp) in the formula (4), (6) and (9) is replaced with
T’Aq (dp)'

+ na, (dp) is computed as
na, (dp) = H Ng.j (dp.j) - (10)
j=1
+ The formula (4) becomes

(Ag = Ch) = 3 1a,(dy) [ D na,(dy). (11)
p=1

dpeCl,
+ The formula (6) becomes
s(Ag=Ch)= ) na,(dy)/m. (12)
dpeCl,

+ The formula (9) becomes

N4, (dp) x CF, = argmax (n4, (dy) x CF; | Rg € S). (13)

Because the new compatibility grade 74, (dp) is computed purely based on the SQM
values of the linguistic terms, there is not any fuzzy sets in the proposed model. In the
proposed hedge algebras based classification reasoning method, the membership function is
replaced with the closeness measure of the data point to the SQM value of the linguistic
term.
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3. EXPERIMENTAL STUDY EVALUATIONS AND DISCUSSIONS

This section presents experimental results of the FRBC applying the proposed hedge al-
gebras based classification reasoning with multi-granularity fuzzy partitioning in comparison
with the state-of-the-art results of methods based on hedge algebras [13, 15] and fuzzy sets
theory [2]. The real world datasets used in our experiments can be found on the KEEL-
Dataset repository: http://sci2s.ugr.es/keel/datasets.php and shown in the Table 1. Firstly,
two granularity design methods, single granularity and multi-granularities, are compared
with each other in order to show the better one. Secondly, the better one is compared to the
existing hedge algebras based classifiers proposed in [13, 15] and the fuzzy set theory based
approaches proposed in [2]. The comparison conclusions will be made based on the test
results of the Wilcoxon’s signed rank tests [4]. To make a comparative study, the same cross
validation method is used when comparing the methods. All experiments use the ten-folds
cross-validation method in which the designated dataset is randomly divided into ten folds,
nine folds for the training phase and one fold for the testing phase. Three experiments are
executed for each dataset and results of the classification accuracy and the complexity of the
FRBCs are averaged out, respectively.

Table 1. The datasets used to evaluate in this research

No. | Dataset Number of Number of Number of
Name attributes classes patterns
1 Australian 14 2 690
2 Bands 19 2 365
3 Bupa 6 2 345
4 Dermatology 34 6 358
5 Glass 9 6 214
6 Haberman 3 2 306
7 Heart 13 2 270
8 Tonosphere 34 2 351
9 Iris 4 3 150
10 | Mammogr. ) 2 830
11 | Pima 8 2 768
12 | Saheart 9 2 462
13 | Sonar 60 2 208
14 | Vehicle 18 4 846
15 | Wdbc 30 2 569
16 | Wine 13 3 178
17 | Wisconsin 9 2 683

In order to have significant comparisons, reduce the searching space in the learning
processes and there is no big imbalance between fm(c;) and fm(c;r), and between p(L;)
and £(V;), constraints on semantic parameter values should be the same as ones used in the
compared methods (in [13]) and they are applied as follows: The number of both negative
and positive hedges is 1, the negative hedge is “Less” (L) and the positive hedge is “Very”
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(V); 0 <k <3;02< {fm(cj_)afm(c;_)} < 0.8; fm(c;) + fm(c]) = 1; 0.2 < p(Ly),
(V) < 0.8; and p(Ly) + p(V;) = 1.

To optimize semantic parameter values and select the best fuzzy rule set for FRBCs, the
multi-objective particle swarm optimization (MOPSO) [30, 34] is utilized. The algorithm
parameter values of MOPSO used in the semantic parameter value optimization process are
as follows: The number of generations is 250; The number of particles of each generation is
600; Inertia coefficient is 0.4; The self-cognitive factor is 0.2; The social cognitive factor is
0.2; The number of the initial fuzzy rules is equal to the number of attributes; The maximum
of rule length is 1. Most of the algorithm parameter values of MOPSO used in the fuzzy
rule selection process are the same, except, the number of generations is 1000; The number
of initial fuzzy rules |Sp| = 300 x number of classes; The maximum of rule length is 3.

3.1. Single granularity versus multi-granularities

In the fuzzy set theory based approaches, as there is no formal links between linguistic
terms of variables and their intuitively designed fuzzy sets, one may be confused to assign
linguistic terms to pre-designed fuzzy sets of the multi-granularity structures. Whereas, in
the HAs-approach, linguistic terms which have the same length and partially ordered form a
fuzzy partition. So, there is no interpretability loss when using multi-granularity structures.
This sub-section represents the comparison results between the fuzzy rule based classifier
applying the hedge algebras based classification reasoning with single granularity structure
(namely HABR-SIG) and the one applying the hedge algebras based classification reasoning
with multi-granularity structure (namely HABR-MUL) and shows the important role of the
information granule design.

Experimental results of HABR-MUL and HABR-SIG are shown in the Table 2, noting
that the column #Rx#C shows the complexities of extracted fuzzy rule bases of the classi-
fiers; Py is the classification accuracies of the test sets; # P and ZRx C' columns show the
differences of the classification accuracies and the complexities of the compared classifiers,
respectively. Better values are shown in bold face.

As intuitively recognized from the Table 2, classification accuracies of testing sets of
HABR-MUL are better than HABR-SIG on 13 of 17 datasets. The mean value of the
classification accuracies on all experimented datasets of HABR-MUL is greater than HABR-
SIG while the mean value of the complexity measures of fuzzy rule based systems between
them are not much different. Therefore, to know whether the differences of experimental
results between two granularity structures are significant or not, Wilcoxon’s signed-rank test
is applied to test the accuracies and the complexities of fuzzy rule based systems extracted
from two granularity structures. It is assumed that their accuracies and complexities are
statistically equivalent (null-hypothesis), respectively.

Statistical testing results of the accuracies and the complexities obtained by Wilcoxon’s
signed-rank tests at level & = 0.05 are shown in the Table 3 and Table 4, respectively. The
abbreviation terms used in the statistical test result tables from now on: VS column is the
list of the compared method names; E. is Exact; A. is Asymptotic.

As shown in the Table 4, since the p-value > 0.05, the null-hypothesis is not rejected.
There is no significant difference of the complexities between the two compared methods.
Therefore, there is no need to take the complexity of the FRBCs into account in this case
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Table 2. The experimental results of the HABR-MUL and the HABR-SIG classifiers

HABR-MUL HABR-SIG

Dataset TRx AC Too | #Rx ZC T #RxC #Pye
Australian 46.38 87.29 53.24 86.33 -6.86 0.96
Bands 53.22 73.53 60.60 73.61 -7.38 -0.08
Bupa 152.76 72.13 203.13 71.82 -50.37 0.31
Dermatology 215.64 96.55 191.84 95.47 23.80 1.08
Glass 403.08 73.09 318.68 73.77 84.40 -0.68
Haberman 9.00 77.11 8.82 77.11 0.18 0.00
Heart 105.16 83.95 122.92 83.70 -17.76 0.25
Tonosphere 58.29 93.18 92.80 92.22 -34.51 0.96
Iris 30.35 98.67 28.41 97.56 1.94 1.11
Mammogr. 50.57 84.35 85.04 84.33 -34.47 0.02
Pima 57.65 77.28 52.02 76.18 5.63 1.10
Saheart 59.40 72.23 56.40 72.60 3.00 -0.37
Sonar 64.62 79.29 61.80 77.52 2.82 1.77
Vehicle 236.17 68.20 333.94 68.01 -97.77 0.19
Wdbc 47.35 96.31 47.15 95.26 0.20 1.05
Wine 34.00 99.61 43.20 99.44 -9.20 0.17
Wisconsin 49.85 96.99 66.71 97.19 -16.86 -0.20
Mean 98.44 84.10 107.45 83.65

Table 3. The comparison result of the accuracy of HABR-MUL and HABR-SIG classifiers
using the Wilcoxon signed rank test at level a = 0.05

VS R* R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs HABR-SIG 112.0 24.0 0.0214 0.020558 | Rejected

Table 4. The comparison result of the complexity of HABR-MUL and HABR-SIG classifiers
using the Wilcoxon signed rank test at level a = 0.05

VS R* R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs HABR-SIG | 104.0 49.0 > 0.2 0.185016 | Not rejected

of comparison. The comparison result of the classification accuracies is shown in the Table
3. Since the p-value = 0.0214 < 0.05, the null-hypothesis is rejected. Based on statistical
testing results, we can state that the multi- granularity based classifier outperforms the single
granularity based classifier. In the next sub-sections, the multi-granularity structure is the
default granular design method in our experiments.
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3.2. The proposed classifier versus the existing hedge algebras based classifiers

This sub-section presents the evaluation of the proposed classifier (HABR-MUL) in com-
parisons with the existing hedge algebras based classifiers. For the reading convenience, the
hedge algebras based classifier with the triangular [13] and trapezoidal [15] fuzzy set based
semantics of linguistic values are named as HATRI and HATRA, respectively. Their experi-
mental results in the Table 5 show that HABR-MUL has better classification accuracies on
15 and 13 of 17 experimental datasets than HATRI and HATRA, respectively. The mean
value of the classification accuracies of HABR-MUL is higher than HATRI and HATRA
(84.10% in comparison with 82.82% and 83.58, respectively). The mean value of the fuzzy
rule base complexities of HABR-MUL is a bit lower than both HATRI and HATRA (98.44
in comparison with 104.52 and 103.79, respectively).

Table 5. Experimental results of HABR-MUL, HATRI and HATRA classifiers

HABR-MUL HATRI HATRA

Dataset ZRx ZC T | ZRxZ0 T #RxC| #Pte ZRx Z0 T #RxC| #Pie
Australian 46.38 | 87.29 36.20 | 86.38 10.17 | 0.91 46.50 | 87.15 -0.12 0.14
Bands 53.22 | 73.53 52.20 | 72.80 1.02 0.73 58.20 | 73.46 -4.98 | 0.07
Bupa 152.76 | 72.13 187.20 | 68.09 | -34.44 4.04 181.19 72.38 | -28.44 | -0.25
Dermatology 215.64 | 96.55 198.05 | 96.07 17.58 0.48 182.84 94.40 32.80 2.15
Glass 403.08 | 73.09 343.60 | 72.09 59.49 1.00 474.29 | 72.24 | -71.20 | 0.85
Haberman 9.00 | 77.11 10.20 | 75.76 -1.20 1.35 10.80 77.40 -1.80 | -0.29
Heart 105.16 | 83.95 122.72 | 84.44 | -17.56 | -0.49 123.29 84.57 | -18.13 | -0.62
Tonosphere 58.29 | 93.18 90.33 | 90.22 | -32.04 | 2.96 88.03 | 91.56 | -29.73 1.62
Iris 30.35 | 98.67 26.29 | 96.00 4.06 2.67 30.37 97.33 -0.02 1.34
Mammogr. 50.57 | 84.35 92.25 | 84.20 | -41.69 0.15 73.84 84.20 | -23.27 0.15
Pima 57.65 | 77.28 60.89 | 76.18 -3.24 1.10 56.12 | 77.01 1.53 | 0.27
Saheart 59.40 | 72.23 86.75 | 69.33 | -27.35 2.90 59.28 70.05 0.12 2.18
Sonar 64.62 | 79.29 79.76 | 76.80 | -15.14 2.49 49.31 78.61 15.31 0.68
Vehicle 236.17 | 68.20 242.79 | 67.62 -6.62 0.58 195.07 | 68.20 41.10 | 0.00
Wdbc 47.35 | 96.31 37.35 | 96.96 10.00 | -0.65 25.04 96.78 22.31 | -0.47
Wine 34.00 | 99.61 35.82 | 98.30 -1.82 1.31 40.39 98.49 -6.39 1.12
Wisconsin 49.85 | 96.99 74.36 | 96.74 | -24.51 0.25 69.81 | 96.95 | -19.96 | 0.04
Mean 98.44 | 84.10| 104.52 | 82.82 103.79 | 83.58

Table 6. The comparison result of the accuracy of HABR-MUL, HATRI and HATRA clas-
sifiers using the Wilcoxon signed rank test at level o = 0.05

VS R* R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs HATRI 143.0 10.0 6.562E-4 0.001516 | Rejected
HABR-MUL vs HATRA | 107.0 29.0 0.04432 0.041102 | Rejected

To make sure the differences are significant, Wilcoxon’s signed-rank test at level & = 0.05
is used to test the equivalent hypotheses. As shown in the Table 6, all p-values are less than
a = 0.05, all null-hypotheses are rejected. In the Table 7, all p-values are greater than «
= 0.05, all null-hypotheses are not rejected. Thus, we can state that the HABR-MUL has
better classification accuracy than HATRI and HATRA while the complexities of the fuzzy
rule bases are equivalent.
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Table 7. The comparison result of the complexity of HABR-MUL, HATRI and HATRA
classifiers using the Wilcoxon signed rank test at level a = 0.05

VS RT R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs HATRI 104.0 49.0 >0.2 0.185016 | Not rejected
HABR-MUL vs HATRA 97.0 56.0 > 0.2 0.320174 | Not rejected

3.3.

The proposed classifier versus the fuzzy set theory based classifiers

To show more about the efficiency of the proposed classifier, we run a comparison study of
the proposed classifier with existing fuzzy rule based classifiers examined by M. Antonelli et
al. 2014 so-called PAES-RCS in conjunction with non-evolutionary classification algorithms
so-called FURIA [2].

Table 8. The experimental results of the HABR-MUL, the PAES-RCS and the FURIA

classifiers
HABR-MUL PAES-RCS FURIA

Dataset TR A0 T | #RxZ0 T #RxC | #Pie FRxZ0 T #RXC | #Pte
Australian 46.38 | 87.29 329.64 | 85.80 | -283.26 1.49 89.60 | 85.22 -43.22 2.07
Bands 53.22 | 73.53 756.00 | 67.56 | -702.78 5.97 535.15 | 64.65 -481.93 8.88
Bupa 152.76 | 72.13 256.20 | 68.67 | -103.44 3.46 324.12 | 69.02 -171.36 3.11
Dermatology| 215.64 | 96.55 389.40 | 95.43 | -173.76 1.12 303.88 | 95.24 -88.24 1.31
Glass 403.08 | 73.09 487.90 | 72.13 -84.82 0.96 474.81 | 72.41 -71.73 0.68
Haberman 9.00 | 77.11 202.41 | 72.65 | -193.41 4.46 22.04 | 75.44 -13.04 1.67
Heart 105.16 | 83.95 300.30 | 83.21 | -195.14 0.74 193.64 | 80.00 -88.48 3.95
Tonosphere 58.29 | 93.18 670.63 | 90.40 | -612.34 2.78 372.68 | 91.75 -314.39 1.43
Iris 30.35 | 98.67 69.84 | 95.33 -39.49 3.34 31.95 | 94.66 -1.60 4.01
Mammogr. 50.57 | 84.35 132.54 | 83.37 -81.97 0.98 16.83 | 83.89 33.74 0.46
Pima 57.65 | 77.28 270.64 | 74.66 | -212.99 2.62 127.50 | 74.62 -69.85 2.66
Saheart 59.40 | 72.23 525.21 | 70.92 | -465.81 1.31 50.88 | 69.69 8.52 2.54
Sonar 64.62 | 79.29 524.60 | 77.00 | -459.98 2.29 309.96 | 82.14 -245.34 | —2.85
Vehicle 236.17 | 68.20 555.77 | 64.89 | -319.60 3.31 | 2125.97 | 71.52 | -1889.80 | -3.32
Wdbc 47.35 | 96.31 183.70 | 95.14 | -136.35 1.17 356.12 | 96.31 -308.77 0.00
Wine 34.00 | 99.61 170.94 | 93.98 | -136.94 5.63 80.00 | 96.60 -46.00 3.01
Wisconsin 49.85 | 96.99 328.02 | 96.46 | -278.17 0.53 521.10 | 96.35 -471.25 0.64
Mean 98.44 | 84.10| 361.98 | 81.62 349.19 | 82.32

Table 9. The comparison result of the accuracy of HABR-MUL, PAES-RCS and FURIA
classifiers using the Wilcoxon signed rank test at level o = 0.05

VS R* R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs PAES-RCS 153.0 0.0 1.5258E-5 0.000267 | Rejected
HABR-MUL vs FURIA 113.0 23.0 0.01825 0.018635 | Rejected

PAES-RCS [2] is a multi-objective evolutionary approach deployed to learn concurrently
the fuzzy rule bases and databases of FRBCs. It exploits the pre-specified granularity of each
attribute for generating the candidate fuzzy set by applying the C4.5 algorithm [32]. Then,
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Table 10. The comparison result of the complexity of the HABR-MUL, the PAES-RCS and
the FURIA classifiers using the Wilcoxon signed rank test at level o = 0.05

VS RT R~ | E. P-value | A. P-value | Hypothesis
HABR-MUL vs PAES-RCS | 153.0 0.0 1.5258E-5 0.000267 | Rejected
HABR-MUL vs FURIA 147.0 6.0 2.136E-4 0.000777 | Rejected

the multi-objective evolutionary process is performed to select a set of fuzzy rules from the
candidate rule set in conjunction with a set of conditions for each selected rule, named as
the rule and condition selection (RCS). The membership functions of linguistic terms are
concurrently learned during the RCS process.

The comparison of the classification accuracies on test sets and the complexities between
the proposed classifier and the two other classifiers PAES-RCS and FURIA are shown in the
Table 8. The HABR-MUL has better classification accuracies and better classifier complex-
ities than PAES-RCS on all test datasets. HABR-MUL has better classification accuracies
and better classifier complexities than FURIA on 15 of 17 test datasets. Based on mean
values of the classification accuracies and the classifier complexities, the proposed classifier
is much better than PAES-RCS and FURIA on both classification accuracy and complexity
measures. To make sure the differences are significant, Wilcoxon’s signed-rank test at level
o = 0.05 is used to test the equivalent hypotheses. As shown in the Table 9 and the Table
10, since all p-values are less than a = 0.05, all null-hypotheses are rejected. Thus, we can
state that the proposed classifier strictly outperforms PAES-RCS and FURIA classifiers.

4. CONCLUSIONS

Fuzzy rule based systems which deal with uncertainty information have been applied
successfully in solving the FRBC design problem. There is the fact that although fuzzy rule
bases are represented by linguistic terms associated with their fuzzy set based semantics,
the problem of the linguistic term design is not clearly studied in the fuzzy set theory
approaches. HAs provide a mathematical formalism of term design so that the fuzzy set
based semantics of all linguistic terms are generated from qualitative semantics of terms. So
far, the FRBCs design based on hedge algebra approach generate fuzzy rule bases with fuzzy
sets based semantics of linguistic terms for classifiers. This paper presents a pure hedge
algebra based classifier design methodology which generates fuzzy rule based classifiers with
the semantics of the linguistic terms in the fuzzy rule bases are the hedge algebras based
semantics. To do so, a hedge algebra based classification reasoning with multi-granularity
fuzzy partitioning method is applied for data classification. The new classification reasoning
method enables fuzzy sets based semantics of linguistic terms in fuzzy rule bases of classifiers
to be replaced with hedge algebra based semantics. Experimental results on 17 real world
datasets have shown that the multi-granularity structure is more efficient than the single
granularity structure and the proposed classifier outperforms the existing ones. By research
results of this paper, we can state that fuzzy rule based classifiers can be designed purely
based on hedge algebras based semantics of linguistic terms.
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