Tap chi Tin hoc va Piéu khién hoc, T.21, S.4 (2005), 293-300

A QUERY SUBLANGUAGE FOR TEMPORAL CLINICAL
DATABASE SYSTEMS AND ITS IMPLEMENTATION

PHAM VAN CHUNG!, DUONG TUAN ANH?

! Department of Information Technology, Ho Chi Minh City University of Industry
2Faculty of Information Technology, Ho Chi Minh City University of Technology

Abstract. We are developing a database implementation to support temporal data management
in a treatment monitoring system for patients who have cancer diseases. We extend the standard
relational model to support temporal data represented as time intervals, develop a set of operations
on time intervals to manipulate time-stamped data and propose a temporal query sublanguage that
can work with temporal clinical databases. We implemented this query sublanguage as a layer on

top of Oracle DBMS using layered implementation technology.

Tém tAt. Mot co s& dir liu duwoc xay dung dé hé tro viée quin 1y dir licu thay doéi theo thai gian
trong mot he thong theo doi diéu tri bénh nhan ung thu. Chiing t6i mé rong moé hinh quan hé truyeén
théng dé ho trg nhitng dit licu thoi gian dwoc dién té nhu nhirng thei khodng, dé xudt mét tap cac
phép todn trén céc khodng thoi gian dé ché héa nhirng dir liéu diroc dan tem thai gian va dé xuat
moét tiéu ngén nglr truy van cé tinh thai gian ma ¢é thé lam viée véi cdc co sd dir liéu bénh vién.
Tiéu ngdn ngir truy van nay duoc hién thue héa nhw 13 mot tang xay 1én trén mot hé quén tri co
s& dir liéu Oracle bang cich ttng dung k¥ thuat “thi cong theo tang”.

1. INTRODUCTION

Clinical databases typically contain a significant amount of temporal information. Ques-
tions relating to time are pervasive in medical decision-making. Common queries include
simple questions: “Did this patient undergo radiation-therapy during the period 1/3/2003 -
29/3/20037?” or “What problems did this patient have during since 1/3/2003 up to now?”
Queries relating to temporal order include: “List the patients that have undergone chemo-
therapy after a surgery”.

Over the last decade, the temporal database community has made a significant amount of
progress in temporal database systems. The most vibrant field of temporal database research
is the area of temporal database models and temporal query languages ([3,6]). Much of these
research results can be applied to temporal clinical database systems. There are very few
works on applying temporal databases in clinical data management. The Chronus II system
[4,5], built by O’Connor et al. at Stanford University School of Medicine, is one of the typical
temporal query systems. Chronus II extends the standard relational model and the SQL
query language to support temporal medical data. The system can store and process valid
time event tables as well as state tables. However, in [4, 5], the implementation technology for
the temporal query language on top of an existing relational DBMS was not given.

294 PHAM VAN CHUNG, DUONG TUAN ANH

In this paper, we represent our approach to managing the temporal semantics of medical
data in clinical database systems. First, we extend the standard relational model to support
temporal data represented as time intervals. Second, we propose a temporal query sublan-
guage SubTSQL that can support the specified operations on temporal data. Finally, we also
elaborate on how to implement the temporal query sublanguage on a relational DBMS such
as Oracle. This query system is built as a layer that can convert temporal queries to Oracle
SQL queries.

In what follows, we assume that the readers have a basic understanding of temporal
databases - if not, we refer them to Date et al. [3] or Tansel et al. [6] for an introduction.

2. VALID-TIME TEMPORAL DATA MODEL

Modern clinical database systems typically use relational databases, which provide well-
defined data models and query languages. However, the relational model has two significant
shortcomings regarding temporal data:

o The relational model provides poor support for storing complex temporal information.

e The SQL query language provides very limited support for expressing temporal queries.

Therefore, applications that work with complex temporal data, such as clinical data should
define their own temporal models and query systems.

2.1. Intervals, state tables and event tables

Several extensions to the relational model have been proposed to deal with these above
shortcomings. Most researchers focused on wvalid-time databases, in which time factor is at-
tached to all tuples in a temporal table. The valid time denotes when facts are true with
respect to the real world. In valid time databases, two-dimensional relational tables are ex-
tended to incorporate time as a third dimension. In these tables, every tuple holds temporal
information denoting the information’s valid time.

Two types of temporal tables are event tables, which hold instant timestamps, and state
tables, which hold wnterval timestamps. For instance, laboratory-test values are always stored
in event tables, while information about drug treatments can be held in state tables, because
drug treatments generally elapse over time.

Temporal data in state table can be represented as wntervals which are bounded by start
and stop timepoints. For example, [d04:d10] is the interval with start timepoint d04 denoting
the 4" day and stop timepoint d10 denoting the 10" day.

We can also represent an event with a pair of timepoints for lower and upper bounds of
the closed interval during which the user has specified that the event occurred. The lower and
upper bounds of the interval are equal if the user is certain of the timepoint associated with
an event.

Since temporal data in both state tables and event tables can be represented as intervals,
we define an interval-stamping method for modeling a temporal database for clinical data
management. A relation in such a database is called a history. Each row, or tuple, in a
history will store the temporal dimension of a patient parameter over a closed interval; a pair
of columns will be required in each history to represent the endpoints of the interval. For
example, a temporal table Patient that holds information about patients and their diseases

A QUERY SUBLANGUAGE FOR TEMPORAL CLINICAL DATABASE SYSTEMS 295

could look as follows. The temporal information is stored in two columns labeled V_begin
and V_end which give the starting time and ending time of a certain disease that a patient

develops.
P_ID | Problem | Dept V _begin V_end
J0oo1 P1 D9 | 14/02/2000 | 01/03/2000
J001 P2 C2 | 10/03/2000 | 31/12/9999
P005 P3 D8 | 01/04/2000 | 12/05/2000
R006 P3 D8 | 13/02/2000 | 01/06/2000

In our temporal data model, the timepoints will have only a single granularity, which is at
the smallest level of interest in the database applications. For example, if the granularity is
one day, then we can say that the timepoints are all values of type DATE, and type DATE is
the point type of intervals. When we consider an interval value, say [d04:d10], we know that
the interval includes its begin and end points d04 and d10, by definition. We also know that
the interval consists of a set of points arranged in according to some agreed ordering ([3]).

2.2. Interval operations

Since intervals are represented as pairs of timepoints, comparisons between intervals are
based on timepoint comparisons of the upper and lower bounds. The interval comparison
operators are BEFORE, AFTER, DURING, CONTAINS, OVERLAPS, MEETS, STARTS,
FINISHES, and EQUALS. This set of comparisons was originally defined by Allen ([1]). Let
I1, I2 be two intervals, and begin(I), end(I) be respectively the lower bound and upper bound
of the interval I. The definitions of 9 interval comparisons are given in Table 1.

Table 1. Definitions of interval comparisons

Comparison Operator | Meaning
1| 71 BEFORE 12 end(11) < begin(12)
IT AFTER 12 end(12) <begin(I1)
3 | I1 DURING I2 (begin(I1) > begin(I2)A end(71) < end(12)V
(begin(I1) = begin(12)A end(I1)<end(12)
4 | I1 CONTAINS I2 (begin(12) > begin(/1) end(72) end(I1)V
) (

(begin(12) > begin(I1)A end(12) <end([1))
5 | I1 OVERLAPS I2 begin(I1) <begin(I2)A end(I1) >begin(12)
A end(I1) <end(72)
6 | I1 MEETS 12 end(11) = begin(12)
7 | I1 STARTS 12 begin(I1) =begin(I2)A end(11) < end(I2)
8 | I1 FINISHES 12 begin(I1) > begin(I2)A end (/1) =end(72)
9 | I1 EQUALS I2 begin(I1) = begin(I2)A end(I1) = end(/2)

Fold operation

Operators such as Union, Difference, Projection, and Cartesian product of the standard
relational model remain the same in the valid-time temporal data model. Besides, there one
important operator that works on temporal relations: fold. Tuples in a temporal relation that

296 PHAM VAN CHUNG, DUONG TUAN ANH

agree on the explicit attribute values and that have adjacent or overlapping time intervals are
candidate for folding.

Definition (Fold Operation). When an n-ary relation R is folded on interval attribute A;,
1 <7 < n, all its tuples whose A; components match Vj # ¢ and whose A; components can
merge, are replaced in the resulting relation by a single tuple with the same A; components,
but in its " component is formed by a merging of the ¢ component of these tuples.

Unfolded relations can arise in many ways, e.g. via a projection or union operator, or on
update or insertion without enforcing folding.

3. A TEMPORAL QUERY SUBLANGUAGE

Incorporating time into the relational databases requires not only extensions to the rela-
tional model but also extensions to the SQL query language. The most comprehensive outline
of a temporal query language is the TSQL2 query language ([8]). The TSQL2 specification
integrates much of the current thinking in relational temporal database research and serves as
a useful unified basis of research in the area. Unfortunately, no implementations of the TSQL2
query language exist. Because of its size and complexity, a complete implementation would
require a daunting work. Not all features of the TSQL2, however, are necessary to build a
workable temporal query system.

Here from TSQL2, we select a set of core features that we have found essential when
building temporal query systems for clinical databases. We name this query sublanguage
SubTSQL. This query sublanguage is sufficient to support the valid-time temporal data model
given in Section 2 of which temporal clinical database is just a particular case. Later, we can
gradually include additional query features into the query sublanguage if we encounter any
temporal database application that requires so. That means SubTSQL can be the core of any
general temporal query language.

SubTSQL is based on the simple structural framework of SQL, with syntactic extensions
to support operations on events and states in histories. We now describe how temporal
projection, selection, and joins are a set of algebraic operators that support temporal querying
requirements. Assume that the valid time component in temporal table(s) must be well-defined
before performing the operation. That means temporal tables do not contain tuples with the
same non-temporal attribute values but overlapping or consecutive time intervals. Such tuples
are automatically folded in advance by merging their time intervals.

Temporal projection. Temporal projection is similar to standard projection, except that
the restriction applies to only the non-temporal attributes. Both timestamp columns cannot
be excluded in the resultant history, because these columns maintain the temporal dimension
of the data. After temporal projection, folding is enforced in order that adjoining intervals
should be merged into a single interval in the resultant relation.

Temporal selection. SubTSQL adds the following new construct to standard SQL: selection
based on temporal comparisons of timepoints and intervals using terms in a WHEN clause.
The WHEN clause is used to express the temporal part of a query. The syntax of the SubTSQL
retrieval statement contains the following clauses:

SELECT select_item_list FROM table_name_list

A QUERY SUBLANGUAGE FOR TEMPORAL CLINICAL DATABASE SYSTEMS 297

WHEN temporal_comparison

WHERE search_condition

The temporal comparison in the WHEN clause has the following form:
WHEN a interval_compare_operator b

where a,b are intervals or temporal tables; and interval_compare_operator can be one of
the following keywords: BEFORE, AFTER, DURING, CONTAINS, OVERLAPS, MEETS,
STARTS, FINISHES, and EQUALS.

Temporal join. This join has the most special semantics: the valid-time intervals of the
resultant table are created from the intersection of the overlapping valid-time elements of
the tables specified in the join. The valid time component in each temporal table must be
well-defined before performing such joins.

Insertion of data. A new tuple can be inserted to a temporal table with the specified
attribute values including an interval [V _end, V _begin| which builds the initial tuple lifespan.
The syntax of the INSERT statement contains the following clauses:

INSERT INTO (table — name)
({column — name — list))
VALUES (field — namevalues)

When a new tuple is inserted into table, then the Fold operator is enforced in order to
merge the intervals, if necessary.

Modification of data. When updating a temporal table, a WHEN clause can be used to
indicate the valid time associated with the update. The syntax of the UPDATE statement
contains the following clauses:

UPDATE (table — name) SET {(column — name) = (newvalue)
WHEN (valid — time)
WHERE (condition)

Only tuples that have a valid-time intersecting with the specified period in the WHEN
clause are updated by the above command. Notice that using UPDATE command may result
in a relation with more tuples than the original one.

Deletion of Data. When deleting data from a temporal table, a WHEN clause can be used
to indicate the valid time associated with the deletion. The syntax of the DELETE statement
contains the following clauses:

DELETE FROM (table — name)

WHEN (valid — time)

WHERE (condition)

Only tuples that have a valid-time intersecting with the specified period are affected by
the above command Notice that similar to UPDATE, using DELETE command may result
in a relation with more tuples than the original one.

Dozens of query examples in the research have been tested on our implemented temporal
query system. The test data files come from the clinical database developed for Ho Chi Minh
City Cancer Hospital.

298 PHAM VAN CHUNG, DUONG TUAN ANH
4., LAYERED IMPLEMENTATION OF SubTSQL

While developing a full-fledge DBMS that supports a temporal query language is a daunting
task that only the major vendors can expect to accomplish, the implementation approach called
layered implementation proposed by Torp et al. in 1997 [7] provides a faster development.
According to this approach, a temporal query language is implemented via a software layer
on top of an existing relational DBMS. The most important advantage of building on top of
an existing DBMS is the possibility of reusing the services of the underlying DBMS. Another
advantage is that we can achieve the compatibility of temporal query language with standard
SQL with a minimum coding effort. The compatibility requires that the operation of the bulk
of legacy code is not affected when temporal support is adopted.

Torp et al. [7] proposed layered temporal database architecture to implement a temporal
query language with a minimum of temporal support. This approach is consistent with the
desire for gradual availability of increasingly more temporal support. The layer uses the
DBMS as a “black box” and there is minimal interaction between the layer and the DBMS.
The architecture is given in Figure 1. It consists of the following modules.

e Scanner. The user inputs a SubTSQL statement @ to Layer, then the Scanner in Layer
analyses it into tokens. Any errors found during scanning are reported. If no errors are found,
@ is sent to Parser.

o Parser. Parser analyses the syntax of ¢) based on formal syntax of SubTSQL. Any errors
found during parsing are reported. If no errors are found,) is sent to Code Generator.

o Code Generator. @) is a temporal query; the Code Generator converts it to the equivalent
Oracle-SQL command that is then sent to Oracle-DBMS.

o Qulpul Processor. The result of Oracle-SQL is returned to Layer, and the Output Pro-
cessor presents it to user.

The query system is a layer on top of the Oracle DBMS and its query language. This
layer can convert temporal query commands into standard SQL commands. It is written in
Visual C++ with more than 2000 lines. Experimental results on real data files show that the
performance of the layer is quite promising.

SubTSQL query Error Result
Ci A A
| Scanner |
¢ P
| Parser 1— Output :ocessor

v

| Code Generator |

Oracle - SQL
A4
| Oracle - DBMS |

Figure 1. The layered implementation architecture

A QUERY SUBLANGUAGE FOR TEMPORAL CLINICAL DATABASE SYSTEMS 299

Translation of SubTSQL Query to Oracle-SQL

The code generator in Layer can convert a SubTSQL command to a semantically-equivalent
Oracle-SQL command. Generally, the code generator in layer has to translate any interval
comparison using one of the nine comparison operators given in Section 2.2 to equivalent
expressions in oracle SQL command. The translation respects the semantics of the set of
comparison operators described in Table 1. For example, given the table Patient as in Section
2.1 and the following SUBTSQL query

SELECT P_1D, Problem, V_begin, V_end FROM Patient
WHEN Patient DURING (25/3/2000 , 25/5/2000)
WHERE Dept = ‘D8,

then the corresponding converted Oracle-SQL query will be as follows.
SELECT P_ID , Problem , V_begin, V_end FROM Patient
WHERE Dept =‘D8 AND
(Patient.V _begin) > to_date(‘25/3/2000°,'dd/mm/yyyy’)
AND(Patient.V _begin)< (fo_date(‘25/5/2000’,'dd/mm/yyyy’))
OR((Patient.V_end) > (to_date(‘25/5/2000°,'dd/mm/yyyy’);
AND(Patient.V_end) < (to_date(‘25/5/2000’,'dd/mm/yyyy’))

where {o_date is an Oracle built-in function that converts character data of the proper format
to date data type. The condition part added in the WHERE clause after Dept = ‘D8’ describes
the semantics of the DURING interval comparison operator. Generally, the code generator
in Layer has to translate any interval comparison using one of the nine comparison operators
given in Section 2.2 to equivalent expressions in Oracle SQL.

5. CONCLUSION

In this paper, we outlined our approach to modeling temporal clinical databases. The
tables in temporal databases include valid time through two columns indicating the lower
bounds and upper bounds of intervals. We define a query sublanguage SubTSQL in which
query commands may include a WHEN clause to describe comparison predicates between time
intervals. We implemented the query language as a layer on top of Oracle DBMS using layered
implementation approach. All query examples have been tested with real data from a clinical
database developed for Ho Chi Minh City Cancer Hospital and the experimental results are
quite promising.

As the next phase in this ongoing research, we plan to develop knowledge-based temporal
abstraction mechanisms which help physisians to detect patterns and trends in time-oriented
patient data. Temporal query system and temporal abstraction module are two main modules
in a decision-support system which is being built for supporting the treatment of cancer
patients.

Acknowledgements. The authors are grateful to Medical Informatics Section of Ho Chi Minh

City Cancer Hospital for permitting them to access to real clinical data relevant to this research.

300

[1]

2]

PHAM VAN CHUNG, DUONG TUAN ANH
REFERENCES

J.F. Allen, Maintaining knowledge about temporal intervals, Communication of the ACM
26 (1993) 832-843.
A K. Das, S.W. Tu, G.P. Purcell, and M. A. Musen, An extended SQL for temporal

data management in clinical decision-support systems, Proc. of 16" Annual Symposium

on Computer Applications in Medical Care, Baltimore, 1992 (128-132).

C.J. Date, Hugh Darwen, N. A. Lorentzos, Temporal Data and the Relation Model, Mor-
gan Kaufmann Publishers, 2003.

M.J. O’Connor, S.W. Tu, and M.A. Mussen, Applying temporal joins to clinical
databases, Proc. of the AMIA Annual Symposium, Washington, D.C., 1999 (335-339).

M. J. O’Connor, S. W. Tu, and M. A. Mussen, The Chronus Il Temporal Database Me-
diator, Technical Report, Stanford Medical Informatics, Standard University School of
Medicine, Stanford, CA, 2001.

A.U. Tansel, et al. (eds.), Temporal Databases - Theory, Design and Implementation,
Benjamin/Cummings Publishing, 1993.
K. Torp, C.S. Jensen, and M. Bohlen, Layered Implementation of Temporal DBMSs-
Concepts and Techniques, Technical Report, TR-2, TimeCenter, 1997.
R.T. Snodgrass (ed.), An Evaluation of TSQL2 Commentary, TSQL2 Design Committee,
September, 1994.
Recewved on March 24, 2005
Rewvised on December 26, 2005

