
Journal of Computer Science and Cybernetics, V.36, N.2 (2020), 139–158

DOI 10.15625/1813-9663/36/2/14084

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD
BASED ON PIXEL-VALUE-ORDERING

NGUYEN KIM SAO1,∗, NGUYEN NGOC HOA2, PHAM VAN AT1

1Faculty of Information Technology, University of Transport and Communications
2Faculty of Information Technology, VNU University of Engineering and Technology

�

Abstract. This paper presents a new effective reversible data hiding method based on pixel-value-

ordering (iGePVO-K) which is improvement of a recent GePVO-K method that recently is considered

as a PVO-used method having highest embedding capacity. In comparison with GePVO-K method,

iGePVO-K has the following advantages. First, the embedding capacity of the new method is hig-

her than that of GePVO-K method by using data embedding formulas reasonably and reducing the

location map size. Second, for embedding data, in the new method, each pixel value is modified

at most by one, while in GePVO-K method, each pixel value may be modified by two. In fact, in

the GePVO-K method, the largest pixels are modified by two for embedding bits 1 and by one for

bits 0. This is also true for the smallest pixels. Meanwhile, in the proposed method, the largest

pixels are modified by one for embedding bits 1 and are unchanged if embedding bits 0. Therefore,

the stego-image quality in proposed method is better than that in GePVO-K method. Theoretical

analysis and experiment results show that the proposed method has higher embedding capacity and

better stego image quality than GePVO-K method.

Keywords. Reversible data hiding; Pixel-value-ordering; Pixel prediction.

1. INTRODUCTION

Data hiding is a technique for embedding data in the digital image (also in digital au-
dio, video, etc). In traditional data hiding techniques [2, 5, 15, 18], only hidden data are
extracted. However, in some applications such as medical and military images, restoring the
original image is needed [17]. So, new data hiding methods, called reversible (or lossless) are
developed. Reversible data hiding (RDH) not only can extract hidden data but also restore
original image.

The first RDH proposed by Macq [9] is performed based on modulo addition 256. The
disadvantage of this method is that the stego image quality is very low. Shortly, Fridrich
and et al. [4] proposed a method which uses lossless compress to embed data in the LSB bits
(least significant bit). This method has low embedding capacity. Since then, there are many
proposed RDH methods, such as histogram shifting (HS) [10, 16, 19], difference expansion
(DE) [6], prediction error expansion(PEE) [8, 7] and combining techniques [19].

Recently, pixel value ordering (PVO) based techniques attract interest of many rese-
archers [6, 7, 11, 12, 13, 14, 20]. In these methods the original image is divided into
non-overlapping blocks. In each bock, pixel values are sorted in ascending order and lar-
gest/smallest pixels are used for embedding.

*Corresponding author.
E-mail addresses: saonkoliver@utc.edu.vn (N.K.Sao); hoa.nguyen@vnu.edu.vn (N.N.Hoa)
phamvanat83@gmail.com (P.V.At).

c© 2020 Vietnam Academy of Science & Technology

mailto:saonkoliver@utc.edu.vn

140 NGUYEN KIM SAO, et al.

It is noted that, in PVO based methods such as [7, 11, 13], at most one bit can embed
in largest/smallest pixel of each block, while GePVO-K [6] can embed more than one bit in
largest/smallest pixels. So, GePVO-K has embedding capacity lager than other PVO based
RDH methods.

In this paper, we propose a new method (called as iGePVO-K) that is improvement of
GePVO-K. Compared with GePVO-K, our method has embedding capacity larger and stego
image quality better.

The rest of this paper is organized as follows. Section 2 presents some related works.
Section 3 describes our proposed method, and the experimental results are presented in
Section 4. Finally, a conclusion is made at the end of the paper.

2. RELATED WORKS

2.1. PVO

PVO is proposed by Li et al. [7] in 2013, since then, many reversible data hiding methods
based on PVO are proposed. In PVO, the host image is divided into non-overlapped blocks.
For a given block having n pixel values (x1, x2, . . . , xn), it is sorted in ascending order to get
(xσ(1), xσ(2), . . . , xσ(n)), where σ : {1, . . . , n} → {1, . . . , n} is a unique one-to-one mapping
such that

a) xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n).
b) If i < j and xi = xj then σ(i) < σ(j).
Then the greatest value xσ(n) is predicted by the second greatest value xσ(n−1) and the

smallest value xσ(1) is predicted by second smallest value xσ(2).
PVO is considered in two cases dmax and dmin, where dmax = xσ(n) − xσ(n−1) and dmin =

xσ(1) − xσ(2).
Embedding is performed as follows

d′max =

dmax, if dmax = 0
dmax + b, if dmax = 1
dmax + 1, if dmax > 1,

(1)

and

d′min =

dmin, if dmin = 0
dmin − b, if dmin = −1
dmin − 1, if dmin < −1.

(2)

Where b is embedded bit. Then, the stego pixel values are

x′σ(n) = xσ(n−1) + d′max (3)

for the largest side, and

x′σ(1) = xσ(2) + d′min (4)

for the smallest side.
Because the order of the pixel values remains unchanged after embedding the data, the

hidden data can be extracted from the largest value and smallest value pixels according to
reverse process of the embedding procedure. At the same time, the original value pixels are
restored.

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 141

2.2. IPVO

In PVO method, differences dmax (or dmin) equal 0 are not used to embed one bit. On
the contrary, in IPVO [13] differences dmax or dmin equal 0 are still used for embedding. So
IPVO has embedding capacity higher. Like the PVO method, each block (x1, x2, . . . , xn) is
sorted in ascending order to get (xσ(1), xσ(2), . . . , xσ(n)). Then dmax is computed as follows

dmax = xu − xv,

where {
u = min(σ(n), σ(n− 1)),
v = max(σ(n), σ(n− 1)).

Then a bit b is embedded in xσ(n) according to formulas

x′σ(n) =

{
xσ(n) + b if dmax = 0 or dmax = 1,

xσ(n) + 1 if dmax < 0 or dmax > 1.

Similarly, dmin are calculated dmin = xs − xt, where{
s = min(σ(1), σ(2)),
t = max(σ(1), σ(2)).

Then a bit b is embedded in xσ(1) as follows

x′σ(1) =

{
xσ(1) − b if dmin = 0 or dmin = 1,

xσ(1) − 1 if dmin < 0 or dmin > 1.

Extracting hidden data and restoring original image are carried out similarly as in PVO
method by exploiting the invariant for the order of pixel values after embedding data.

2.3. PVO-K

It is noted that if vector (xσ(1), xσ(2), . . . , xσ(n)) has k largest values or l smallest values
with k > 1 (and l > 1), then in PVO method, there is not any bit can embedded. These
cases are treated in PVO-K method [11] as follows.

First compute dmax = xσ(n) − xσ(n−k), dmin = xσ(1) − xσ(l+1). Then embedding one bit
in k largest values and one bit in l smallest values are performed as follows

x′σ(i) =

xσ(i) − p if 1 ≤ i ≤ l and dmin = −1

xσ(i) − 1 if 1 ≤ i ≤ l and dmin < −1

xσ(i) + q if n− k + 1 ≤ i ≤ n and dmax = 1

xσ(i) + 1 if n− k + 1 ≤ i ≤ n and dmax > 1

xσ(i) otherwise,

(5)

where p, q are two embedded bits.

142 NGUYEN KIM SAO, et al.

2.4. GePVO-K

In PVO-K method, one bit is embedded in k largest pixels of a image block. GePVO-K
[6] is a generation of PVO-K to embed k bits in k these pixels.

GePVO-K divides blocks of size m× n, X = (x1, x2, . . . , xm×n) into three types.

(a) Block having at least one pixel value equal 0, 1, 254 or 255 will not be used for
embedding data, because it may cause under/over flow. The position number of block in
location map is set as 2 (LM(X) = 2).

(b) Block with all pixel values equal (flat block): x1 = x2 = . . . = xm×n = α with α
different from 0, 1, 254, 255 will be used to embed m × n − 1 bits. The position number of
block is set as 1 (LM(X) = 1).

(c) Remaining blocks (rough block) will be used to embed data. The position number of
block is set as 0 (LM(X) = 0).

It is noted that position number of each block is two binary bits, so location map is a
binary sequence having the length equal twice number of blocks.

Next, the authors deal with each block depending on it’s position number in map:

Case 1: If the position number of the block in the location map is LM(X) = 2, the block
is not used to embed data and it is skipped.

Case 2: If the position number of block LM(X) = 1, i.e, all pixel values are equal in the
block X, keep the first pixel value unchanged and then embed the data in the remaining
pixels as follows

x′i =

{
xi if i = 1
xi + bi−1 if i = 2, 3, . . . ,m× n, (6)

where bi, i = 1, . . . ,m× n− 1 are embedded bits.

Case 3: If the position number of the block LM(X) = 0, X is sorted in ascending order to
get (xσ(1), xσ(2),. . . , xσ(m×n)). Assume sorted block has k largest pixels and l second largest
pixels. The difference dmax = xσ(m×n−k+1) − xσ(m×n−k) is calculated and embedding is
performed as follows:

Case 3.1: If dmax > 1, no data is embedded, all largest pixel values are increased by one.

Case 3.2: If dmax = 1, k bits data are embedded into the largest pixel values. All largest
and second largest pixel values are increased by one, then embedding data in the largest
pixel values as follows

x′σ(i) =

xσ(i) if 1 ≤ σ(i) < m× n− k − l
xσ(i + 1 if m× n− k − l + 1 ≤ σ(i) ≤ m× n− k
xσ(i) + 1 + bj if m× n− k + 1 ≤ σ(i) ≤ m× n, j = i−m× n+ k.

(7)

After embedding in the largest pixel values, the authors embed data in the smallest pixel
values similarly.

3. PROPOSED METHOD

In the GePVO-K method, to embed a data bit, the value of pixel may be changed at most
by two. This leads to great distortion in stego-image. Moreover, in GePVO-K, each blocks is
marked by two binary bits in the location map. So, the location map is large, and this leads

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 143

to reducing the embedding capacity as compression code of this map must be embedded
along data in original image. These drawbacks will be overcome in new iGePVO-K method.
In concrete, for embedding data in iGePVO-K, pixels only are modified at most by 1, and
each block is marked by one binary bit in location map. Moreover, in some cases, where
GePVO-K only can embed data in largest pixels, while iGePVO-K can embed data in both
largest pixels and smallest pixels.

3.1. Embedding algorithm in a block

Consider a image block sized m× n

X =

 x11 . . . x1n
... . . .

...
xm1 . . . xm×n

 ,
and its vector form is x = (x1, x2, . . . , xm×n). Below, x is called flat if its pixels are equal
x1 = x2 = · · · = xm×n. A block that is not flat is called rough.

The algorithm divides each block into 3 cases for embedding data bits.

Case 1. Rough block contains 0/255
This block is not used for embedding, it is ignored, because embedding in this block can

cause overflow or underflow.

Case 2. Flat block
It means all pixel values in the block are equal.
In this case, the first pixel x1 is unchanged, other pixels (xi, i = 2, . . . ,m × n) are

modified to embed (m× n− 1) bits (bj , j = 1, 2, . . . ,m× n− 1) as follows

x′i =

xi + bi−1 if xi ≤ 254, i = 2, 3, . . .m× n
xi − bi−1 if xi = 255, i = 2, 3, . . .m× n
xi if i = 1.

Case 3. Rough block does not contain 0/255
Assume sorted block x = (xσ(1), xσ(2), . . . , xσ(m×n)) has k1 largest value pixels, k2 smal-

lest value pixels, l1 second largest value pixels, and l2 second smallest value pixels.

Embedding data in the largest pixel values
First, we compute two difference

dmax = xσ(m×n−k1+1) − xσ(m×n−k1),

dmax 2 =

{
xσ(m×n−k1−l1+1) − xσ(m×n−k1−l1) if the block has more than two distinct values

0, if the block has two distinct values.

Case 3.1. dmax ≥ 2
This block is not used to embed, the k1 largest values are increased by 1.

x′σ(i) = xσ(i) + 1, i = n×m− k1 + 1, . . . , n×m.

144 NGUYEN KIM SAO, et al.

Case 3.2. dmax = 1. In this case, k1 data bits will be embedded in k1 largest pixels.

Case 3.2.1. If all k1 embedded bits equal 1, all the largest pixel values are increased by one,
so, stego pixels are

x′σ(i) = xσ(i) + 1, i = n×m− k1 + 1, . . . , n×m.

Case 3.2.2. If all k1 embedded bits are 0. This situation is divided into two cases:

Case 3.2.2.1. If dmax 2 = 0, largest pixel values are not changed

x′σ(i) = xσ(i), i = n×m− k1 + 1, . . . , n×m.

It is noted that, this case can cause ambiguous with the case in flat blocks embedded
data containing {0, 1}. At extracting side, to distinguish these two situations for receiver,
we use a flag for each block. If block is flat, the flag is 1, if the block has dmax 2 is 0, the flag
is 0.

This flag will be embedded in previous block. The previous block, for example, can
embed k bits, then k − 1 data bits and a flag bit will be embedded. In extracting, we will
use this flag to determine the considered block is flat or not.

Case 3.2.2.2. If dmax 2 > 0, the largest and second largest values are increased by 1

x′σ(i) = xσ(i) + 1 if i = m× n− k1− l1 + 1, . . . ,m× n.

Case 3.2.3. If k1 embedded bits include 0 and 1. Adding k1 data bits into the largest pixel
values

x′σ(i) = xσ(i) + bj , i = n×m− k1 + 1, . . . , n×m, j = i−m× n+ k1 (j = 1, . . . , k1).

It is noted that, if the block contains three consecutive distinct pixel values then our
proposed method can embed in both largest values and smallest values, while GePVO-K
only can embed in largest values. So iGePVO-K has the embedding capacity larger the
GePVO-K.

Embedding data in the smallest pixel values

After embedding at largest side, we consider the smallest side as following. First, we
compute two differences

dmin = xσ(1) − xσ(k2+1),

dmin 2 =

{
xσ(k2+1) − xσ(k2+l2+1) if the block has more than two distinct values

0, if the block has two distinct values.

Case 3.3. If dmin ≤ −2

This block is not used to embed, the k2 smallest values are decreased by 1

x′i = xi − 1, i = 1, . . . , k2.

Case 3.4. If dmin = −1. In this case, k2 data bits will be embedded in k2 smallest pixels.

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 145

Case 3.4.1. If all of k2 embedded bits are 1, the secret bits are embedded by reducing k2
smallest values by 1

x′σ(i) = xσ(i) − 1, i = 1, . . . , k2.

Case 3.4.2. If all of k2 embedded bits are 0, this situation is divided into two cases:
Case 3.4.2.1. If dmin 2 = 0, smallest pixel values are unchanged

x′σ(i) = xσ(i), i = 1, . . . , k2.

Case 3.4.2.2. If dmin 2 < 0, the smallest and second smallest values are decreased by 1

x′σ(i) = xσ(i) − 1 if i = 1, . . . , k2 + l2.

Case 3.4.3. If k2 embedded bits include 0 and 1, subtracting k2 data bits from the smallest
pixel values

x′σ(i) = xσ(i) − bi, i = 1, . . . , k2.

3.2. Extracting algorithm in a block

With the stego block x′ = (x′1, x
′
2, . . . , x

′
m×n) and a bit flag extracted from the previous

block in case of the flat block or the block having two distinct values. This algorithm will
extract the secret bits bj , j = 1, 2, . . . and restore the original pixels.

Extracting and restoring original block are performed based on the location map as
follows.
Case 1. LM(X) = 1 (Rough block contain 0/255) This block does not carry any data bit

(see 3.1.1, case 1) do nothing.
Case 2. LM(X) = 0 and the block have only one distinct value.

All stego pixel values in the block are the same, this block carries m× n− 1 bits 0. So,
extracting and restoring are follows

bj = 0, j = 1, 2, . . . ,m× n− 1,

xi = x′i, i = 1, 2, . . . ,m× n.

Case 3. LM(X) = 0 and the block have two distinct values. This situation is divided into
three cases.

Case 3.1. The difference between two distinct values is 1. This case comes from two situa-
tions: the flat blocks are embedded by bits 0,1 or the rough blocks having two consecutive
distinct values are embedded by the all bit 0 in the largest pixels. To deal this case, we have
to use the flag bit recorded in previous block:
If flag bit is 1: The host block is flat, extracting and restoring are performed as follows

bi =

{
x′i+1 − x′1 if x′1 ≤ 254, i = 1, . . . ,m× n− 1
x′1 − x′i+1 if x1 = 255, i = 1, . . . ,m× n− 1,

xi = x′1, i = 1, 2, . . . ,m× n.

146 NGUYEN KIM SAO, et al.

If flag bit is 0: The host block are embedded all bit 0, so extracting and restoring are carried
out as

bj = 0, j = 1 . . . k1,

xσ(i) = x′σ(i), i = m× n− k1 + 1, . . . ,m× n.

Case 3.2. The difference between two distinct values is 2. In this case, the all k1 largest
pixel values of the host block are embedded all bit 1. So

bj = 1, j = 1, . . . , k1,

xσ(i) = x′σ(i) − 1, i = n×m− k1 + 1, . . . , n×m.

Case 3.3. The difference between two distinct values greater than 2. There is no data
extracted, all largest values is decreased by 1 to restore the original image

xσ(i) = x′σ(i) − 1, i = n×m− k1 + 1, . . . , n×m.

Case 4. LM(X) = 0 and the block have more than two distinct values.
Assume that, one sorted block in stego image (x′σ(1), x

′
σ(2), . . . , x

′
σ(m×n)) has k1 largest

pixel values, l1 second largest pixel values, k2 smallest pixel values, l2 second smallest pixel
values. Extracting hidden bits bi and restoring the original pixels xi will as follows.

Extracting and restoring in the largest pixel values:
First, we calculate two differences

d′max = x′σ(m×n−k1+1) − x
′
σ(m×n−k1),

d′max 2 = x′σ(m×n−k1−l1+1) − x
′
σ(m×n−k1−l1).

Case 4.1. If d′max ≥ 3, there is not any bit extracted and pixels xi are restored as

xσ(i) = x′σ(i) − 1, i = n×m− k1 + 1, . . . , n×m.

Case 4.2. d′max = 2,

bj = 1, j = 1 . . . k1,

xσ(i) = x′σ(i) − 1, i = n×m− k1 + 1, . . . , n×m.

Case 4.3. d′max = 1, this situation is divided two cases:
Case 4.3.1. d′max 2 ≥ 2,

bj = 0, j = 1, . . . , k1,

xσ(i) = x′σ(i) − 1, i = n×m− k1− l1 + 1, . . . , n×m.

Case 4.3.2. If d′max 2 = 1

bj = x′σ(j) − x
′
σ(m×n−k1), j = m× n− k1− l1 + 1 . . .m× n,

xσ(i) = x′σ(m×n−k1), i = m× n− k1− l1 + 1, . . . ,m× n.

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 147

Extracting and restoring in the smallest pixel values:
First, we calculate two differences

d′min = x′σ(1) − x
′
σ(k2+1),

d′min 2 = x′σ(k2+l2) − x
′
σ(k2+l2+1).

Case 4.4. d′min ≤ −3, there is not any bit extracted, and pixels xi are restored

xσ(i) = x′σ(i) + 1, i = 1, . . . , k2.

Case 4.5. If d′min = −2

bj = 1, j = 1 . . . k2,

xσ(i) = x′σ(i) + 1, i = 1, . . . , k2.

Case 4.6. If d′min = −1, this situation is divided into two cases.
Case 4.6.1. If d′min 2 ≤ −2

bj = 0, j = 1, . . . , k2,

xσ(i) = x′σ(i) − 1, i = 1, . . . , k2 + l2.

Case 4.6.2. If d′min 2 = −1

bj = x′σ(k2+1) − x
′
σ(i), j = 1 . . . k2 + l2,

xσ(i) = x′σ(k2+1), i = 1, . . . , k2 + l2.

Example
To illustrate the embedding and extracting algorithm, we give 4 examples in Figures 1,

2, 3, 4: Embedding in the block has only dmax, embedding in the block has all cases, the
block can only be embedded in smallest pixels, and the last is example for extracting.

Figure 1. Embedding in block which has not dmax 2

148 NGUYEN KIM SAO, et al.

Figure 2. Embedding in block which has dmax 2

Figure 3. Embedding in block which is unable to embed in largest pixels

Figure 4. Extracting with flag

Figure 1 illustrates the embedding algorithm in the case when the block has two distinct
values. This block is used to embed the array of bits 0, the array of bits 1 and the array

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 149

containing bits 0,1 at both largest and smallest sides. Figure 2 illustrates the case block has
more than two distinct values. Figure 3 considers the block which can only embed in the
smallest side.

3.3. Location map and flag

At first, as same as PVO, IPVO, PVOK methods, the original image is divided into
un-overlapped blocks of size m× n.

Assume that, a block is transformed to a sequence (x1, x2, . . . , xm×n). Then this sequence
is sorted in ascending order to get (xσ(1), xσ(2), . . . , xσ(m×n)).

It is noted that a rough block which has pixel values equal 0 or 255 can cause under/over
flow (after embedding pixel values can go out segment [0; 255]). So, this block will not
be used for embedding. A binary location will be used to distinguish two type of blocks:
Position number of under/over flow block in location map is set by 1 and position number
of other blocks is set by 0

LM(X) =

{
1 if (xσ(1) = 0 or xσ(m×n) = 255) and (xσ(1) < xσ(m×n))

0 otherwise.

It can be seen that, if using only the location number of blocks, the receiver can not distin-
guish two the following cases:

(a) A flat block x1 = . . . = xm×n = α (with α ≤ 253) is used to embed at least one bit
1. For example, block X = (235, 235, 235, 235) after embedding three bits 110 will become
X ′ = (235, 236, 236, 235).

(b) A rough block having two consecutive distinct pixel values. For example, block X =
(235, 235, 236, 236) after embedding two bits 00 will be unchanged X = (235, 235, 236, 236).

Both these two blocks have the same location number equal 0, but their stego blocks are
the same. There are two consecutive distinct pixel values smaller 255. To solve this problem,
we use a flag bit, flag 0 for the flat block and flag 1 for the remaining block.

Flag of each block will be embedded in the previous block. Thus, in the previous block,
the number of data bits decrease one bit, the flag bit is added.

3.4. Embedding and extracting procedure

In this section, we will describe our proposed reversible data hiding method, called
iGePVO-K, including the embedding and extracting procedures in more detail. Its flow-
chart is shown in Figure 5.

3.4.1. Embedding procedure

Embedding the data bits is performed in the following steps.

Step 1. Divide the host image into non-overlapped blocks of size m × n. After that, visit
each block to set up a location map (LM) as in Subsection 3.3. Then, LM is compressed
using arithmetic coding. In addition, we compute some extra information (BO, MS, etc) as
shown in Table 1.

Step 2. Visit from the first block, for block B if LM(B) = 1, skip (do nothing). In the case
LM(B) = 0, first we determine flag bit for next block. If next block needs to use flag, we

150 NGUYEN KIM SAO, et al.

(a) The flowchart of embedding procedure

(b) The flowchart of extracting procedure

Figure 5. The flowchart of proposed method

Table 1. Extra information and location map

Information Notation Purposes
Size in
bit

1 Block size m× n m, n Divide host image into blocks 6

2 The size of data bits DS To embed data bits 18

3
The size of compressed
location map

MS
To embed compressed location
map

14

4
The ordinal of this
block

BO
To embed a sequence of LSB of
stego pixels

16

6
The compressed loca-
tion map

LM To embed and extract ML MS

define a flag bit as in Subsection 3.3 and insert it into data. Try to embed the data bits in
largest pixels, and then try to embed the data in smallest pixels of block as in Subsection
3.1.

Step 3. When embedding data bits are completed, embed first (MS+54) least significant bits
(LSB) of the pixels in the stego image into the remaining blocks from block which ordinal
equal BO (see Table 1).

Step 4. Use the LSB method [3] to embed extra information and the compressed location

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 151

map into stego image from the first pixel.

3.4.2. Extracting procedure

The following steps need to perform in order to extract the data bits and restore original
pixels.
Step 1. First, extract the extra information (MS, DS, OB, etc) and the compressed location
map by using LSB method, and then decompress the location map to obtain LM.
Step 2. Divide the stego image into non-overlapped blocks of size m × n as in embedding
procedure. Extracting according to Subsection 3.2. (MS+54) bits from the block having
ordinal equal OB, and insert extracted bits into first (MS+54) LSB of the pixels in stego
image. At the same time, restoring original blocks.
Step 3. Extracting DS data bits from the first block in stego image and restoring original
blocks as in Subsection 3.2.

Thus, we obtain the data bits and the original image.

3.5. Comparison between methods GePVO-K and iGePVO-K

We will compare methods GePVO-K and iGePVO-K on two criteria: Stego image quality
and embedding capacity.

3.5.1. Stego image quality

In GePVO-K, before embedding, the largest and second largest pixels must be increased
by 1 (at largest side). Then in embedding process, largest pixels can be add by 1, so each
pixel is changed at most by 2. In our method, each pixel is modified at most by 1. Therefore,
the amount of modification in our method is less than GePVO-K method. This leads to the
stego image quality of our method is better.

3.5.2. Embedding capacity

There are some reasons for the capacity of the proposed method more than GePVO-K.
First reason, for the receiver can distinguish three types of image blocks under/over flow
blocks, flat blocks and remaining blocks, GePVO-K method uses a binary location map
having the length equals twice number of blocks. Meanwhile, our iGePVO-K uses a binary
location map having the length equals only half of the map in GePVO-K. Moreover, iGePVO-
K uses a number of flag bits equals the number of flat block with value smaller 254 plus the
number of blocks having two consecutive distinct pixel values used for embedding all bit
0. So the number of flag bits, in general, is small. Therefore, the number of bits used to
recognize the type of blocks in iGePVO-K is greatly smaller in GePVO-K.

The second reason is that the flat blocks contained 0/1/254/255 are ignored in GePVO-K,
but, in proposed method, they are used to embed.

The third reason is that in all embedding cases, both GePVO-K and iGePVO-K have the
same capacity unless the case when block having three consecutive distinct values. In this
case, GePVO-K increases the second largest pixel values, it leads into the difference between
the smallest values and the second smallest values smaller -1. So GePVO-K cannot embed
data in the smallest pixels. Meanwhile iGePVO-K still can embed data bits in these pixels.

152 NGUYEN KIM SAO, et al.

Figure 6. Example about enhancing capacity of our proposed method

To illustrate this, an example is given in Figure 6. In this example, the proposed method
can embed three data bits while GePVO-K cannot.

Lena Camera man Boat Cabeza Transmission tower

Blob Airplane Barbara Car Couple

Gold hill Tiffany Sail boat Baboon Pepper

Figure 7. Experimental images

4. EXPERIMENTS

To validate the efficiency of our proposed method, iGePVO-K, and to consolidate the
results of theoretical analysis, we perform experiments on the sample image set in [1], with
some types of images as common images, texture images, flat regions images, etc as shown
in Figure 7. Images have 8-bits color and size 512×512. The data is a random bit sequence.
Programs are written in the Matlab platform and ran on IdeaPad S410p Lenovo computer
(Intel Core i5-4200U CPU and 4GB RAM).

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 153

Camera man Gold hill

Lena Airplane

Pepper Cabeza

Figure 8. Performance comparison between iGePVO-K and PVO, IPVO, PVO-K, GePVO-
K methods

154 NGUYEN KIM SAO, et al.

Blob Tiffany

Boat Barbara

Car Sail boat

Figure 9. Performance comparison between iGePVO-K and PVO, IPVO, PVO-K, GePVO-
K methods

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 155

Table 2. Comparisons in be embedded of PSNR (dB) with payload of 10000 bits (blocks
sized 2× 2)

Images PVO IPVO PVOK GePVO-K iGePVO-K
Airplane 59.60 59.18 58.48 52.78 56.61
Baboon 52.60 52.42 52.35 51.26 52.11
Barbara 57.76 58.78 57.03 52.29 56.54
Blob 58.60 58.43 57.72 52.85 56.46
Boat 58.84 58.93 57.82 53.57 56.88
Cabeza 61.62 61.02 59.80 54.00 57.74
Cameraman 63.07 62.47 60.27 52.94 57.92
Car 58.27 62.50 59.41 54.68 59.82
Couple 55.83 56.77 55.09 52.82 54.92
Gold hill 58.05 58.62 58.16 54.75 57.92
Lena 58.38 58.77 57.56 54.09 56.92
Pepper 56.98 56.77 56.49 54.00 55.91
Sailboat 56.53 56.61 56.23 53.89 55.86
Tiffany 56.23 55.43 54.78 51.37 54.18
Tranmission Tower 56.66 60.92 57.38 49.73 56.93
Average 57.93 58.51 57.24 53.00 56.45

Table 3. Comparisons in terms of PSNR (dB) with payload of 20000 bits (blocks sized 2×2)

Images PVO IPVO PVOK GePVO-K iGePVO-K
Airplane 56.82 56.70 55.81 51.18 54.46
Baboon 51.62 51.38 51.15 49.89 50.70
Barbara 54.92 56.04 54.37 50.75 54.26
Blob 56.15 55.87 55.08 51.03 54.10
Boat 54.05 55.17 53.85 50.74 53.80
Cabeza 58.62 57.98 56.81 52.02 55.33
Cameraman 59.50 59.52 57.33 51.72 55.92
Car 54.40 56.88 54.15 51.17 57.26
Couple 52.64 53.41 51.90 50.04 51.76
Gold hill 53.32 53.44 53.21 50.91 52.98
Lena 54.97 55.13 54.34 51.40 53.81
Sailboat 52.85 52.89 52.67 50.75 52.81
Tiffany 54.16 53.65 52.94 49.87 52.35
Average 54.92 55.23 54.12 50.88 53.81

The experiments are used to compare the methods PVO, IPVO, PVO-K, GePVO-K
and iGePVO-K on two criteria: Embedding capacity and stego image quality. The results
obtained are illustrated in the following figures and tables.

Figures 8, 9 and Table 2, 3 show the comparison results on stego image quality. For
the same payloads, the proposed method has the stego image quality little lower than PVO,
IPVO, PVO-K but much better than GePVO-K.

Tables 4, 5 allow to confirm that the proposed method outperforms other methods on the
embedding capacity. Especially, with the blocks sized 3× 3, proposed method has capacity
equal approximately two times than PVO, PVO-K, IPVO methods. With blocks sized 2×2,

156 NGUYEN KIM SAO, et al.

Table 4. Comparisons in terms of capacity with blocks sized 2× 2 (number of bits)

Images PVO IPVO PVOK GePVO-K iGePVO-K
Car 31378 47327 41594 44644 59755
Transmission tower 19603 57764 30813 22507 66877
Blob 41495 53326 52774 56473 66623
Airplane 38454 53055 51505 56305 68296
Couple 21599 29950 25127 26869 29147
Gold hill 25955 28662 29919 31210 33858
Sail boat 23569 26314 27463 28993 31417
Tiffany 29995 34776 34091 34418 42721
Baboon 13146 13462 13940 14546 14899
Barbara 29490 48066 40203 41008 55985
Boat 27392 35159 32784 33321 39603
Cabeza 54263 71946 73417 79199 93531
Camera man 43458 71097 63378 69772 90790
Lena 33115 40176 40373 43198 47773
Pepper 28093 30886 32422 34853 36554
Average 30734 42798 39320 41154 51855

Table 5. Comparisons in terms of capacity with blocks sized 3× 3 (number of bits)

Images PVO IPVO PVOK GePVO-K iGePVO-K
Airplane 17881 27060 29599 47207 49959
Baboon 7507 8031 8557 9739 9741
Barbara 13730 21787 22553 35730 39166
Blob 19471 27505 30397 46220 48083
Boat 13327 17570 18697 26062 27236
Cabeza 23600 35539 40126 63696 65693
Cameraman 18424 32896 35459 58795 66387
Car 14590 23695 24375 43629 47185
Couple 10943 16431 14631 19110 19791
Gold hill 13647 16035 17631 22669 23002
Lena 16910 21388 23695 32680 33013
Pepper 14931 17369 19399 24891 24992
Sailboat 12325 14646 16240 21209 21566
Tiffany 13975 16388 18363 27048 28774
TranmissionTower 9503 26174 19914 50806 65718
Average 14718 21501 22642 35299 38020

the ending rate approximately equal 0.12; 0.16; 0.15; 0.16 and 0.20 bpp(bit per pixel) for
methods PVO, IPVO, PVO-K, GePVO-K and iGePVO-K, respectively. For blocks sized
3 × 3 embedding rates approximately equal 0.06; 0.08; 0.09; 0.13 and 0.15 for the above
methods.

The location map embedded into the stego image will be used to extract the data and
restore the original image. The size of the location map is smaller, the embedding capacity
is larger. Table 6 shows the size of compressed location map (in the proposed method, it is
added by the number of flag bits).

AN EFFECTIVE REVERSIBLE DATA HIDING METHOD 157

Table 6. Comparisons in terms of compressed map size and flag (proposed) with blocks sized
2× 2 (number of bits)

Images PVO IPVO PVOK GePVO-K iGePVO-K
Car 0 0 0 16907 4872
Transmission tower 79 79 79 55964 14090
Blob 0 0 0 8151 2574
Airplane 0 0 0 9792 3461
Couple 1060 1327 1327 3029 1699
Gold hill 0 0 0 1512 405
Sail boat 0 0 0 1321 460
Tiffany 3962 6979 6979 13224 8682
Baboon 65 268 268 448 308
Barbara 35 35 35 15458 4435
Boat 183 326 326 5792 1803
Cabeza 64 64 64 7259 3401
Camera man 710 1041 1041 19468 7991
Lena 0 0 0 2646 905
Pepper 50 50 50 658 314
Average 414 678 678 10775 3693

It can be seen that the proposed method has the compressed location map of size about
30% comparing with GePVO-K. Therefore, it has the capacity much more than GePVO-K.

5. CONCLUSION

In this paper, based on PVO technique, we proposed a new method iGePVO-K which is
an improvement of GePVO-K. In the proposed method, we use reasonable data embedding
formulas and reduce the location map in order to increase the embedding capacity. Each pixel
value is just modified at most by one in iGePVO-K, while it can be changed by two in GePVO-
K. Both the theoretical analysis and experimental results show that our proposed method
iGePVO-K has larger embedding capacity and better stego image quality than GePVO-K.
In comparison with PVO, IPVO, PVO-K methods, iGePVO-K has stego image quality little
lower, but the embedding capacity much larger. In future research, we will further improve
the stego image quality of iGePVO-K.

ACKNOWLEDGEMENTS

This work is partially supported by the national research project No. KC.01.19/16-20,
granted by the Ministry of Science and Technology of Vietnam (MOST).

REFERENCES

[1] “Images data,” http://decsai.ugr.es/cvg/dbimagenes and http://sipi.usc.edu/database, 2017.

[2] G. Bhatnagar and B. Raman, “A new robust reference watermarking scheme based on dwt-svd,”
Computer Standards and Interfaces, vol. 31, pp. 1002–1013, 2009.

http://decsai.ugr.es/cvg/dbimagenes
http://sipi.usc.edu/database

158 NGUYEN KIM SAO, et al.

[3] C.-K. Chan and L.-M. Cheng, “Hiding data in images by simple lsb substitution,” Pattern
Recognition, vol. 37, pp. 469–474, 2004.

[4] J. Fridrich, M. Goljan, and R. Du, “Invertible authentication,” Security and Watermarking of
Multimedia Contents, vol. 4314, pp. 197–209, 2001.

[5] L.-G. J. Gui, Guo-fu and C. He, “A new asymmetric watermarking scheme for copyright pro-
tection,” Communications and Computer Sciences, vol. 89, pp. 611–614, 2006.

[6] J.-J. Li, Y.-H. Wu, C.-F. Lee, and C.-C. Chang, “Generalized pvo-k embedding technique for
reversible data hiding,” International Journal of Network Security, vol. 20, pp. 65–77, 2018.

[7] X. Li, J. Li, B. Li, and B. Yang, “High-fidelity reversible data hiding method based on pixel-
value-ordering and prediction-error expansion,” Signal Processing, vol. 93, pp. 198–205, 2013.

[8] Y.-C. Li, C.-M. Yeh, and C.-C. Chang, “Data hiding based on the similarity between neighboring
pixels with reversibility,” Digital Signal Processing, vol. 20, pp. 1116–1128, 2010.

[9] B. Macq, “Lossless multiresolution transform for image authenticating watermarking,” Signal
Processing Conference, vol. 10th European, pp. 1–4, 2000.

[10] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” Circuits and Systems for
Video Technology, IEEE Transactions, vol. 16, pp. 354–362, 2006.

[11] B. Ou, X. Li, Y. Zhao, and R. Ni, “Reversible data hiding using invariant pixel-value-ordering
and prediction-error expansion,” Digital Signal Process, vol. 29, pp. 760–772, 2014.

[12] X. L.-W. L. Ou, Bo and Y.-Q. Shi, “Pixel-value-ordering based reversible data hiding with
adaptive texture classification and modification,” In International Workshop on Digital Water-
marking, vol. Cham, pp. 169–179, 2018.

[13] F. Peng, X. Li, and B. Yang, “Improved pvo-based reversible data hiding,” Digital Signal Process,
vol. 25, pp. 255–265, 2014.

[14] X. Qu and H. J. Kim, “Pixel-based pixel value ordering predictor for high-fidelity reversible data
hiding,” Journal of Real-Time Image Processing, vol. 111, pp. 249–260, 2015.

[15] S. Rawat and B. Raman, “A chaos-based robust watermarking algorithm for rightful ownership
protection,” International Journal of Image and Graphics, vol. 11, pp. 471–493, 2011.

[16] K. Sao Nguyen, Q. H. Le, and V. A. Pham, “A new reversible watermarking method based on
histogram shifting,” Applied Mathematical Sciences, vol. 11, pp. 445–460, 2017.

[17] Y.-Q. Shi, X. Li, X. Zhang, H.-T. Wu, and B. Ma, “Reversible data hiding: advances in the past
two decades,” IEEE Access, vol. 4, pp. 3210–3237, 2016.

[18] Q. Su and B. Chen, “Robust color image watermarking technique in the spatial domain,” Soft
Computing, vol. 21, pp. 91–106, 2018.

[19] D. M. Thodi and J. J. Rodrguez, “Reversible watermarking by prediction-error expansion,”
Image Analysis and Interpretation, 6th IEEE Southwest Symposium on. IEEE, vol. 6, pp. 21–25,
2004.

[20] X. L.-Y. Z. Wu, Haorui and R. Ni, “Improved reversible data hiding based on pvo and adaptive
pairwise embedding,” Journal of Real-Time Image Processing, vol. 16, pp. 685–695, 2019.

Received on August 01, 2019

Revised on October 06, 2019

	INTRODUCTION
	RELATED WORKS
	PVO
	IPVO
	PVO-K
	GePVO-K

	PROPOSED METHOD
	Embedding algorithm in a block
	Extracting algorithm in a block
	Location map and flag
	Embedding and extracting procedure
	Embedding procedure
	Extracting procedure

	Comparison between methods GePVO-K and iGePVO-K
	Stego image quality
	Embedding capacity

	EXPERIMENTS
	CONCLUSION

