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Abstract. In this paper, we propose a new probabilistic relational database model, denoted by

PRDB, as an extension of the classical relational database model where the uncertainty of relational

attribute values and tuples are respectively represented by finite sets and probability intervals. A

probabilistic interpretation of binary relations on finite sets is proposed for the computation of their

probability measures. The combination strategies on probability intervals are employed to combine

attribute values and compute uncertain membership degrees of tuples in a relation. The fundamental

concepts of the classical relational database model are extended and generalized for PRDB. Then, the

probabilistic relational algebraic operations are formally defined accordingly in PRDB. In addition,

a set of the properties of the algebraic operations in this new model also are formulated and proven.

Keywords. Probability Interval; Probabilistic Combination Strategy; Probabilistic Relation; Pro-

babilistic Functional Dependency; Probabilistic Relational Algebraic Operation.

1. INTRODUCTION

Although the classical relational database model [3, 4], denoted by CRDB, is very useful
for modeling, designing and implementing large-scale systems, it is restricted for representing
and handling uncertain and imprecise information that are pervasive in the real world [6, 11,
13]. For example, applications of the CRDB model can neither deal with queries as “find all
patients who are young”; nor “find all patients who are at least 90% likely to catch either
hepatitis or cirrhosis”, etc. Here, “young” is a vague concept that can be defined by a fuzzy
set [28] or a possibility distribution [17], and “hepatitis or cirrhosis” uncertainly expresses a
patient’s possible diseases that can be represented by the discrete set comprising of the two
diseases. Meanwhile, “90%” is the uncertainty degree, i.e., probability, of that whole fact
about the patient. To overcome the shortcoming of CRDB, this model has to be extended
for uncertain and imprecise information.

For building database models, uncertainty and imprecision are two different aspects of
information that require respective theories and methods to handle. In particular, the fuzzy
set theory is employed to express and handle imprecise information and extend CRDB to
fuzzy relational database (FRDB) models, meanwhile the probability theory is used to re-
present and manipulate uncertain information and develop CRDB to probabilistic relational
database (PRDB) models.
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Up to now, many FRDB models have been built, e.g. in [1, 17, 20], and a large number of
PRDB models have been proposed, e.g. in [2, 5, 6, 9, 10, 14, 16, 22, 24, 27], respectively for
representing and handling uncertain and imprecise information. However, no model would be
so universal that could include all measures and tackle all facets of uncertain and imprecise
information. Thus, new databases model still continue to be developed for modeling data
objects of the real world.

PRDB models have been extended from CRDB in these two main directions [11] (1)
at the attribute level, where uncertain values of an attribute are defined by a probability
associating with a value on the domain of that attribute; Or (2) at the relational tuple level,
where attribute values are precise, but each tuple in a relation is associated with a probability
measure that expresses the uncertainty degree of that tuple in the relation.

For instances, in [2, 6, 9, 13, 15], the value of an attribute was assigned to a probability
to represent the uncertain level for that attribute to take the value. The models in [22, 27]
allowed the value of each attribute associated with a probability interval to represent the
uncertain degree of both the probability and the value that the attribute could take. More
flexibly, the model in [7] represented the value of each attribute as a probability distribution
on a set. It means that each attribute associated with a set of values and a probability
distribution expressing possibility that the attribute can take one of values of the set with
a probability computed from the distribution. The models in [18, 19] extended more the
model in [7], where a pair of lower and upper bound probability distributions is used instead
of a probability distribution as in [7]. In [10, 26], each tuple in a relation had an uncertainty
degree, measured by a probability value for it belonging to the relation. The model in [5]
extended the models in [10, 26], where used a pair of lower and upper bound probabilities
[23] instead of a probability to represent the uncertain degree for a tuple belonging to a
relation.

The models mentioned above are extensions with probability of the CRDB model in
different levels to represent uncertain information of objects in practice. However, these
models still have the restrictions. Particularly, regarding the models in [2, 6, 9, 10, 13, 15, 26],
the probability associated with each tuple or each attribute value is not always determined
exactly in practice. The models in [7, 18, 19, 22, 27] overcame the shortcoming of the models
in [2, 6, 9, 13, 15] by estimating a probability interval or a pair of lower and upper bound
probabilities for each attribute value of relations. However, in [7, 18, 19, 22, 27], the uncertain
degree of each tuple in a relation was not represented. Meanwhile, in contrast for the models
in [5, 10, 26], each tuple had a probability for it belonging to a relation but the attribute
value of the tupe is single and the probability for that attribute taking the single value was
not known.

In this paper, we propose a new probabilistic relational database model (PRDB) that
combines the representable relevance and strength of both the relational attribute level and
the relational tuple level for dealing with uncertain information. To build the PRDB model,
we express the value of an attribute as a finite set and associate each relational tuple with
a probability interval, then we propose a probabilistic interpretation of binary relations on
sets and use the combination strategies on probability intervals in [8] to define all the basic
concepts and probabilistic relational algebraic operations for PRDB. It is due to combining
both of the representable levels for uncertain information, our model can overcome the shor-
tcomings of the above mentioned models to represent and manipulate uncertain information
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in practice.
Basic probability definitions as a mathematical foundation for PRDB are presented in

Section 2. The PRDB model including the fundamental concepts such as schema, relation
and probabilistic functional dependency is introduced in Section 3. Section 4 and 5 present
probabilistic relational algebraic operations and their properties in PRDB. Finally, Section
6 concludes the paper and outlines further research directions in the future.

2. BASIC PROBABILITY DEFINITIONS

This section presents some basic probability definitions to build PRDB for representing
and handling uncertain information.

2.1. Probabilistic interpretation of relations on sets

For computing the probability of a binary relation on atrribute values in PRDB, we
propose the probabilistic interpretation of binary relations on sets as following definitions.

Definition 1. Let A and B be sets, U and V be value domains, and θ be a binary relation
from {=, 6=,≤,≥, <,>,⇒}. The probabilistic interpretation of the relation A θ B, denoted
by prob(A θ B), is a value in [0, 1] that is defined by

1. prob(A θ B) = p(u θ v|u ∈ A, v ∈ B), where A is a subset of U, B is a subset of V
and θ ∈ {=, 6=,≤, <,≥, >} assumed to be valid on (U × V ), p (u θ v|u ∈ A, v ∈ B) is
the conditional probability of u θ v given u ∈ A and v ∈ B.

2. prob(A⇒ B) = p(u ∈ B|u ∈ A), where A and B are two subsets of U , p(u ∈ B|u ∈ A)
is the conditional probability for u ∈ B given u ∈ A.

Intuitively, given propositions “x ∈ A” and “y ∈ B”, prob(A θ B) is the probability
for x θ y being true. Meanwhile prob(A ⇒ B) is that, given a proposition “x ∈ A” being
true, prob(A⇒ B) is the probability for “x ∈ B” being true.

Example 1. Let A = {3, 4} and B = {4, 5} be two sets on the domain {1, 2, 3, 4, 5, 6}. Then

1. prob(A = B) = p(u = v|u ∈ A, v ∈ B)
= p(u = v|u ∈ {3, 4}, v ∈ {4, 5}) = 0.25.

2. prob(A⇒ B) = p(u ∈ B|u ∈ A)
= p(u ∈ {4, 5}|u ∈ {3, 4}) = 0.5.

2.2. Probabilistic combination strategies

Let two events e1 and e2 have probabilities in the intervals [L1, U1] and [L2, U2], respecti-
vely. Then the probability intervals of the conjunction event e1∧e2, disjunction event e1∨e2,
or difference event e1 ∧¬e2 can be computed by alternative strategies. In this work, we em-
ploy the conjunction, disjunction, and difference strategies given in [8, 19] as presented in
Table 1, where ⊗, ⊕ and 	 denote the conjunction, disjunction, and difference operators,
respectively.
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Table 1. Definitions of probabilistic combination strategies

Strategy Operators

Ignorance ([L1, U1]⊗ig [L2, U2]) ≡ [max(0, L1 + L2 − 1),min(U1, U2)]
([L1, U1]⊕ig [L2, U2]) ≡ [max(L1, L2),min(1, U1 + U2)]
([L1, U1]	ig [L2, U2]) ≡ [max(0, L1 − U2),min(U1, 1− L2)]

Independence ([L1, U1]⊗in [L2, U2]) ≡ [L1.L2, U1.U2]
([L1, U1]⊕in [L2, U2]) ≡ [L1 + L2 − (L1.L2), U1 + U2 − (U1.U2)]
([L1, U1]	in [L2, U2]) ≡ [L1.(1− U2), U1.(1− L2)]

Positive correlation
(when e1 implies e2,
or e2 implies e1)

([L1, U1]⊗pc [L2, U2]) ≡ [min(L1, L2),min(U1, U2)]
([L1, U1]⊕pc [L2, U2]) ≡ [max(L1, L2),max(U1, U2)]
([L1, U1]	pc [L2, U2]) ≡ [max(0, L1 − U2),max(0, U1 − L2)]

Mutual exclusion
(when e1 and e2 are
mutually exclusive)

([L1, U1]⊗me [L2, U2]) ≡ [0, 0]
([L1, U1]⊕me [L2, U2]) ≡ [min(1, L1 + L2),min(1, U1 + U2)]
([L1, U1]	me [L2, U2]) ≡ [L1,min(U1, 1− L2)]

3. PROPOSED PRDB MODEL

As for CRDB, the schema, relation, functional dependency and key are the fundamental
concepts in the PRDB model.

3.1. PRDB schemas

A PRDB schema consists of a set of attributes (as in CRDB) associated with a mem-
bership function representing the lower-bound and upper-bound probabilities for an instance
tuple of the relational attributes being true and is defined as follows.

Definition 2. A PRDB schema is a pair R = (U , ℘), where

1. U = {A1, A2, ..., Ak} is a set of pairwise different relational attributes.

2. ℘ is a function that maps each (v1, v2, ..., vk) ∈ 2D1 × 2D2 × ... × 2Dk to a subinterval
of the interval [0, 1], Di is the domain of the attribute Ai, i = 1, ..., k.

We note that a precise value can be considered as a special set. That is, each precise value
v ∈ D can be defined as a set {v} on D. Therefore, the above definition can accommodate
relational attributes whose values are precise as in CRDB. Also, the PRDB schema is actually
a generalization of the probabilistic relational database schemas in [6, 26, 27], where relational
attributes could take only precise and single values.

As in CRDB, the notations R(U , ℘) and R can be used to replace R = (U , ℘). In
addition, each t = (v1, v2, ..., vk) is called a tuple on the set of attributes A1, A2, ..., Ak, the
domain of each attribute A is denoted by dom(A).

Example 2. Suppose a PRDB schema PATIENT(P ID, P NAME, P AGE, P DISEASE,
P COST, ℘), where the attributes P ID, P NAME, P AGE, P DISEASE, and P COST
respectively describe the information about the identifier, name, age, disease, and daily
treatment cost of each patient, ℘ maps each information tuple of patients to an interval
[α, β] ⊆ [0, 1].
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3.2. PRDB relations

A PRDB relation is an instance of a PRDB schema in which each relational attribute
takes a value set in its domain and each tuple takes a probability interval on [0, 1] as the
definition below.

Definition 3. Let U = {A1, A2, ..., Ak} be a set of k pairwise different attributes. A PRDB
relation r over the schema R = (U , ℘) is a finite set {t|t = (v1, v2, ..., vk) ∈ 2D1×2D2×...×2Dk ,
℘(t) = [α, β] ⊆ [0, 1]} where ℘(t) represents the probabilistic membership degree of t in r
and Di is the domain of the attribute Ai for every i = 1, 2, ..., k.

We note that each component vi of the tuple t = (v1, v2, ..., vk) in a PRDB relation r
is a set in 2Di but the attribute Ai only takes one of the values in vi and ℘(t) expresses
the uncertain membership degree of the tuple t, that is a probability between α and β.
Definition 3 is a proper extension of the definitions of relations in CRDB and the models
in [6, 26, 27], where the value of an attribute was certain and the membership degree of a
tuple was 0, 1 or a single probability. As in [3, 7, 26], the PRDB model adopts the closed
world assumption (CWA). It means, for every tuple t = (v1, v2, ..., vk) on the set of attributes
U = {A1, A2, ..., Ak} of the schema R(U , ℘) such that ℘(t) = [0, 0] (Definition 2) then there
does not exist any relation r over R including t.

For each probabilistic tuple t, we write t.Ai and t.℘ to denote the value (set) vi and the
probability interval [α, β], respectively. For each set of attributes X ⊆ {A1, A2, ...Ak}, the
notation t[X] is used to denote the rest of t after eliminating the value of attributes not
belonging to X.

Example 3. Table 2 shows an example relation PATIENT over the schema PATIENT in
Example 2. For the attributes P ID and P NAME, their values are assumed to be single, cer-
tain. In reality, while being diagnosed, the actual disease of a patient may still be uncertain.
Similarly, the treatment cost for patients is also not known definitely even as the patients
know their diseases. Therefore, for the attribute P DISEASE, its values can be as certain as
“tuberculosis” or as uncertain as {hepatitis, cirrhosis} meaning the patients disease could be
either “hepatitis” or “cirrhosis”. For the attribute P COST, the value “85” means 85 USD
per day, {175, 200} means that the daily treatment cost can be either 175 or 200 USD.

Meanwhile, the probability interval [0.8, 1], for instance, expresses that the uncertain
degree for the tuple (P442, Mary, 16, {hepatitis, cirrhosis}, {7, 8}) belonging to the relation
PATIENT is between 0.8 and 1.

Table 2. Relation PATIENT

P ID P NAME P AGE P DISEASE P COST ℘

P115 John 65 tuberculosis {175, 200} [0.9, 1]

P226 Anna 50 bronchitis 6 [1, 1]

P338 Bill 30 cholecystitis 85 [0.7, 1]

P442 Mary 16 {hepatitis, cirrhosis} {7, 8} [0.8, 1]

P555 Paul {45, 46} diabetes {5, 6} [1, 1]

Now, the notion of a probabilistic relational database is defined as follows.

Definition 4. A probabilistic relational database over a set of attributes is a set of probabi-
listic relations corresponding with the set of their probabilistic relational schemas.
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Note that, if we only care about a unique relation over a schema then we can unify its
symbol name with its schemas name.

3.3. PRDB value-equivalent tuples

A relational database model, either being classical or non-classical, does not allow re-
dundant tuples in a relation, i.e., those whose respective attribute values are equal. For the
model in [6], where relational attributes could take only precise values and the uncertain
membership degree of tuples was a single probability value, the authors introduced the no-
tion of value-equivalence. Two tuples were said to be value-equivalent if and only if their
respective relational attribute values are equal. Then they should be coalesced into a single
tuple with the same relational attribute values and the combined uncertain membership de-
gree as the sum of their ones. Similarly, in [7], identical tuples as the result of the projection
operation were also coalesced.

In [26], the authors added the notion of ε-equality. Two tuples were said to be ε-equal
if and only if they are value-equivalent, as defined in [6], and the absolute difference of their
probabilistic attribute values is less than ε.

In our proposed PRDB, since relational attribute values can be proper sets, the value-
equivalence of two tuples is not the matter of “to be or not to be” as in [6] but to a
certain degree. To be coherent with the probabilistic framework of the model, we evaluate
the likelihood of the value-equivalence of two tuples and introduce the notion of ε-value-
equivalence as follows.

Definition 5. Let R = (U , ℘) be a PRDB schema, X be a subset of U , t1 and t2 be
two tuples on X, ε ∈ [0, 1]. Then t1 and t2 are said to be ε − value − equivalent with
respect to a probabilistic conjunction strategy ⊗, denoted by t1 ≈ε⊗ t2 if and only if
⊗A∈Xprob (t1.A = t2.A) ≥ ε.

We note that, by Definition 1, prob(t1.A = t2.A) is the probability for the values of
attribute A in t1 and t2 being equal. The introduction of ε-value-equivalence is to coalesce
two PRDB tuples under some probabilistic combination strategy if their equality likelihood
is greater than or equal to a certain threshold ε, or not to coalesce them otherwise. The
definition of value-equivalence in [6] could be considered as a special case of our definition
with ε = 1.

Example 4. Suppose there is a new piece of information coming for John and the following
tuple is added to the relation in Example 3: 〈(P115 John, 65, tuberculosis, 175), [0.8, 1]〉.
Then the value-equivalence likelihood of these two tuples about John, namely t1 and t2,
under the independence probabilistic conjunction strategy ⊗in is

⊗A∈{P ID, P NAME, P AGE, P DISEASE, P COST}prob(t1.A = t2.A) = 1× 1× 1× 1× 0.5 = 0.5

and t1 and t2 can be coalesced into the tuple t under the equivalent threshold ε = 0.5
and the independence probabilistic disjunction strategy ⊕in, where t.A = t1.A ∩ t2.A,
℘(t) = ℘ (t1)⊕in ℘ (t2). That is

t = (P115, John, 65, tuberculosis, 175) with ℘(t) = [0.9, 1]⊕in [0.8, 1] = [0.98, 1].
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3.4. PRDB functional dependencies

Functional dependencies play an important role in CRDB. In [18, 19] a probabilistic
functional dependency was defined under the probability degree for values of two attributes
being equal. Meanwhile, functional dependencies were not formally defined in previous
works. For PRDB, our definition is as follows.

Definition 6. LetR = (U , ℘) be a PRDB schema, r be a relation overR, ⊗ be a probabilistic
conjunction strategy, X ⊆ U and Y ⊆ U . A PRDB functional dependency of Y on X under
⊗, denoted by X→⊗ Y, holds if and only if

∀t1, t2 ∈ r : ⊗A∈Xprob (t1.A = t2.A) ≤ ⊗A∈Y prob (t1.A = t2.A) .

One can see that this definition subsumes that of CRDB. Also, it is easy to see that for
every PRDB schema R(U , ℘) then U →⊗ Y with Y ⊆ U under all probabilistic conjunction
strategies.

Example 5. In every relation r over the schema PATIENT with the set of attributes
U = {P ID, P NAME, P AGE, P DISEASE, P COST} in Example 3, the values of the
attribute P ID, that describe the identifiers of patients, are single and pairwise different.
Thus, for two tuples t1, t2 ∈ r and an attribute A ∈ U , prob(t1.P ID = t2.P ID) = 0, while
prob (t1.A = t2.A) ≥ 0. So, ⊗A∈Y prob (t1.A = t2.A) ≥ 0 with Y ⊆ U , by Definition 6,
there is the PRDB functional dependency P ID→⊗ Y in the schema PATIENT under all
probabilistic conjunction strategies.

As for CRDB, the values of the key attributes of a schema in PRDB are the basis to
identify a tuple in a relation, as defined below.

Definition 7. Let R = (U , ℘) be a PRDB schema, r be a relation over R, and ⊗ be a
probabilistic conjunction strategy. A non-empty set of attributes K ⊆ U is a key of R under
⊗ if and only if there is a probabilistic functional dependency K→⊗ U such that there does
not exist any proper subset of K holding this property.

Example 6. In the relation PATIENT above, if we assume that each patient has a unique
identifier corresponding to the value of the attribute P ID, then P ID is a key of the schema
PATIENT under all probabilistic conjunction strategies.

Note that, by Definition 7, for every PRDB schema R(U , ℘), the set of attributes U is a
key of the schema.

4. PRDB ALGEBRAIC OPERATIONS

As for CRDB [3, 4], the basic operations on PRDB are the selection, projection, Cartesian
product, join, intersection, union, and difference. We now extend those operations of CRDB
for PRDB taking into account set values and uncertain tuple membership degrees in relations.

4.1. Selection

The selection is a basic algebraic operation and is used to query information in relati-
onal databases. Before defining the selection operation for PRDB, we present the formal
syntax and semantics of selection conditions by extending those definitions of CRDB with
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probability and set values. We start with the syntax of selection expressions as the following
definition.

Definition 8. Let R be a PRDB schema and X be a set of its tuple variables. Then selection
expressions are inductively defined to have one of the following forms:

1. x.A θ c, where x ∈ X, A is a relational attribute in R, θ is a binary relation from
{=, 6=, ≤, <, ≥, >, ⇒}, and c is a finite set in dom(A).

2. x.A1 = x.A2, where x ∈ X, A1 and A2 are two different relational attributes in R with
dom(A1) = dom(A2).

3. E1 ⊗E2, where E1 and E2 are selection expressions on the same tuple variable and ⊗
is a probabilistic conjunction strategy.

4. E1 ⊕E2, where E1 and E2 are selection expressions on the same tuple variable and ⊕
is a probabilistic disjunction strategy.

Example 7. Consider the schema PATIENT in Example 2, the selection of “all patients
who get cirrhosis and pay the daily treatment cost over 7 USD” can be expressed by the
selection expression x.P DISEASE = cirrhosis ⊗ x.D COST > 7.

Each selection condition is defined as a logical combination of selection expressions with
probability intervals to be satisfied.

Definition 9. Let R be a PRDB schema. Then selection conditions are inductively defined
as follows:

1. If E is a selection expression and [L,U ] is a subinterval of [0, 1], then (E)[L,U ] is a
selection condition.

2. If φ and ψ are selection conditions on the same tuple variable, then ¬φ, (φ∧ψ), (φ∨ψ)
are selection conditions.

Example 8. Given the schema PATIENT in Example 3, the selection of “all patients who
are over 25 years old with a probability of at least 0.9 or have hepatitis and pay the daily
treatment cost not less than 7 USD with a probability from 0.4 to 0.6” can be done using
the selection condition (x.P AGE> 25)[0.9, 1] ∨ (x.P DISEASE = hepatitis ⊗ x.D COST≥
7)[0.4, 0.6].

The probabilistic interpretation (i.e., semantics) of selection expressions is defined by
extending those definitions of CRDB with probability and set values as below.

Definition 10. Let R = (U , ℘) be a PRDB schema, r be a relation over R, x be a tuple
variable, and t be a tuple in r. The probabilistic interpretation of selection expressions with
respect to R, r and t, denoted by probR,r,t, is the partial mapping from the set of all selection
expressions to the set of all closed subintervals of [0, 1] that is inductively defined as follows:

1. probR,r,t(x.A θ c) = [α.prob(t.A θ c), β.prob(t.A θ c)], where ℘(t) = [α, β] .

2. probR,r,t(x.A1 = x.A2) = [α.prob(t.A1 = t.A2), β.prob(t.A1 = t.A2)],
where ℘(t) = [α, β] .
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3. probR,r,t(E1 ⊗ E2) = probR,r,t(E1)⊗ probR,r,t(E2).

4. probR,r,t(E1 ⊕ E2) = probR,r,t(E1)⊕ probR,r,t(E2).

Intuitively, probR,r,t(x.A θ c) is the probability interval for the attribute A of the tuple t
having a value v such that vθc. Meanwhile, probR,r,t(x.A1 = x.A2) is the probability interval
for the attributes A1 and A2 of the tuple t having values v1 and v2, respectively, such that
v1 = v2.

Example 9. Let r denote the relation PATIENT in Example 3 and R denote the schema
of PATIENT, regarding the fourth tuple t4 in r, one has

probR,r,t4(x.P COST ≥ 7) = [0.8× prob({7, 8} ≥ 7), 1× prob({7, 8} ≥ 7)] = [0.8, 1].

Definition 10 is different from the probabilistic interpretation in [19] because, unlike that
model, our PRDB contains the probabilistic interval for tuples in a relation. On the basis of
the probabilistic interpretation of selection expressions, the satisfaction (i.e., semantics) of
selection conditions in PRDB is defined below.

Definition 11. Let R be a PRDB schema, r be a relation over R, and t ∈ r. The satisfaction
of selection conditions under probR,r,t is defined as follows:

1. probR,r,t � (E)[L,U ] if and only if (iff) probR,r,t(E) ⊆ [L,U ].

2. probR,r,t � ¬φ iff probR,r,t � φ does not hold.

3. probR,r,t � φ ∧ ψ iff probR,r,t � φ and probR,r,t � ψ.

4. probR,r,t � φ ∨ ψ iff probR,r,t � φ or probR,r,t � ψ.

Example 10. Consider the selection condition (x.P DISEASE = tuberculosis⊕in x.P COST
≥ 180)[0.9, 1] for the relation PATIENT, denoted by r, in Example 3. With the first tuple
t1 = (P115, John, 65, tuberculosis, {175, 200}), where ℘(t1) = [0.9, 1], one has

probR,r,t1(x.P DISEASE = tuberculosis⊕in x.P COST ≥ 180)

= [0.9× prob(tuberculosis = tuberculosis), 1× prob(tuberculosis = tuberculosis)]

⊕in[0.9× prob({175, 200} ≥ 180), 1× prob({175, 200} ≥ 180)]

= [0.9× 1, 1× 1]⊕in [0.9× 0.5, 1× 0.5] = [0.9, 1]⊕in [0.45, 0.5] = [0.945, 1] ⊆ [0.9, 1].

Consequently, probR,r,t1 � (x.P DISEASE = tuberculosis ⊕inx.P COST ≥ 180)[0.9, 1]. Now,
the selection operation on a relation in PRDB is defined as follows.

Definition 12. Let R be a PRDB schema, r be a relation over R, and φ be a selection
condition over a tuple variable x. The selection on r with respect to φ, denoted by σφ(r),
is the relation r∗ = {t ∈ r|probR,r,t � φ} over R, including all those tuples that satisfy the
selection condition φ.

Example 11. Let r denote the relation PATIENT in Example 3 and R denote its schema.
The query “Find all patients who are not greater than 16 years old with a probability of
at least 0.8, and have hepatitis and pay over 6 USD for the daily treatment cost with a
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probability between 0.3 and 0.6” can be done by the selection operation σφ(PATIENT),
where

φ = (x.P AGE ≤ 16)[0.8, 1] ∧ (x.P DISEASE = hepatitis⊗in x.P COST > 6)[0.3, 0.6].

Only the fourth tuple t4 = (P442,Mary, 16, {hepatitis, cirrhosis}, {7, 8}) with ℘(t4) =
[0.8, 1], in Example 3 satisfies φ, because

probR,r,t4(x.P AGE ≤ 16) = [0.8× prob(16 ≤ 16), 1× prob(16 ≤ 16)] = [0.8× 1, 1× 1]

= [0.8, 1] ⊆ [0.8, 1]

and probR,r,t4(x.P DISEASE = hepatitis⊗in x.P COST > 6)

= [0.8× prob({hepatitis, cirrhosis} = hepatitis), 1× prob({hepatitis, cirrhosis} =

hepatitis)]⊗in [0.8× prob({7, 8} > 6), 1× prob({7, 8} > 6)]

= [0.8× 0.5, 1× 0.5]⊗in [0.8× 1, 1× 1] = [0.32, 0.5] ⊆ [0.3, 0.6].

For the other tuples, one has probR,r,ti(x.P AGE ≤ 16) = [0, 0] * [0.8, 1], ∀i 6= 4. Thus,
those tuples do not satisfy φ.

4.2. Projection

A projection of a PRDB relation on a set of attributes is a new PRDB relation where
only the attributes in that set are considered for each tuple of the new relation. Moreover,
equivalent tuples under a chosen threshold should be coalesced into a tuple in the result
relation by probabilistic combination strategies. The projection operation of a PRDB relation
is extended from the projection operation of a CRDB relation with set values and uncertain
tuple membership degrees and is defined as follows.

Definition 13. Let R = (U , ℘) be a PRDB schema, r be a relation over R and L be a
subset of attributes of U , ⊗ and ⊕ be probabilistic disjunction and conjunction strategies
with respect to the same combination alternative, ε ∈ [0, 1] be an equivalent threshold on
L. The projection of r on L under ⊕, ⊗ and ε, denoted by ΠL⊕ε⊗(r), is the probabilistic
relation r∗ over the schema R∗ determined by:

1. R∗ = (L, ℘∗), where ℘∗ is the mapping from 2D1 × 2D2 × . . . × 2Dm to the set of all
intervals on [0, 1], m = |L|, Di is the value domain of Ai ∈ L, i = 1, ...,m.

2. r∗ = {t∗|t∗.A = u.A ∩ ... ∩ w.A, ℘∗(t∗) = ℘(u) ⊕ ... ⊕ ℘(w), ∀A ∈ L,∃u, ..., w ∈ r such
that u[L] ≈ε⊗ ... ≈ε⊗ w[L]}.

We note that the combination alternative of a probabilistic combination strategy can be the
“ignorance”, “independence”, “positive correlation” or “mutual exclusion” as in Table 1.

Example 12. Consider the relation DIAGNOSE over the schema DIAGNOSE(U , ℘) as
in Table 3, where U = {P ID, D ID, P AGE, P DISEASE}. Then the projection of DIAG-
NOSE on L = {D ID, P AGE, P DISEASE} under ⊕in, ⊗in and the equivalent threshold
ε = 0.5 is the relation r∗ = ΠL⊕in0.5⊗in(DIAGNOSE) over the schema R∗ = (L, ℘∗) compu-
ted as in Table 4.
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Table 3. Relation DIAGNOSE

P ID D ID P AGE P DISEASE ℘

P388 D102 60 tuberculosis [0.9, 1]

P245 D025 {40, 42} cholecystitis [1, 1]

P237 D102 60 {lung cancer, tuberculosis} [0.8, 1]

Table 4. Relation ΠL⊕in0.5⊗in(DIAGNOSE)

D ID P AGE P DISEASE ℘∗

D102 60 tuberculosis [0.98, 1]

D025 {40, 42} cholecystitis [1, 1]

We note that two tuples t1 and t3 in Table 3 are equivalent on L = {D ID, P AGE,
P DISEASE} under the threshold ε = 0.5 and the independence probabilistic conjunction
strategy ⊗in and they are projected on L and coalesced into the tuple t1 under the indepen-
dence probabilistic disjunction strategy ⊕in with ℘∗(t1) = [0.98, 1] in Table 4.

4.3. Cartesian product

For the Cartesian product of two PRDB relations, as in CRDB, we assume the set of
attributes of their schemas are disjoint and every k-tuple t = (v1, v2, ..., vk) is an un-ordered
list. The Cartesian product of two PRDB relations is extended from the Cartesian product
of two CRDB relations as follows.

Definition 14. Let U1,U2 be two sets of attributes that have not any common element,
R1 = (U1, ℘1), R2 = (U2, ℘2) be two PRDB schemas, r1, r2 be two relations over R1 and
R2, respectively and ⊗ be a probabilistic conjunction strategy. The Cartesian product of r1
and r2 under ⊗, denoted by r1 ×⊗ r2, is the probabilistic relation r over R, determined by:

1. R = (U , ℘), where U = U1 ∪U2, ℘ is the mapping from 2D1 × 2D2 × ...× 2Dn to the
set of all intervals on [0, 1], n = |U |, Di is the value domain of Ai ∈ U , i = 1, ..., n.

2. r = {t | t.A = t1.A if A ∈ U1, t.A = t2.A if A ∈ U2, t1 ∈ r1, t2 ∈ r2, ℘(t) =
℘1(t1)⊗ ℘2(t2)}.

4.4. Join

The join of two PRDB relations is extended from the natural join of two CRDB relations
with probability and set values as following definition.

Definition 15. Let U1 and U2 be two sets of attributes such that if they have the same name
attributes, respectively in those two sets then such attributes have the same value domain.
Let R1 = (U1, ℘1) and R2 = (U2, ℘2) be two PRDB schemas, r1, r2 be two relations over
R1 and R2, respectively and ⊗ be a probabilistic conjunction strategy. The natural join of
r1 and r2 under ⊗, denoted by r1 ./⊗ r2, is the probabilistic relation r over the schema R,
determined by:

1. R = (U , ℘), where U = U1 ∪U2, ℘ is the mapping from 2D1 × 2D2 × ...× 2Dn to the
set of all intervals on [0, 1], n = |U |, Di is the value domain of Ai ∈ U , i = 1, ..., n.
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2. r = {t|t.A = t1.A if A ∈ U1−U2, t.A = t2.A if A ∈ U2−U1, t.A = t1.A∩ t2.A if A ∈
U1 ∩U2 and t1.A ∩ t2.A 6= ∅, ℘(t) = ℘1(t1)⊗ ℘2(t2), t1 ∈ r1, t2 ∈ r2}.

Example 13. Given two PRDB relations DOCTOR1 and DOCTOR2 as in Tables 5 and 6.
Then, the result of the join of them under the probabilistic conjunction strategy ⊗in is the
relation DOCTOR computed as in Table 7.

Table 5. Relation DOCTOR1

D ID D AGE ℘1

D005 45 [1, 1]

D093 30 [0.9, 1]

D102 {55, 56} [0.8, 1]

Table 6. Relation DOCTOR2

D NAME D AGE ℘2

Alice {30, 31} [0.7, 1]

George 52 [1, 1]

Peter {54, 55} [0.9, 1]

Table 7. Relation DOCTOR = DOCTOr1 ./⊗in DOCTOR2

D ID D NAME D AGE ℘

D093 Alice 30 [0.63, 1]

D102 Peter 55 [0.72, 1]

4.5. Intersection, union, and difference

The intersection, union and difference of two PRDB relations over the same schema
is a PRDB relation over that schema, where two equivalent tuples under a threshold ε,
respectively of those two relations are coalesced into a tuple in the result relation by a
probabilistic combination strategy. Thus, the operations are an extension of the intersection,
union and difference of two CRDB relations with probability and set values. The intersection,
union and difference of two PRDB relations in turn are defined as below.

Definition 16. Let R = (U , ℘) be a PRDB schema, r1 and r2 be two relations over R, ⊗
be a probabilistic conjunction strategy, and ε ∈ [0, 1] be an equivalent threshold on U . The
intersection of r1 and r2 under ⊗ and ε, denoted by r1 ∩ε⊗ r2, is the probabilistic relation
r over R defined by r = {t|t.A = t1.A ∩ t2.A, ℘(t) = ℘(t1) ⊗ ℘(t2), t1 ∈ r1, t2 ∈ r2, A ∈
U , such that t1 ≈ε⊗ t2 and t1.A ∩ t2.A 6= ∅}.
Example 14. Consider two relations DIAGNOSE1 and DIAGNOSE2 over the same schema
DIAGNOSE(U , ℘) as in Tables 8 and 9, where U = {P ID, D ID, P AGE, P DISEASE}.
Then the intersection of DIAGNOSE1 and DIAGNOSE2 under ⊗in and the equivalent thres-
hold ε = 0.25 is the relation DIAGNOSE computed as in Table 10.

Table 8. Relation DIAGNOSE1

P ID D ID P AGE P DISEASE ℘

P215 D093 {60, 62} {lung cancer, tuberculosis} [1, 1]

P234 D102 {40, 41} hepatitis [0.9, 1]
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Table 9. Relation DIAGNOSE2

P ID D ID P AGE P DISEASE ℘

P383 D102 60 lung cancer [0.9, 1]

P234 D102 {41, 42} {hepatitis, gall-stone} [0.8, 1]

P242 D025 17 cholecystitis [1, 1]

Table 10. Relation DIAGNOSE = DIAGNOSE1∩0.25⊗inDIAGNOSE2

P ID D ID P AGE P DISEASE ℘

P234 D102 41 hepatitis [0.72, 1]

We note that the tuple t2 in Table 8 and the tuple t2 in Table 9 are equivalent on
U = {P ID, D ID, P AGE, P DISEASE} under the threshold ε = 0.25 and the independence
probabilistic conjunction strategy⊗in, consequently they are coalesced into the tuple t1 under
⊗in with ℘(t1) = [0.72, 1] in the Table 10.

Definition 17. Let R = (U , ℘) be a PRDB schema, r1 and r2 be two relations over R,
⊕ and ⊗ be probabilistic disjunction and conjunction strategies with respect to the same
combination alternative, and ε ∈ [0, 1] be an equivalent threshold on U . The union of r1
and r2 under ⊗, ⊕ and ε, denoted by r1∪ε⊕⊗ r2, is the probabilistic relation r over R defined
by r = {t = t1 ∈ r1| there is not any tuple t2 ∈ r2 such that t1 ≈ε⊗ t2, ℘(t) = ℘(t1)} ∪ {t =
t2 ∈ r2| there is not any tuple t1 ∈ r1 such that t2 ≈ε⊗ t1, ℘(t) = ℘(t2)} ∪ {t|t.A = t1.A ∩
t2.A, ℘(t) = ℘(t1)⊕℘(t2), t1 ∈ r1, t2 ∈ r2, A ∈ U such that t1 ≈ε⊗ t2, and t1.A∩t2.A 6= ∅}.

Definition 18. Let R = (U , ℘) be a PRDB schema, r1 and r2 be two relations over R,
	 and ⊗ be probabilistic difference and conjunction strategies with respect to the same
combination alternative, and ε ∈ [0, 1] be an equivalent threshold on U . The difference
of r1 and r2 under 	, ⊗ and ε, denoted by r1 −ε	⊗ r2, is the probabilistic relation r over
R defined by r = {t = t1 ∈ r1| there is not any tuple t2 ∈ r2 such that t1 ≈ε⊗ t2, ℘(t) =
℘(t1)}∪{t|t.A = t1.A∩t2.A, ℘(t) = ℘(t1)	℘(t2), t1 ∈ r1, t2 ∈ r2, A ∈ U such that t1 ≈ε⊗ t2
and t1.A ∩ t2.A 6= ∅}.

Example 15. Given two PRDB relations DIAGNOSE1 and DIAGNOSE2 over the same
schema DIAGNOSE(U , ℘) as in Tables 8 and 9 of Example 14. Then the difference of
DIAGNOSE1 and DIAGNOSE2 under 	in, ⊗in and the equivalent threshold ε = 0.25 is the
relation DIAGNOSE computed as in Table 11.

Table 11. Relation DIAGNOSE = DIAGNOSE1 −0.25	⊗in DIAGNOSE2

P ID D ID P AGE P DISEASE ℘

P215 D093 {60, 62} {lung cancer, tuberculosis} [1, 1]

P234 D102 41 hepatitis [0, 0.2]

We note that the tuple t2 in Table 8 and the tuple t2 in Table 9 are equivalent on
U = {P ID, D ID, P AGE, P DISEASE} under the threshold ε = 0.25 and the independence
probabilistic conjunction strategy⊗in, consequently they are coalesced into the tuple t2 under
	in with ℘(t2) = [0, 0.2] in the Table 11.
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5. PROPERTY OF PRDB ALGEBRAIC OPERATIONS

In this section, we propose some properties of the PRDB algebraic operations as an ex-
tension from those in CRDB. Clearly, these properties say that our PRDB model is coherent
and consistent.

Proposition 1. Let R be a PRDB schema, r be a relation over R, φ1 and φ2 be two selection
conditions. Then

σφ1(σφ2(r)) = σφ2(σφ1(r)) = σφ1∧φ2(r) (1)

where, the last expression assumes that φ1 and φ2 have the same tuple variable.

Proof. Let r1 = σφ1(r), r2 = σφ2(r) and r1∧2 = σφ1∧φ2(r). Then for each t ∈ r, we have

σφ1(σφ2(r)) = {t ∈ r2|probR,r2,t � φ1}
= {t ∈ r|(probR,r,t � φ2) ∧ (probR,r2,t � φ1)}
= {t ∈ r|(probR,r,t � φ2) ∧ (probR,r,t � φ1)} (because of r2 ⊆ r)
= {t ∈ r|probR,r,t � φ1 ∧ φ2} (Definition 11)

= σφ1∧φ2(r).

So, σφ1(σφ2(r)) = σφ1∧φ2(r) is proven. The equation σφ2(σφ1(r)) = σφ2∧φ1(r) is proven
similarly. Since φ1 ∧ φ2 ⇔ φ2 ∧ φ1 (the logical conjunction of selection conditions are
commutative), hence σφ1∧φ2(r) = σφ2∧φ1(r). Therefore, we have σφ1(σφ2(r)) = σφ2(σφ1(r))
and so σφ1(σφ2(r)) = σφ2(σφ1(r)) = σφ1∧φ2(r). Thus, Proposition 1 is proven. �

Proposition 2. Let R be a PRDB schema, r be a relation over R, ⊕ and ⊗ be probabilistic
disjunction and conjunction strategies with respect to the same combination alternative, A and
B be two subsets of attributes of R,A ⊆ B and ε ∈ [0, 1] be an equivalent threshold on B.
Then

ΠA⊕ε⊗ (ΠB⊕ε⊗(r)) = ΠA⊕ε⊗(r). (2)

Proof. Because A ⊆ B, so A ∩ B = A and sides of (2) are the relations over the same
schema (Definition 13). Moreover, it is due to A ⊆ B, so ε-value-equivalent tuples on B
are also ε-value-equivalent on A with respect to ⊗ (Definition 5). From that, we are easy
to see that ΠA⊕ε⊗ (ΠB⊕ε⊗(r)) = ΠA∩B⊕ε⊗(r) = ΠA⊕ε⊗(r) under the equivalent threshold ε
and the same combination alternative of ⊕ and ⊗. Thus, the equation (2) is proven. �

Proposition 3. Let R1, R2 and R3 be the PRDB schemas such that if they have the same
name attributes then such attributes have the same value domain, r1, r2 and r3 be relations
over R1, R2 and R3 respectively, ⊗ be a probabilistic conjunction strategy. Then

r1 ./⊗ r2 = r2 ./⊗ r1, (3)

(r1 ./⊗ r2) ./⊗ r3 = r1 ./⊗ (r2 ./⊗ r3). (4)

Equation (3) and (4) say that the join operation of PRDB relations is commutative and
associative.

Proof. Clearly, r1 ./⊗ r2 and r2 ./⊗ r1 are two relations over the same schema. Since the
intersection of sets and the conjunction of probability intervals are commutative. So, by
Definition 15, the join of PRDB relations are commutative, we have r1 ./⊗ r2 = r2 ./⊗ r1.
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By Definition 15, the results of two sides of (4) are the relations over the same schema.
Moreover, the intersection of sets and the conjunction of probability intervals have the
associativity. From the associativity of the join of classical relations and by Definition
15, it is easy to see that the join of PRDB relations is associative. Thus, it results in
(r1 ./⊗ r2) ./⊗ r3 = r1 ./⊗ (r2 ./⊗ r3). �

Because the Cartesian product is a particular case of the join (Definition 14 and Definition
15), we have the straight corollary of the Proposition 3 below.

Corollary 1. Let R1, R2 and R3 be PRDB schemas such that each pair of them has not
any common attribute, r1, r2 and r3 be relations over R1, R2 and R3 respectively, ⊗ be a
probabilistic conjunction strategy. Then

r1 ×⊗ r2 = r2 ×⊗ r1, (5)

(r1 ×⊗ r2)×⊗ r3 = r1 ×⊗ (r2 ×⊗ r3). (6)

Proposition 4. Let R be a PRDB schema, r1, r2 and r3 be relations over R, ⊗ and ⊕
be probabilistic conjunction and disjunction strategies with respect to the same combination
alternative, ε ∈ [0, 1]. Then

r1 ∩ε⊗ r2 = r2 ∩ε⊗ r1, (7)

(r1 ∩ε⊗ r2) ∩ε⊗ r3 = r1 ∩ε⊗ (r2 ∩ε⊗ r3), (8)

r1 ∪ε⊕⊗ r2 = r2 ∪ε⊕⊗ r1, (9)

(r1 ∪ε⊕⊗ r2) ∪ε⊕⊗ r3 = r1 ∪ε⊕⊗ (r2 ∪ε⊕⊗ r3). (10)

Equations of (7), (8), (9) and (10) say that the intersection and union of PRDB relations
are commutative and associative.

Proof. For every equivalent threshold ε chosen, then the equivalent tuples in relations do not
change. Moreover, from the commutativity and associativity of the intersection of sets and
of the conjunction of probability intervals, by Definition 16, it follows the commutativity and
associativity of the intersection of PRDB relations under the equivalent threshold ε and the
probabilistic conjunction strategy ⊗. Consequently, we have equations (7) and (8).

As for the equations (7) and (8), under an equivalent threshold ε chosen, then the equi-
valent tuples in relations do not change. From the commutativity and associativity of the
intersection of sets and of the conjunction and disjunction of probability intervals, by Defi-
nition 17, it follows the union of PRDB relations is commutative and associative under the
equivalent threshold ε and the same combination alternative of ⊕ and ⊗. Thus, we have the
equations (9) and (10).

6. CONCLUSION

In this paper, we have proposed a probabilistic relational database model, denoted by
PRDB, as a straight extension and generalization of the classical relational database model.
As compared to the existing probabilistic relational database models, the uniqueness of our
proposed PRDB is that it can represent and handle both uncertain relational tuples asso-
ciated with probability intervals and imprecise attribute values defined by sets. Computing
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the set value of attributes and combining the probabilistic membership degrees of tuples in
manipulating of the algebraic operations are implemented by the probabilistic interpreta-
tions of binary relations on sets and the combination strategies of probability intervals. A
notion of the equivalence of relational tuples has been proposed for their coalescence. The
data model and basic relational algebraic operations for PRDB have been defined formally
and consistently. A set of basic properties of the PRDB algebraic operations has also been
proposed as theorems and proven completely.

For a full-fledged model and algebra of PRDB, we are formulating and defining other
algebraic operations including theta join (the join operation with a general join condition)
and division ones. Besides, we will extend the properties of the functional dependency and
the normalization of relations in CRDB for PRDB. Towards applying PRDB in practice,
we will build a management system for PRDB with the familiar querying and manipulating
language like SQL that is able to represent and handle uncertain information in the real
world.
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