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Abstract. The advent of genomic technologies has led to the current genomic era. Large-scale hu-
man genome projects have resulted in a huge amount of genomic data. Analyzing human genomes
is a challenging task including a number of key steps from short read alignment, variant calling, and
variant annotating. In this paper, the state-of-the-art computational methods and databases for each
step will be analyzed to suggest a practical and efficient guideline for whole human genome analyses.
This paper also discusses frameworks to combine variants from various genome analysis pipelines to
obtain reliable variants. Finally, we will address advantages as well as discordances of widely-used
variant annotation methods to evaluate the clinical significance of variants. The review will empower
bioinformaticians to efficiently perform human genome analyses, and more importantly, help genetic
consultants understand and properly interpret mutations for clinical purposes.

Keywords. Human Genome Sequencing; Bioinformatics; Human Genome Analyses; Single Nucle-
otide Variants; Structural Variants; Variant Annotation.

1. INTRODUCTION

The human genome is the blueprint of life. It comprises more than three billions of
nucleotides and can be considered as a string of A, C, G, T characters representing for four
nucleotides, i.e., Adenine (A), Guanine (G), Cytosine (C), and Thymine (T). The difference
between genomes of two human individuals is about 1%, however, it results in two distin-
guishable persons from appearance, health conditions, and even characteristics. The genome
of each person contains about 4 million nucleotide variants in comparison with the reference
genome. The nucleotide variants might lead to the changes of protein sequences, structures,
and functions, and consequently, affect health conditions or cause diseases.

The current cost of sequencing a whole human genome is only around 1000 US Dollars.
This allows us to perform large-scale human genome projects to study genotype-phenotype
relationships; personalized medicines; the evolutionary and diversity of human populations
[1, 2, 3, 4]. Various human genome projects have been conducted for different Asian popu-
lations such as 100 Malay genomes project to detect low-frequency and rare variants [2]; 35
Korean genomes project to decipher the genetic architecture of the Korean population [5];
90 Han Chinese genomes project to investigate Han Chinese human genomes [6]; Vietnamese
genomes project to build Vietnamese variation database [7, 8].

Analyzing a human genome are separated into two phases: the wet-lab phase and the bi-
oinformatics phase (see Figure 1). The wet-lab phase collects genomic DNA, then sequences
the genome using next generation sequencing (NGS) technologies. The output of the wet-lab


mailto:Vinhls@vnu.edu.vn

106 LE SY VINH

[ Short read alignment
o Wetld !
[ Variant calling
‘ Genomic DNA l
) —
- - : 5 Variant annotating
Sequencing genomes using next :
generation sequencing technologies i
---------------------------------------------------------------------- Annotated variants

Bioinformatics

Figure 1. The workflow to sequence and analyze a human genome including wet-lab phase
and bioinformatics phase

phase is a large dataset of DNA sequences that will play as the input for the bioinformatics
phase. The bioinformatics phase will analyze the dataset to call variants and subsequently
annotate them to determine the genotype-phenotype of the called variants. The bioinfor-
matics phase is a computationally complex process including three main steps: short-read
alignment, variant calling, and variant annotating. Different computational methods have
been proposed for each step. A genome analysis pipeline is a combination of specific methods
for the three steps.

The paper reviews and discusses the state-of-the-art methods to create efficient and
practical genome analysis pipelines for genomic studies as well as medical applications. It
helps readers understand genome sequencing technologies, genome analyses, variant annota-
tions, and especially pathological interpretations of variants for clinical purposes.

2. GENOME SEQUENCING

A human genome includes more than three billions of nucleotides/bases. Two popular and
widely-used sequencing technologies are Sanger sequencing and next generation sequencing.
The Sanger sequencing technology can obtain sequences of length from several hundred to
a few thousand nucleotides. The technology costs billion US Dollars and several years to
sequence a whole human genome. The Sanger sequencing technology is only suitable for
sequencing targeted regions in the genome.

Currently, the NGS technologies are widely used to sequence whole human genomes. The
NGS technologies will massively break the whole genome into small segments, called short
reads. A large number of short reads are then sequenced in parallel to cover all positions
in the genome. The depth coverage of a sequenced genome is the average number of short
reads covering any position in the genome. For example, sequencing a genome with depth
coverage of 30x means that on average each position in the genome is sequenced 30 times,
and consequently covered by 30 short reads.

A number of NGS technologies have been developed. Illumina is recently the most popu-
lar NGS technology for whole human genome sequencing. The Illumina machine produces
short reads of length from a few dozen to a few hundred nucleotides. Other NGS technologies
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such as Pacific Biosciences (PacBio) or Oxford Nanopore can sequence longer reads with ten
thousand nucleotides. However, these technologies produce a high sequencing error rate.

NGS machines independently estimate a quality score for each nucleotide (base) based on
the standard Phred-quality score. Note that a Phred score of 20 corresponds to a 1% error
rate in base calling. The estimation of base quality scores is subject to various sources of
errors, i.e., technical errors, physics or chemistry errors, that result in inaccurate base quality
scores. To solve the problem, the Phred quality scores estimated from the NGS machines
are typically recalibrated based on empirical error models. For example, a model shows that
three identical bases AAA rarely appear in a row, i.e., whenever two identical bases AA are
already in a row, the next base A will actually have 1% higher error rate than estimated from
sequencing machines. Thus, the model will decrease 1% from the quality score of any base
A if it comes after two bases AA in a read. The base quality score recalibration improves the
accuracy of base quality scores that will, in turn, improve the accuracy of other downstream
analyses.

3. GENOME ANALYSIS

3.1. Variants

Two variant types when comparing a genome with the reference genome are single nu-
cleotide variants and structural variants. The single nucleotide variants imply the change of
one or some nucleotides. Three common types of single nucleotide variants are substitutions,
insertions, and deletions. For example, there are 2 nucleotide variants when comparing a
sequence S=“ACTTG-TT” with the reference sequence R=“ACATGATT” where ‘-’ repre-
sents for a deletion in the sequence. Specifically, there is a nucleotide substitution at the
third position (from A to T) and a nucleotide deletion at the 6" position of sequence S (or
an insertion of nucleotide A at the position 6! of sequence R). As we cannot differentiate
deletions and insertions, we call them indels.

The structural variants are the changes of large nucleotide segments in the genome.
They include copy number variants (i.e., genomic segments with different number of copies
in comparison to the reference genome), inversions and translocations that do not change
the total DNA content of the genome. Although the number of structural variants is much
less than the number of nucleotide variants, structural variants affect an order of magnitude
more nucleotides than single nucleotide variants [9].

The human genome is diploid that means it has two alleles/nucleotides at each position
with one allele inherited from the father and the other allele inherited from the mother. A
haplotype is a group of alleles that are inherited together from either mother or father. A pair
of alleles at a specific position is called a genotype. If a genotype consists of a non-reference
allele, it indicates a variant at the position.

3.2. Short read alignment

A genome sequenced by the NGS technology is represented by a set of short reads. As
sequencing machines do not provide information about exact positions of short reads in the
genome, the first task in analyzing a genome is to determine the positions of short reads in the
reference genome, called short read alignment/mapping step. A short read can be mapped
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Figure 2. Exact alignment of a short read to the reference genome. The short read might
occur at several positions in the genome

exactly to the reference genome or mapped to the reference genome with some mismatches.
Some short reads are not mapped to any position in the reference genome as they might be
error reads or new nucleotide insertions.

Exact matching alignment

Given a reference genome R with length n and a short read S, the exact matching align-
ment will search the positions of the short read S in the reference genome R (see Figure 2).
The short read S might be mapped exactly at different positions in R. Classical matching
string algorithms such as Knuth-Morris-Pratt [10] can solve the exact mapping problem with
the complexity proportional to n. The classical matching algorithms are not practical for
mapping billion short reads to the human reference genome.

As the reference genome R is typically fixed, indexing techniques have been proposed
to solve the problem. Generally, indexing techniques construct an auxiliary data structure
(an index) of R such that it can quickly determine the occurrences of a short read without
fully scanning the content of R. Classical indexing algorithms for the problem such as suffix
tree and suffix array require a memory of O (nlogn) bits. They are not efficient enough to
handle the whole human genome because it is technically impractical to store a too large
index structure in the RAM for fast access.

Burrows-Wheeler transform (BWT) is currently considered as the most powerful indexing
technique to handle the exact matching alignment problem for the whole human genome
[11]. The space requirement of the BWT technique is only proportional to the length of R in
compressed form. Theoretical concepts and engineering aspects of the BWT technique are
fully discussed elsewhere [12, 13].

Approximate matching alignment

The variants in the genome in combination with sequencing errors resulted by the NGS
machines make the short read alignment problem complicated. A large proportion of short
reads cannot be mapped exactly to the reference genome. Different short read matching
strategies have been developed to approximately map short reads to the reference genome.
The approximate short read matching algorithms allow to map short reads to the reference
genome with one or few nucleotide mismatches. The classical algorithm for approximately
matching two sequences uses the dynamic programming paradigm [14] with a complexity of
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O(m,n) where m and n are the lengths of two sequences. Apparently, the classical algorithm
is not practical for approximately matching short reads to the whole human reference genome.

Hashing based-methods have been proposed to solve the problem. The methods use a
seed-and-extend strategy to determine the occurrences of short reads in the reference genome.
The strategy assumes that a short read contains only few errors, therefore, a large part of
a short read will be matched exactly without errors into the reference genome. The exact
matching part is called the “seed”. The occurrences of seeds in the reference genome are
then extended to find approximate matching alignments for a short read. If the seed length
is long enough, the number of seeds appearing in the reference genome is limited, and the
alignment process is efficient for large datasets. Several hashing-based aligners have been
developed and widely used such as SOAP [15], Stampy [16], or SHRIMP2 [17].

BWT-based techniques have been also developed for the approximate short read matching
problem. The key idea is the use of FM-index [11] that allows implementing space-efficiency
and fast string searching algorithms. BWT-based methods are an order of magnitude faster
than hash-based methods [18]. The BWT-based aligners such as Bowtie2 [19] or BWA [20]
are the most widely used in large scale whole human genome projects such as the 1000
Human Genomes (1KG) project.

Our studies on benchmark datasets showed no significant difference when calling variants
based on alignments from Bowtie2 and BWA [21]. The approximate short read alignment
algorithms are fully described by Stefan Canzar and Steven L. Salzberg [22].

3.3. Single nucleotide variant calling

0

K =

012345¢6 72829
Reference T AATTGGTAT

Figure 3. Short reads are mapped into the reference genome. Each position in the reference
genome is covered by multiple short reads

Single nucleotide variants are the most prevalent variants in the human genome. A num-
ber of methods have been proposed to call variants from short read alignments. Consider a
specific position in a genome covered by p short reads, variant callers will examine nucleoti-
des from the p short reads to determine the existence of any variant at the position. Figure
3 shows an example that five short reads cover position 3 of which three short reads contain
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nucleotide T and two short reads contain nucleotide G. The data indicate a high possibility
that variant G occurs at position 3 and T/G is the genotype at the position.

The counting approach

The most simple algorithm to detect a variant at a specific position is to count the number
of short reads including the variant. A counting algorithm typically includes two steps:

Filtering step: This step filters out all short reads and/or nucleotides with quality scores
smaller than a predefined threshold. A typical cutoff is Qppreq = 20, i.e., the probability of
an error base is 1%.

Variant calling step: The step counts the number of non-reference alleles/nucleotides
that differ from the reference nucleotide. If the number is greater than a predefined cutoff,
a variant is called at the position. Technically, the number of non-reference alleles should
range from 20-80% of all bases.

The simple counting method might work well with high coverage (>= 30z) datasets.
As the short reads contain errors, using predefined quality filtering or non-reference allele
percentage cutoffs result in inaccurate variant calls.

The statistical approach

Statistical approaches have been developed to call variants from short read alignments.
One major advantage of the statistical approaches is the use of prior probability of variants
and the quality scores of short read alignments to infer a posterior probability for each variant
(23, 24].

Let D = {d;...dn} be a set of m short reads covering a given position. We assume
that these m short reads are independent, and the likelihood P(D|G) of genotype G can be
calculated by the product of P(d;|G) for all short reads. The probability P(d;|G) for a given
genotype GG can be estimated from the quality score of short read d;. Note that the likelihood
P(d;|G) can be improved by recalibrating quality scores of nucleotides using empirical error
models.

The posterior probability of a genotype G given the data D can be calculated using the
Bayes formula as following

p(cp) = ZPIDP(G) ILG()DJ; ©

where P(G) is the prior probability of genotype G and P(D) is the probability of data D.
The prior probability of genotype G can be estimated from databases such as the dbSNP or
the 1KG project.

A number of statistical methods have been proposed to call variants, notably GATK
[24, 25], Samtools [26], Platypus [27], or Freebayes [28]. Among them, GATK is the most
popular and widely-used method to call variants from short read alignments.

It is well known that variants called from different methods can be discordant, therefore,
large-scale human genome projects usually use multiple methods to call variants. Software
packages such as Seqmule have been developed allowing users to call variants from various
programs [29].

We have proposed a voting method, called Genomedics, to call and combine variants from
several methods to determine consensus and reliable variants [21]. Genomedics includes
two widely used aligners, i.e., BWA and Bowtie2, and three popular callers, i.e., GATK,
Freebayes, and Platypus. The combinations of two aligners and three callers result in six
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different pipelines (see Figure 4). A variant is considered reliable if it is called by at least two
different pipelines. Experiments on benchmark datasets showed that Genomedics produced
better results than single pipelines tested. Specifically, Genomedics has the F-score greater
than 93.3% while the pipeline of BWA and GATK is the second best method (i.e, F-score =
92.7%). Genomedics has been used to analyze whole exomes and genomes in various human
genome projects [8, 30, 31].

We note that large-scale human genome projects usually include dozens to thousands of
genomes. The variants are typically called simultaneously from all genomes. This strategy
allows us to efficiently call variants from low coverage genomes because low coverage data
from a single genome might not provide enough evidence for calling variants. All current
popular variant callers can handle multiple genomes with different depth coverages.

Called
variants

Figure 4. The framework of Genomedics to determine consensus variants from different
pipelines [21]

3.4. Genotype imputation

Genotypes at different sites are called independently despite their genetic correlations.
The non-random association of alleles at nearby sites known as linkage disequilibrium can
be used to impute missing genotypes or improve the accuracy of called genotypes. In other
words, alleles of nearby sites are genetically related and usually appear together.
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Table 1. An example of genotype imputation

Position 1 2 3 4
A C T A
Reference haplotypes C G A C
C T G A

Observation genotypes | A/C C/T ?/? A/A
- A C T A
Prediction c T G N

Given a list of genotypes at nearby sites in a region, genotype imputation methods
use a panel of reference known haplotypes and linkage disequilibrium information between
positions to select haplotypes that explain the genotypes at best. The selected haplotypes will
be used to impute the missing genotypes. Table 1 shows an example of genotype imputation
with three reference haplotypes ACTA, CGAT and CTGA at four nearby sites. If a genome
has genotype A/C at the first site, C/T at the second site, unknown genotype at the third
site, and A/A at the fourth site, the genome possibly has two haplotypes ACTA and CTGA,
thus, the missing genotype at the third site is imputed as T/G.

Several methods have been proposed to impute missing genotypes. The current most
popular methods include IMPUTE2 [32], Beagle5 [33], and SHAPEIT2 [34]. A genotype
imputation method like IMPUTE2 includes two main steps: phasing step and imputation
step. The phasing step infers haplotypes based on reference haplotypes from the population
under the study using a Markov Chain Monte Carlo approach. The imputation step uses
the hidden Markov model to impute the missing genotypes based on the haplotypes inferred
from the phasing step. The phasing and imputation steps are iterated several times to
maximize the posterior probabilities of the missing genotypes. Comprehensive experiments
on genomic datasets from East Asian populations showed that current genotype imputation
methods achieved the accuracy up to around 99% [35]. The genotype imputation methods
play an important role in large-scale low or medium coverage human genome projects.

3.5. Structural variant calling

Large-scale human genome projects have revealed a large amount of structural variants
[1, 36, 37]. The largest and most important component of structural variants is copy number
variants (CNV), i.e., more than 99% of detected structural variants are CNVs.

Two main approaches to determine CNVs are whole genome sequencing approach and
microarray-based approach. For whole genome sequencing, the CNVs can be detected by
evaluating the decreases (deletions) or increases (amplifications) of short reads in the alig-
nments. The approach is able to call small CNVs, however, they lack the sensitivity with
only 10% [38] or 70% [39], and have very high (up to 89%) false positive rates [39, 40].

The CNVs can be also determined by the long reads sequenced by Pacific Biosciences
(PacBio) or Oxford Nanopore machines. The long reads with length of up to million bases
allow us to detect longer CNVs. However, these technologies have a very high sequencing
error rate, i.e., currently around 10% to 15% for PacBio, and 5% to 20% for Oxford Nanopore
sequencing machines [41]. The high error rates exceed the capabilities of most aligners and
CNYV detection algorithms. In short, current sequencing approaches are not reliable to detect
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structural variants.

Microarray-based technologies provide the most robust approach for carrying out genome-
wide scans to determine CNVs. To detect CNVs from a test genome, the technologies label
DNA of the test genome and the reference genome with two different fluorophores of different
colors. The labeled DNA from the test and reference genomes are hybridized on an array
containing thousands to millions of known probes. A higher or lower intensity of the test
genome color in a specific genomic region in comparison to the reference genome indicates a
gain or loss of DNA at that region. Microarray-based methods are now a reliable genomic
test to identify CNVs for clinical diagnostics [42, 43].

Large scale human genome projects have created a huge amount of structural variants.
Several structural variant databases have been established such as Database of Genomic
Variants [37] or Human Genomic Structural Variation Database (dbVar) of NCBI [44]. The
Database of Genomic Variants (DGV) is a curated collection of more than five hundred
thousand CNVs (70% losses and 30% gains) and a few thousand inversions from dozens of
studies.

4. VARIANT ANNOTATIONS

A human genome consists of about 4 million variants in comparison with the reference
genome. Although most of the variants do not affect health conditions of people, some might
change protein structures and functions, consequently affect the health conditions or cause
diseases [45]. We discuss two essential annotations for variants: variant allele frequency
annotation and variant functional annotation.

4.1. Variant allele frequency annotation

The variant frequency information is essential to classify the clinical effects of variants.
Particularly, variants with a frequency of > 1% are typically considered non-causing disease
variants. Thus, the variant frequency information help to filter out non-causing disease
variants from further clinical analyses.

Large scale human genome projects have been performed to create large human variation
databases. The 1KG project built a database of total 88 million variants from 2504 healthy
people [1]. The 1KG database contains almost all common variants with a frequency of 10%
in all populations, however, more than 15% of low-frequency variants were only found in a
single population. Analyzing variants in the Southeast Asia populations showed that the
1KG project did not have sufficient coverage of the human genetic diversity in this region
[46]. Noticeably, a large number of variants that are rare in the global populations but
common in a specific population.

Exome Aggregation Consortium combined a large number of genomes and exomes from
a variety of large-scale sequencing projects [36]. Specifically, they combined 15,496 genomes
and 123,136 exomes collecting from various disease-specific studies to create the gnomAD
database. Note that the gnomAD database is only relevant for interpretations of severe
pediatric diseases.

It is well known that the variant frequency varies among populations. Vietnam has
about 95 million people, however, genetic studies for Vietnamese people mostly rely on
genetic information from other populations. We created a Vietnamese single nucleotide
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variant database from more than four hundred genomes and exomes of unrelated healthy
Vietnamese people [8]. The database consists of more than 24 million variants including
more than 99% of common variants with a frequency of greater than 1%. The Vietnamese
database will play an important role in genetic studies and medical applications in Vietnam.
The database is available at www.genomes.vn and free for academic purposes.

4.2. Variant functional annotation

The genome is separated into different regions, i.e., coding regions, regulatory regions or
non-coding regions. The nucleotide variants in the coding or regulatory regions might alter
contents, structures, and functions of corresponding proteins. Changing protein functions
might cause health conditions or diseases.

The first annotation is the effects of nucleotide variants to corresponding amino acid
sequences, i.e., synonymous variants, nonsynonymous variants, start gain/lost variants, stop
gain/lost variants, frameshift variants. SnpEff [47] and Annovar [48] are two popular pro-
grams for the task. In addition, different methods have been developed to predict functional
effects of nucleotide variants on their corresponding protein structures and functions such
as SIFT [49], Polyphen2 [50], and MutationTaster [51]. The functional prediction methods
evaluate various factors including amino acid changes, the evolutionary constraints of variant
sites, protein structural disruptions, and other physics and chemistry characteristics of vari-
ants. We note that the Annovar software also integrates the results from different functional
prediction methods (i.e., SIFT, Polyphen2, MutationTaster, etc.) in its results.

Finally, the pathological effects of variants can be obtained from general clinical databases
such as Clinvar database [52], Human genome mutation database [53] or specific databases
for particular diseases such as Sfari database for Autism spectrum disorders [54]. Noticeably,
annotations from different databases might be discordant.

5. CONCLUSIONS

The sequencing cost of a human genome is now affordable for genomic studies and appli-
cations. Examining the whole exome/genome is becoming a routine genetic test for various
health conditions and diseases. Determining and interpreting variants for clinical purposes
is a challenging task for both bioinformaticians and genetic consultants.

This paper reviews the state-of-the-art technologies and computational methods to obtain
and analyze whole human genomes. As the results from different variant callers might be
discordant, we recommend to use at least two variant callers or voting frameworks like Geno-
medics to determine consensus and reliable variants. We also note that calling variants from
multiple genomes, especially from low and medium coverage genomes, should be performed
simultaneously to increase the sensitivity and specificity of the analyses.

Annotating and predicting genetic effects of variants are essential for interpreting clinical
effects of variants to health conditions. We emphasize that the variant frequency information
is a powerful tool to classify pathological effects of a variant. Remarkably, the frequency
of a variant varies among populations, therefore, the population-specific variant frequency
information is required to properly evaluate pathological effects of variants for the population
under study.
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Finally, we must be aware that annotations from different clinical databases might be

conflicting. Thus, examining annotations from several reliable databases is necessary to
confirm the pathological effects of variants. If a variant has conflicting interpretations of
pathogenicity, additional analyses/studies must be performed to settle its clinical signifi-
cance.
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