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Abstract. This paper presents the implementation of fast multipole algorithm (FMM) on a special-
purpose computer GRAPE (GRAvity PipE). FMM is one of the fastest algorithms for the calculation
of interaction force in a N-particle system. The FMM’s computational complexity is O(N). GRAPE
is a special-purpose computer dedicated for the calculation of Coulombic or gravitational force. Its
calculation speed is 100-1000 times faster than commodity PC computers at the same cost. However,
GRAPE is not able to calculate FMM’s multipole expansions. We have found new formulae to express
multipole expansions so that they are calculable on GRAPE. Consequently, we successfully acceler-
ated FMM using GRAPE. Our numerical experiments show that for close-to-uniform distribution
of particle systems, GRAPE accelerates the FMM by a factor of 3 to 60 for low and high accuracy,
respectively.

Tém tit. Bai bdo nay trinh bay phuwong phip cai dit va ting téc thudt todn khai trién da cuc
nhanh (FMM) trén mdy tinh chuyén dung GRAPE. FMM la thuat todn tinh luc tuong tdc trong hé
N-chat diém véi do phite tap tinh todn tuyén tinh. GRAPE 1a mo6t ho mdy tinh chuyén dung danh
dé tinh luc tuong tdc tinh dién Culéng hodc luc hap dan véi téc dd cao hon cdc may PC théng
thuomg tir 100 dén 1000 1an. Tuy nhién GRAPE khéng thé truc tiép tinh duoc céc biu thirc khai
trién da cure cdia FMM. Chung toi da tim ra cdc cdng thitc méi biéu dién céc khai trién da cuc dé
c6 thé thuc hién duoc trén GRAPE va cai dat thanh cong thuét todn FMM trén may tinh chuyén
dung GRAPE. Két qud thuc nghiém cia chiing t6i cho thdy FMM duoc téng tdc tir 3 1an (ddi véi
d6 chinh x4c thap) dén 60 lan (ddi v6i do chinh x4c cao) trén mdy tinh GRAPE.

1. INTRODUCTION

Molecular dynamics (MD) simulations require extremely high calculation cost. The most
expensive part of MD is for the calculation of Coulombic force among particles (i.e. atoms
and ions). In naive direct-summation algorithm, cost of the force calculation scales as O(N?),
where N is the number of particles.

To reduce the cost of force calculation, fast algorithms such as Barnes-Hut treecode [4] and
fast multipole method [9] have been developed. Computational complexity of these algorithms
are O(N.log N) and O(N), respectively. These fast algorithms are widely used in the field of
MD simulation [16, 17].

Another approach to accelerate the force calculation is to use hardware dedicated to the
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calculation of inter-particle force. GRAPE (GRAvity PipE) [19, 22] is one of the most widely
used hardware of that kind. Figure 1 shows the basic structure of a GRAPE system. It
consists of a GRAPE processor board and a general-purpose computer (hereafter referred to
as the host computer). The host computer sends positions and charges of particles to GRAPE.
GRAPE calculates the force and sends results back to the host.

Positions,
charges

HOST

COMPUTER GRAPE

Forces

Figure 1. Basic structure of a GRAPE system

A typical GRAPE system performs force calculation 100-1000 times faster than that of
commodity computers of the same price. For small-N (say N <10°) systems, combination
of simple direct-summation algorithm and GRAPE is the fastest calculation scheme. Fast
algorithms are not very effective at such a small N. However, for large-N systems, O(N?)
direct-summation becomes expensive, even with GRAPE hardware. Combining one of the
fast algorithms and the fast hardware would deliver significant speed up for large-N systems.
Makino [18] has successfully implemented a modified treecode [3] on GRAPE, and achieved a
factor of 30-50 speed up.

To our understanding, there exists no implementation on GRAPE so far. FMM imple-
mentation on a similar dedicated-hardware is reported (MD-ENGINE), but its performance is
rather modest [1]. The main reason is that the multipole expansions were not able to calculate
on MD-ENGINE and only a small fraction of the FMM’s calculation amount was accelerated.

In this paper we describe our implementation of the FMM on GRAPE and its performance.
Remaining parts of the paper are organized as follows. Section 2 gives a summary of the FMM
and related algorithms. In Section 3, we describe the implementation of our FMM code, which
is modified so that it runs on GRAPE as referred in Section 4 . Results of numerical tests of
the code are shown in Section 5. Section 6 is devoted to discussion. Section 7 summarizes.

2. FMM AND RELATED ALGORITHMS

The fast multipole algorithm (FMM) was developed by Greengard and Rokhlin [9, 10] for
fast force calculation. The main difference of FMM from direct summation algorithm is that
FMM calculates approzimation forces between groups of particles but exact forces between
particles. The accuracy of approximation force is defined by expansion order p. The larger p
is, the more accurate force is obtained. Figure 2 illustrates the calculation of approximation
force.

Multipole expansion Local expansion

Figure 2. Schematic idea of force approximation in FMM

Forces exerted from left side particles are grouped in one computing element by mutipole
to mutipole transition (M2M). Acting force on center of expansion of right side particle is
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expressed by multipole to local conversion (M2L), then force on each right side particle is
calculated by local to local transition (L2L).

Anderson [2] proposed a formulation of the multipole expansion to simplify the implemen-
tation of FMM. When potential on the surface of a sphere of radius a is given, the potential
® at position 7= (r, @, 6) is expressed as:
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for 7 < a (inner expansion). The function P, denotes the n-th Legendre polynomial. Here
w; are constant weight values and p (expansion order) is the number of untruncated terms.
Anderson’s method uses outer and inner approximations for M2M and L2L, respectively.
The pseudo-particles multipole method (P2M?2) is very similar to Anderson’s outer approx-
imation. The difference is that P?M? uses the mass distribution on the surface of a sphere
instead of potential values. Distribution of pseudo-particles is given by spherical t-design [11]

and pseudo particle’s masses are defined by Makino’s approach [20]:
N
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where @) is charge of pseudoparticle, 7; = (r;, ¢, #) is position of physical particle, ~;; is angle
between 7; and position vector R}’ of the j-th pseudoparticle [20].

Eq. (3) gives solution for outer expansion. By following a similar approach, we obtained
solution for inner expansion [6]:
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We use Eq. (4) to speed up our code as showing in Section 4.

3. IMPLEMENTATION OF THE FMM ON GRAPE

The FMM consists of five stages, namely, tree construction, M2M transition, M2L conver-
sion, L2L transition, and force evaluation. Force-evaluation stage consists of near field and far
field evaluation parts.

In the case of original FMM, only the near field part of the force-evaluation stage can be
performed on GRAPE. In our implementation (hereafter referred to as code A), we modified
the original FMM so that GRAPE can handle M2L conversion stage, which is most time con-
suming. Table 1 summarizes mathematical expressions and operations used at each calculation
stage. In the following we describe stages of the code A.

The tree construction stage has no change. It is performed in the same way as in the
original FMM.

At the M2M transition stage, we compute positions and charges of pseudoparticles, instead
of forming multipole expansion as in the original FMM. This process is totally carried out on
the host computer.
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The M2L conversion stage is done on GRAPE. Difference from the original FMM is that
we do not use the formula to convert multipole expansion to local expansion. We directly
calculate potential values with the use of pseudoparticles.

Table 1. Mathematical expressions and operations used in different implementations
of the FMM. Underlined parts run on GRAPE

| | Original [10] | Code A (section 3) | Code B (Section 4) |
M2M multipole expansion | P?M? | P2M?
M2L M2L conversion evaluation of
formula pseudoparticle potential
L2L local expansion Anderson’s method | P°M*
Near field force evaluation of physical-particle force
Far field force | evaluation of Eq. (5) evaluation of
local expansion pseudoparticle force

The L2L transition is done in the same way as Anderson has done using Eq. (2).

The near field contribution is directly calculated by evaluating the particle-particle force.
GRAPE handles this part.

Using Eq. (2), we obtain the far field potential on a particle at position 7. Consequently,
far field force is calculated using derivative of Eq. (2):
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where u = §; - 7/r. All the calculation at this stage is carried out on the host computer.

4. FURTHER IMPROVED IMPLEMENTATION

With the modification described in Section 3, we have succeessfully to put the bottleneck,
namely, the M2L conversion stage, on GRAPE. The overall calculation of the FMM is signif-
icantly accelerated. Now the most expensive part is the far field force evaluation. Eq. (5)
is complicated and of which, the evaluation would take rather a big fraction of the overall
calculation time [5].

If we can convert a set of potential values into a set of pseudoparticles at marginal calcu-
lation cost, force from those pseudoparticles can be evaluated on GRAPE, and the bottleneck
will disappear. In order for this conversion, we have newly developed a systematic procedure
(hereafter A2P conversion).

We have implemented yet another version of FMM (hereafter code B). In the code B, we use
A2P conversion to obtain a distribution of pseudoparticles that reproduces the potential field
given by Anderson’s inner expansion. Once the distribution of pseudoparticles is obtained,
L2L stage can be performed using inner-P?2M? formula (Eq. (4)), and then the force evaluation
stage is totally done on GRAPE (the final column of Table 1). Procedure of A2P conversion
is as follows.

At the first step, we distribute pseudoparticles on the surface of a sphere with radius b
using the spherical t-design. Here, b should be larger than the radius of the sphere a on which
Anderson’s potential values ®(as;) are defined. According to Eq. (4), it is guaranteed that
we can adjust the charge of the pseudoparticles so that ®(a§;) are reproduced. Therefore, the



SPECIAL-PURPOSE COMPUTER ACCELERATED FAST MULTIPOLE METHOD 235

relation
K
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should be satisfied for all 4 = 1,..., K. Using a matrix R = {1/|R; — a &} and vectors

Q="[Q1,Qa,....Qx] and P =T[®(a 5), ®(a 5), ..., B(a k)|, we can rewrite Eq. (6) as
RG = P. (M)

In the next step, we solve the linear Eq. (7) to obtain charges @);. By numerical experiment,
we found that appropriate value of radius b is about 6.0, for particles inside a cell with side
length 1.0. Anderson specified in his paper [2] that a should be about 0.4.

5. NUMERICAL TESTS

Here we show the performance of the FMM code B measured on MDGRAPE-2 [23].
MDGRAPE-2 is one of the latest hardware of the GRAPE series. It is developed for MD
simulation and has additional functions so that it can handle forces which do not decay as
1/72, such as Van der Waals force. However, in our test we use MDGRAPE-2 only to calculate
Coulombic force and potential. The additional functions are not used.

We used two GRAPE systems for numerical tests. The first one contains a MDGRAPE-
2 board (64 pipelines, 192 GFlops) and a host computer COMPAQ DS20E (Alpha 21264
667MHz). The second one consists of one MDGRAPE-2 board (16 pipelines, 48GFlops) and
a self-assembled host computer (Pentium 4 2.2GHz, Intel D850 motherboard). We refer the
former system as “system I”, and the latter as “system II”.

In the tests, we distributed particles uniformly within a unit cube centered at origin, and
evaluated force on all particles. We measured the calculation time at high (p = 5) and low
(p = 1) accuracy, with and without GRAPE. The finest refinement level l .« is set to lyyax = 4
and 5, for running with and without GRAPE, respectively. These values are chosen so that
the overall calculation time is minimized.

Results are shown in Figures 3,4, 5, 6 and Tables 2, 3. Figures 3 and 5 are results of system
I. Figure 4, 6 and tables 2, 3 are of system II.
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Figure 3: Force calculation time of FMM and direct-summation algorithm on system I.
Circles are performance of FMM on MDGRAPE-2. Pentagons are that on the host computer.
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Open and filled symbols are for low (p = 1) and high accuracy (p = 5), respectively. Solid
and dashed curves without symbols are performance of direct method on MDGRAPE-2 and

the host computer, respectively.
Figure 4: Same as Figure 3, but on system II.
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Figure 5. Comparison of force calculation time for FMM and treecode on MDGRAPE-
2 on system I. Circles are performance of FMM on MDGRAPE-2. Triangles are that of the
treecode on MDGRAPE-2. Open and filled symbols are for low and high accuracy, respectively.
Parameter pairs (p, €) to obtain low and high accuracy of the treecode are (1, 1.0) and (2, 0.33),
respectively.

Figure 6. Same as Figure 5, but on system II.

In Figures 3 and 4, calculation time of code B is plotted against the number of particles
N. Our code scales as O(N) while direct method scales as O(N?). On system I, runs with
GRAPE are faster than those without GRAPE by a factor of 5 and 60 for low and high
accuracy, respectively. On system I, the speed-up factors are 3 and 14.5. Since calculation
amount of the M2L stage becomes more significant at higher p (Table 2), the speed up factor
is larger for higher accuracy.

Table 2. Pair wise interaction count for 1M particle run

With GRAPE  (lmax = 4) | Without GRAPE  (Ijpax = 5)

Accuracy Low High Low High

M2L 6.8 x10° 2.8 x10% 7.7 x10° 3.2 x10°
Force evaluation

far field 1.6 x108 9.1 x10° 1.8 x10% 5.6 x10°

near field 6.1 x10° 6.1 x10° 82 x10% 8.2 x10°

Table 5 shows the breakdown of the calculation time for 1M particles runs. We can see
GRAPE significantly accelerates the M2L and force evaluation parts. The overall performance
of our implementation is limited by the speed of communication bus between the host and
GRAPE, rather than the speed of GRAPE itself. For further acceleration, we need to switch
from legacy PCI bus (32-bit/33MHz) to the faster buses, such as PCI-X, or PCI Express.

Figure 5 shows the calculation time of our FMM code and the treecode [15], both running
on GRAPE. The order of the multipole expansion p and the opening angle 6 for the treecode
is set to (p,#) = (1,1.0) and (2,0.33) for low and high accuracy, respectively. These values
are chosen so that the treecode gives roughly the same root-mean-square (RMS) force error
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as that of the FMM. The RMS force errors at low and high accuracy are ~ 5 x 1072 and
~ 2 x 1077, respectively.

Table 3. Time breakdown for 1M particles run on system II

With GRAPE  (Imax = 4) | Without GRAPE  (Imax = 5)
Accuracy Low High Low High
Tree construction 1.05 1.03 1.02 1.06
Building neighbor
and interaction lists 0.06 0.08 1.89 2.31
M2M 0.22 5.92 0.26 5.97
M2L
Host 0.01 0.21 0.36 133.88
Data transfer 0.16 4.78 0 0
GRAPE 0.0004 0.18 0 0
0.17 5.17 0.36 133.88
L2L 0.01 0.34 0.05 4.11
Force evaluation
Host 0.78 0.97 54.35 330.99
Data transfer 8.57 17.37 0 0
GRAPE 3.92 9.48 0 0
13.27 27.82 54.35 330.99
Total 14.78 40.36 57.93 478.32

We can see that the performance of our FMM code and the treecode is mostly the same.
The FMM is better than the treecode at high accuracy, and worse at low accuracy.

6. DISCUSSION

6.1. Comparison with other implementation

We compared the performance of our FMM implementation (code B) with Wrankin’s
Distributed Parallel Multipole Tree Algorithm (DPMTA) [24].

As for Wrankin’s code, we measured the performance on the system II, using the serial
version of DPMTA 3.1.3 available at http://www.ee.duke.edu/ wrankin/Dpmta/.

For the measurement, particles are distributed in a unit cube. The expansion order and
other parameters of each code are chosen so that relatively high accuracy (~ 107°) is achieved,
and the performance is optimized.

Table 4 summarizes the comparison. Using GRAPE, our code outperforms Wrankin’s
codes by tenfold. Without GRAPE, our code is slower than Wrankin’s code by a factor of
1.1-1.4, mainly because our code requires larger number of operation counts so that it takes

full advantage of GRAPE.

Table 4. Performance comparison with Wrankin’s code

Wrankin’s code Our code
N with GRAPE  without GRAPE
98,304 33.2 2.9 34.1
393,216 190.2 16.4 196.5
1,572,864 629.6 64.0 878.8
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7. SUMMARY

Using special-purpose hardware GRAPE, we have successfully accelerated the FMM. In
order to take full advantage of the hardware, we have modified the original FMM using the
Anderson’s method, the pseudoparticle multipole method, and two conversion techniques we
have newly invented. The experimental results show that GRAPE accelerates the FMM by a
factor of 3 to 60, and the factor increases as the required accuracy becomes higher. Comparison
with the treecode shows that our FMM is faster at high accuracy, while the treecode is faster
at low accuracy.
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