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Abstract. This paper proposes a novel uncertain fuzzy descriptor system which is an extension

from standard T-S fuzzy system. A fixed Lyapunov function-based approach is considered and con-

troller design for this rich class of fuzzy descriptor systems is formulated as a problem of solving a

set of LMIs. The design conditions for the descriptor fuzzy system are more complicated than the

standard state-space-based systems. However, the descriptor fuzzy system-based approach has the

advantage of possessing fewer number of matrix inequality conditions for certain special cases. Hence,

it is suitable for complex systems represented in descriptor form which is often observed in highly

nonlinear mechanical systems.

Keywords. Descriptor fuzzy system; Lyapunov function; Uncertain nonlinear mechanical systems;

Robust H∞ tracking control; LMI matrix inequality.

1. INTRODUCTION

Nowadays fuzzy logic-based control has proven to be a successful approach for controlling
uncertain nonlinear systems [1, 2, 3, 4, 5]. The fuzzy-model proposed by Takagi and Sugeno
[6], known as the T-S fuzzy model, is becoming a popular type of fuzzy model representation.
Up to now there have been numerous successful applications of the T-S fuzzy model-based
approach in uncertain nonlinear control systems. Linear matrix inequality (LMI)-based T-S
fuzzy control is an important and successful approach used in uncertain nonlinear control.
Up to now adequate studies are available that discusses linear matrix inequality (LMI)-based
T-S fuzzy control system design using the fixed Lyapunov function [7, 8, 9, 10]. Although
LMI-based approach gained popularity and great success, conservatism is still dominant in
fixed quadratic Lyapunov function-based approach due to the limited choice of Lyapunov
function [11].

In the robust control approaches discussed in [12], a T-S fuzzy model is employed, where
its consequent parts are described via linear state-space systems. The description system
improved from a standard state-space form successfully describes a wider class of systems
and then can be used in certain mechanical and electrical systems. Then the T-S fuzzy
model will be a special case of the descriptor fuzzy model. The advantage of choosing the
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descriptor representation over the state-space model is that the amount of LMI inequali-
ties for designing the controller can be reduced for certain problems [13]. Compared with
the standard state-space based system representation, descriptor representation holds more
complicated structure and hence the controller design is also more complex [14].

Up to now, considerable work has been done involving stability control, H stabiliza-
tion and model following control for fuzzy descriptor systems [13]. The necessity for such
control techniques is principally improved via the increasingly experimental interest for a
generalized system descriptor taking the intrinsically physical structure into consideration.
Furthermore, the conventional state-space system problem can be considered as a special
case of descriptor systems and then is able to be efficiently resolved by applying descriptive
system computational methods [15].

Recently, numerous results obtained for robust H∞ stabilization with parametric Lyapu-
nov function have been presented in reviewing the results from literature for fixed Lyapunov
function based on robust H∞ stabilization for fuzzy descriptor systems [16, 17, 18, 19]. Zhi
et al. (2018) in [16] proposed a new robust H∞ control for T-S fuzzy descriptor systems with
state and input time-varying delays. Xue et al. in [17] introduced a robust sliding mode
control for T-S fuzzy descriptor systems via quantized state feedback. Ge et al. in [18] (2019)
proposed a robust H∞ stabilization for T-S fuzzy descriptor systems with time-varying de-
lays and memory sampled-data control. Nasiri et al. in [19] introduced a new method for
reducing conservatism in an H∞ robust state-feedback control design of T-S fuzzy descriptor
systems.

A model following control is considered in [13] and observer using H tracking control
problem is introduced in [14]. For a state feedback H∞ tracking control problem, this
proposed approach yielded the conditions in terms of bilinear matrix inequalities (BMI)
usually resolved by a two-step process. Based on this approach, the sufficient condition for
implementing a state-feedback controller cannot be framed as LMIs.

Based on results abovementioned, this paper innovatively proposes an LMI formulation
with respect to design conditions using fixed Lyapunov function for a model reference tra-
jectory tracking problem responding to H∞ performance criteria. Next these results are
combined with the concepts presented in [15] and parametric Lyapunov function-based de-
sign for controlling using uncertain descriptor fuzzy systems is proposed here.

The rest of this paper is structured as follows. Section 2 introduces the T-S fuzzy descrip-
tor system and constant Lyapunov function-based stability conditions. Section 3 presents the
performance of H trajectory tracking control for the T-S fuzzy descriptor system. Section 4
proposes the novel T-S fuzzy descriptor for uncertain nonlinear system. Section 5 presents
and analyses the simulation of proposed robust H∞ tracking control implementation with
fixed Lyapunov function using T-S fuzzy descriptor system. Finally, Section 6 includes the
conclusions.

2. PROPOSED T-S FUZZY DESCRIPTOR SYSTEM

This paper starts with introduction to T-S fuzzy model and then H tracking control
problem is formulated. The T-S fuzzy model initially introduced by Takagi and Sugeno [6]
describes the dynamics of an uncertain nonlinear plant based on fuzzy IF-THEN laws. Let
us investigate the descriptor fuzzy model of a nonlinear system in the form as follows.
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Plant law k − i: IF ze1(t) is N e
k1

,..., ze
pk

(t) is N e
kpk and z(t) is Ni1,...,zp(t) is Nip THEN

Ekẋ(t) = Aix(t) +Biu(t),

y(t) = Cix(t), i = 1, 2, ..., r, k = 1, 2, ...re,
(1)

where z1(t), ..., zp(t) represent premise variables, p represents the amount of premise vari-
ables, N e

kj (j = 1...pk), Nij (j = 1...p) are the fuzzy sets and r represents the number of

laws. Furthermore, x(t) ∈ Rn×1 represents the state vector, y(t) ∈ Rny×1 represents the
controlled output and u(t) ∈ Rm×1 is the input vector. Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rny×n,
Ek ∈ Rn×n are constant real matrices. The necessary assumptions are that rank(E) ≤ n,
MAi ∈ Rn×n represent the uncertainties and are bounded, i.e., ‖M Ai‖ < δi, where ‖.‖ denotes
spectral norm and δi represents positive value. Other specific constraints can be consulted
in [14]. From input x(t) and output u(t), the eventual output of the fuzzy descriptor system
is determined as follows

re∑
k=1

µek(z(t))Ekẋ(t) =
r∑

i=1

µi(z(t)){Aix(t) +Biu(t) +Diw(t)},

y(t) =
r∑

k=1

µi(z(t))Cix(t), (2)

where

µi(z(t)) =
ζi(z(t))∑r
j=1 ζj(z(t))

, ζi(z(t)) =

p∏
j=1

Nij(zj(t)),

µek(z(t)) =
ζek(ze(t))∑re

j=1 ζ
e
j (ze(t))

, ζek(ze(t)) =

pe∏
j=1

N e
kj(z

e
j (t)),

and Nij(zj(t)), N
e
kj(z

e
j (t)) are the degrees of membership of zj(t) and zej (t) in the fuzzy set

Nij and N e
kj , respectively. Here

∑r
i=1 µi(z(t)) = 1 and

∑r
k=1 µk(z(t)) = 1. We investigate a

referential model described as [20]

ẋr(t) = Arxr(t) +Drr(t), (3)

with xr(t) represents the reference state, Ar represents specific asymptotically stable matrix,
r(t) represents a bounded referential input.

The trajectorial tracking error is defined as

e(t) = x(t)− xr(t). (4)

We investigate the H∞ tracking performance with respect to the tracking error e(t) as [21]∫ tf

0
eT (t)Qe(t)dt ≤ ρ2

∫ tf

0
ωT (t)ω(t)dt, (5)

where Q represents a positive definite weight matrix, tf represents the finished time of control
and ρ represents the preset disturbance alleviation level.
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Let us consider the Parallel Distributed Compensation (PDC) provided from fuzzy con-
troller [12] as

u(t) =

r∑
i=1

re∑
k=1

µiµk(K1jke(t) +K2jkxr(t)), (6)

where K1jk, K2jk are the controller gains. Then the proposed fuzzy controller is to be de-
signed with the feedback gains K1jk, K2jk (j = 1, ..., r, k = 1, ..., re) such that the resulting
closed-loop fuzzy system is asymptotically stable and also satisfies the H performance crite-
rion given in (5).

Combining (2) and (3), the enhanced fuzzy system is to be described as

E∗ẋ∗(t) =
r∑

i=1

re∑
k=1

µiµk(A∗ikx
∗(t) +B∗i u(t) +D∗i ω

∗(t)), (7)

where,

x∗(t) =

 e(t)
xr(t)
(
e t)

 , ω∗(t) =

[
ω(t)
r(t)

]
, E∗ =

 I 0 0
0 I 0
0 0 0

 ,

A∗ik =

 0 0 I
0 Ar 0
Ai (Ai − EkAr) −Ek

 , B∗i =

 0
0
Bi

 , D∗i =

 0 0
0 Dr

Di −EkDr

 .
3. H∞H∞H∞ TRAJECTORY TRACKING CONTROL

For the enhanced fuzzy system proposed in (7), the performance of the H∞ trajectory
tracking control is demonstrated in the following theorem.

Theorem 1. Let us investigate the fuzzy descriptor system (2) with respect to the control
rule (6). In case it obtains the matrices X11, X21, X22, X31, X32, X33 and W1jk, W2jk (j =
1, ..., r, k = 1, ..., re) in order to satisfy the following matrix inequalities

S = ST > 0, (8)

φiik < 0, i = 1, 2, ..., r, k = 1, 2, ..., re, (9)

1

r − 1
φijk +

1

2
(φijk + φjik) < 0, i 6= j ≤ r, k = 1, 2, ..., re, (10)

with

S =

[
X11 XT

21

X21 X22

]
,

φijk =



H11 ∗ ∗ ∗ ∗ ∗
H21 H22 ∗ ∗ ∗ ∗
H31

ijk H32
ijk H33

k ∗ ∗ ∗
0 0 DT

i −ρ2I ∗ ∗
0 DT

r −DT
r E

T
k 0 −ρ2I ∗

X11 XT
21 0 0 0 −Q−1

 ,
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H11 = XT
31 +X31, H21 = XT

31 +ArX21,

H22 = ArX22 +XT
22Ar, H31

ijk = XT
33 +Ai,

H32
ijk = AiX

T
21 + (Ai − EkAr)X22 − EkX32 +BiW1jk,

H33
k = −XT

33E
T
k − ET

k X33.

Here and after the symbols ‘*’ in matrices denote the transposed elements in symmetric posi-
tions.

Then the closed loop system with the controller gain matrices [K1jk,K2jk] = [W1jk,W2jk]×
[X11, X

T
21;X21, X22]

−1 satisfy the given H performance criteria.

Proof. Let us consider a candidate of Lyapunov function

V (t) = x∗T (T )E∗TX−1x∗(t), (11)

with X =

 X11 XT
21 0

X21 X22 0
X31 X32 X33

 and E∗TX−1 = X−TE∗ ≥ 0.

If the inequalities in (9) and (10) are satisfied then

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµkφijk < 0. (12)

The above inequality can be written as

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµk

[
XTΩijkX +XTQ∗X ∗

D∗Ti −ρ2I

]
< 0, (13)

with Ωijk = (A∗ik +B∗iK
∗
jk)TX−1 +X−1

(
A∗ik +B∗iK

∗
jk

)
; and Q∗ = diag{Q, 0, 0}.

Pre-multiplying and post multiplying the above inequality by block diag[X−T , 0] and
block diag[X−1, 0], the following parameterized matrix inequality is obtained

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµk

[
Ωijk +Q∗ ∗
D∗Ti X−1 −ρ2I

]
< 0. (14)

Let us consider the candidate of Lyapunov function (11)

V (t) = x∗T (t)E∗TX−1x∗(t). (15)

Let K∗ik =
[
K1ik K2ik 0

]
. Then from the derivative of the Lyapunov function, it gives

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t) =
r∑

i=1

r∑
j=1

re∑
k=1

µiµjµk{x∗T (t)((A∗ik +B∗iK
∗
jk)TX−1 +X−1 (A∗ik +B∗iK

∗
ik) +Q∗)x∗(t)}

+ x∗T (t)X−TD∗i ω
∗(t) + ω∗T (t)D∗Ti X−1x∗(t)− ρ2ω∗T (t)ω∗(t)

(16)
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=
r∑

i=1

r∑
j=1

re∑
k=1

µiµjµk
[
x∗T (t) ω∗T (t)

] [ Ωijk +Q∗ ∗
D∗Ti X−1 −ρ2I

] [
x∗(t)

ω∗(t)

]
, (17)

where x∗(t), ω∗(t) are matrices and have been defined in Eq. (7); x∗T (t), ω∗(t) are transposed
matrices of x∗(t), ω∗(t).

From (17) and (14), the following inequality is obtained

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t) < 0. (18)

Integrating the above inequality from 0 to ∞ on both sides, it yields

V (∞)− V (0) +

∫ ∞
0

(x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t))dt < 0. (19)

With zero initial condition, V (0) = 0 and hence∫ ∞
0

x∗T (t)Q∗x∗(t)dt <

∫ ∞
0

ρ2ω∗T (t)ω∗(t)dt, (20)∫ ∞
0

e∗T (t)Q∗x∗(t)dt <

∫ ∞
0

ρ2ω∗T (t)ω∗(t)dt. (21)

Eventually the proof is complete. �

3.1. Stability analysis

Let us consider (18). If w∗(t) = 0, then V̇ (t) < 0, which implies that the closed loop
system seems asymptotically stable.

3.2. Common BBB matrix case

In this subsection, the case related to common B matrix is considered, where Bi =
B (i = 1, 2, ..., r). The LMI conditions for designing the controller are given via the theorem
as follows.

Theorem 2. Let us investigate the fuzzy descriptor system (2) with respect to the control
rule (6). In case it obtains some matrices X11, X21, X22, X31, X32, X33 and W1ik, W2ik (i =
1, ..., r, k = 1, ..., re) as to satisfied the matrix inequalities as follows,

S = ST > 0, (22)

M11 ∗ ∗ ∗ ∗ ∗
M21 M22 ∗ ∗ ∗ ∗
M31 M32 M33 ∗ ∗ ∗

0 0 DT
i −ρ2I ∗ ∗

0 DT
r −DT

r E
T
k 0 −ρ2I ∗

X11 XT
21 0 0 0 −Q−1

 < 0, i = 1, ..., r, k = 1, ..., re,
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(recall that ‘*’ represents the transposed elements in symmetric positions).

S =

[
X11 XT

21

X21 X22

]
,

M11 = XT
31 +X31,

M21 = XT
32 +ArX21,

M22 = ArX22 +XT
22Ar,

M31 = XT
33 +AiX11 + (Ai − EkAr)X21 − EkX31 +BW1ik,

M32 = AiX
T
21 + (Ai − EkAr)X22 − EkX32 +BW2ik,

M33 = −XT
33E

T
k − ET

k X33.

Then the closed loop system with the controller gain matrices [K1ik,K2ik] = [W1ik,W2ik],
[X11X

T
21;X21X22]

−1 satisfy the given H∞ performance criteria.
In this case, the LMI conditions for controller design are simpler and number of LMI

conditions is also less than that of the general case.

3.3. Simulation results

Let us consider the simple uncertain nonlinear system introduced in [13] with some
external disturbance. The system is represented by

(1 + a cos(θ(t)))θ̈(t) = −bθ̇3(t) + cθ(t) + du(t) + 0.1ω(t), (23)

with a = 0.2, b = 1, c = −1, d = 10, w(t) = sin(5t) and the range of θ̇(t) is |θ̇(t)| < φ,
φ = 4. The newly proposed descriptor fuzzy model is improved from [13] as follows

2∑
k=1

µek(z(t))Ekẋ(t) =
2∑

k=1

µek(z(t)){Aix(t) +Biu(t) +Diω(t)},

y(t) =
2∑

k=1

µek(z(t))Cix(t), (24)

with x(t) = [x1(t), x2(t)]T = [θ(t), θ̇(t)]T . The parameters of the constant matrices are as

E1 =

[
1 0
0 1 + a

]
, E2 =

[
1 0
0 1− a

]
,

A1 =

[
0 1
c −bφ2

]
, A2 =

[
0 1
c 0

]
, B1 = B2 =

[
0
d

]
, Di =

[
0

0.1

]
, i = 1, 2,

µ1(x2(t)) =
x22(t)

2
, µ2(x2(t)) = 1− x22(t)

2
,

µe1(x1(t)) =
1 + cos(x1(t))

2
, µe2(x1(t)) =

1− cos(x1(t))

2
.

Then the referential model and referential input were considered as follows[
ẋr1
ẋr2

]
=

[
0 1
−2 −3

] [
xr1
xr2

]
+

[
0

2 sin
(
t
2

) ] .
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Figure 1. Trajectorial results of state variables x(t) (dashed line) and the referencing trajectories
xr(t) (solid line)

The H∞ tracking controller is implemented based on the LMI requirements in Theorem
2. With Q = 0.1I and ρ2 = 0.01, the parameters of Lyapunov function and the feedback
gain matrices K1ik,K2ik obtained are given below

X11 =

[
3.6783 −9.2633
−9.2633 109.4131

]
, X21 =

[
0.5044 0.9124
−0.5114 −2.8609

]
, X22 =

[
362.01 −71.42
−71.42 227.28

]
,

X31 =

[
−4.92× 108 112.29
−0.6444 −81775

]
, X32 =

[
1.0239 −2.8364
79.828 −352.48

]
,

X33 =

[
4.92× 108 −3.107
−3.1071 81291

]
,

K111 =
[
−8.5519 −1.7772

]
,

K121 =
[
−6.9749 −2.7477

]
,

K112 =
[
−8.7643 −1.8713

]
,

K122 =
[
−6.8766 −2.7285

]
,

K211 =
[
−0.0271 1.0333

]
,

K221 =
[
−0.0111 −0.2714

]
,

K212 =
[
−0.0201 1.0119

]
,

K222 =
[

0.0302 −0.1605
]
.

State and reference trajectories x(t) and xr(t) with the initial condition x(0) = [0.5 0]T

and xr(0) = [0 0]T are presented in Fig. 1.
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4. NOVEL T-S FUZZY DESCRIPTOR FOR UNCERTAIN NONLINEAR
SYSTEM

This section starts with introduction to uncertain T-S descriptor fuzzy model and then
the robust H∞ tracking control requirement is formulated.

The continuous T-S fuzzy model [6] denotes nonlinear system dynamics based on fuzzy
IF-THEN laws. It is possible to present the newly proposed descriptor fuzzy model of an
uncertain nonlinear system presented as follows.

Plant law:

IF ze1(t) is N e
k1, ..., z

e
pk

(t) is N e
kkpk and z1(t) is Ni1, ..., zp(t) is Nip THEN

(Ek(θ) + MEk(t))ẋ(t) = (Ai(θ) + MAi(t))x(t) + (Bi(θ) + MBi(t))u(t) +Diw(t),

y(t) = Cix(t), i = 1, 2, ...r, k = 1, 2, ...re,
(25)

where, Ai(θ) = Ai0+
∑L

l=1 θl(t)Ail, Bi(θ) = Bi0+
∑L

l=1 θl(t)Bil, Ek(θ) = Ek0+
∑L

l=1 θl(t)Ekl

z1(t), ..., zp(t) are premise variables, p is the number of premise variables, N e
kj (j = 1...pk),

Nij (j = 1...p) are the fuzzy sets and r represents the amount of laws. For simplicity θ(t)
is denoted as θ. Here, x(t) ∈ Rn×1 is the state vector, y(t) is the controlled output and
u(t) is the input vector. Ai0 ∈ Rn×n, Ail ∈ Rn×n, Bi0 ∈ Rn×m, Bil ∈ Rn×m, Ek0 ∈ Rn×n,
Ekl ∈ Rn×n, Ci ∈ Rny×n are constant real matrices, θl(t) represents time varying parametric
uncertainties; MAi(t), MBi(t) and MEk(t) are time-varied matrices of dimensions available,
which represent modelling errors. The necessary assumptions prove that rank(Ek) ≤ n;
MAi ∈ Rn×n, MBi ∈ Rn×m, MEi ∈ Rn×m represent the uncertainties and are bounded, i.e.,
‖MAi‖ < δi, ‖MBi‖ < βi, ‖MEi‖ < φi where ‖.‖ denotes spectral norm and δi, βi, φi represent
any positive values. Other specific constraints can be consulted in [14].

From input x(t) and output u(t), the eventual state-space output of the proposed fuzzy
system is described as

ẋ(t) =

r∑
i=1

µi(z(t)){(Ai + ∆Ai(t))x(t) + (Bi + ∆Bi(t))u(t)},

re∑
k=1

µek(Ek(θ) + ∆Ek(t))ẋ(t) =
r∑

i=1
µi{(Ai(θ) + ∆Ai(t))x(t) + (Bi(θ) + ∆Bi(t))u(t) +Diω(t)},

y(t) =
r∑

i=1

µiCix(t), (26)

with µi =
ζi(z(t))∑r
j=1 ζj(z(t))

, ζi(z(t)) =

p∏
j=1

Nij(zj(t)),

µek =
ζek(ze(t))∑re

j=1 ζ
e
j (ze(t))

, ζek(ze(t)) =

pe∏
j=1

N e
kj(z

e
j (t)),

Nij(zj(t)) and N e
kj(z

e
j (t)) represent the degrees of membership of zj(t) and zej (t) in the fuzzy

set Nij and N e
kj , respectively. Here

∑r
i=1 µi(z(t)) = 1 and

∑re

k=1 µk(z(t)) = 1. For simplicity,
µek(z(t)) and µi(z(t)) were represented as µek(z(t)) and µi(z(t)) respectively.
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The uncertain matrices MAi(t), MBi(t) and MEk(t) were assigned to be norm-limited and
improved from [2] as follows

[∆Ai(t) ∆Bi(t)] =
La∑
l=1

Ma
il∆

a
il(t) [Na

i1l Na
i2l],

∆Ek(t) =

Le∑
l=1

M e
kl∆

e
kl(t)N

e
kl, (27)

with Ma
il,M

e
kl, N

a
i1l, N

a
i2l and N e

k1l represent actual constant matrices with dimension avai-
lable and Ma

il(t), M
e
il(t) represent time-varied equations, satisfying |∆a

il(t)| < 1, |∆e
kl(t)| <

1, ∀t > 0.
Let us consider a reference model and the H performance measure as given in Section 2

with the Parallel Distributed Compensation (PDC) fuzzy controller improved from [12],

u(t) =

r∑
i=1

re∑
k=1

µiµ
e
k(K1ike(t) +K2ikxr(t)), (28)

where K1ik and K2ik are the controller gains. Newly proposed fuzzy controller is implemented
with the feedback gains K1ik and K2ik (i = 1, ..., r, k = 1, ..., re) such that the resulting
closed-loop system ensures asymptotically stable and responds the H∞ performance given
in (5).
Combining (26) and (3) and relating to the control rule (28), the augmented fuzzy descriptor
system is to be expressed as

E∗ẋ∗(t) =

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
k{(A∗ik(θ) + ∆A∗ik(t) + (B∗i (θ) + ∆B∗i (t))K∗jk)x∗(t) +D∗i ω

∗(t)},

(29)

where x∗(t) =

 e(t)
xr(t)
ė(t)

 , ω∗(t) =

[
ω(t)
r(t)

]
,

A∗ik(θ) =

 0 0 I
0 Ar 0

Ai(θ) Ai(θ)− Ek(θ)Ar −Ek(θ)

,

∆A∗ik(t) =

 0 0 0
0 0 0

∆Ai(t) ∆Ai(t)−∆Ek(t)Ar −∆Ek(t)

,

B∗i (θ) =

 0
0

Bi(θ)

 , ∆B∗i =

 0
0

∆Bi(t)

,

K∗jk =
[
K1jk K2jk 0

]
,

D∗jk =

 0 0
0 Dr

Di −Ek(θ)Dr

 , E∗ =

 I 0 0
0 I 0
0 0 0

.

[
∆A∗ik(t) ∆B∗i (t)

]
=

La∑
l=1

Ma∗
il ∆a

il(t)
[
Na∗

i1l Na∗
i2l

]
+

Le∑
l=1

M e∗
kl ∆e

kl(t)N
e∗
kl , (30)
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Ma∗
il =

 0
0
Ma

il

 , M e∗
kl =

 0
0
M e

kl

,

Na∗
i1l =

[
Na

i1l Na
i1l 0

]
, Na∗

i2l = Na
i2l, N e∗

kl =
[

0 N e
kl 0

]
.

The proposed fuzzy descriptor system (29) affinely depends on the parametric vector.
As in [21] and [22], both lower/upper bounds of the uncertain coefficient and their rates of
variation are assumed to be known. Specifically:
1. Each parameter θl ranges within the known lower θl and upper θl bounds, i.e.,

θl ∈ [θl, θl]. (31)

2. The speed of variation θ̇l is precisely calculated at all times and satisfies

θ̇l ∈ [υl, θl], (32)

where υl and θl represent known lower/upper bounds of θ̇l, respectively.
With these assumptions, the parameter vecto θl takes values within the hyper-rectangle

called parameter box and the rate vector θ̇l takes values in another hyper-rectangle called
rate box. It is denoted as,

V : = {(ν1, ν2, ..., νL)T : νl ∈ { θl θl }}, (33)

W : = {(ω1, ω2, ..., ωL)T : ωl ∈ { υl υl }}, (34)

which are the set of 2L vertices of the parameter box and the rate box, respectively.

5. PROPOSED ROBUST H∞H∞H∞ TRACKING CONTROL IMPLEMENTATION
WITH FIXED LYAPUNOV FUNCTION

In this section, Lyapunov function-based robust H∞ tracking controller design for pro-
posed fuzzy descriptor system is presented. First it investigates the fixed Lyapunov function
described as,

V (t) = x∗T (t)E∗TX−1x∗(t) (35)

with

X =

 X11 XT
21 0

X21 X22 0
X31 X32 X33

, E∗TX−1 = X−TE∗ ≥ 0.

Theorem 3. Let us consider the fuzzy descriptor system (29) and the control rule (28). In
case it obtains certain matrices X as defined in (35) and Wjk (j = 1, ..., r, k = 1, ..., re) as
to satisfy the matrix inequalities presented as follows,

ST = S > 0, (36)

φ∗iik(ν) < 0, ∀ν ∈ V, i = 1, 2, ..., r, k = 1, 2, ..., re, (37)

1

r − 1
φ∗iik(ν) +

1

2
(φ∗ijk(ν) + φ∗jik(ν)) < 0, ∀ν ∈ V, 1 ≤ i 6= j ≤ r, k = 1, 2, ..., re, (38)
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with

S =

[
X11 XT

21

X21 X22

]
,

φ∗ijk(ν) =



A11
ijk(ν) ∗ ∗ ∗ ∗ ∗ ∗
D∗Tik −ρ2I ∗ ∗ ∗ ∗ ∗
Y 0 −Q−1 ∗ ∗ ∗ ∗
A31

i 0 0 −εai ∗ ∗ ∗
A41

ijk 0 0 0 −εai ∗ ∗
A51

k 0 0 0 0 −εek ∗
A61

k 0 0 0 0 0 −εek


,

A31
i =


a
i1M

a∗T
i1
...

a
iLa
Ma∗T

iLa

 , A41
ijk =

 (Na∗
i11X +Na∗

i21Wjk)
...

(Na∗
i1La

X +Na∗
i2La

Wjk)

,

A51
k =


e
k1M

e∗T
k1

...
e
kLa

M e∗T
kLe

 , A61
k =

 N e∗
k1X
...

N e∗
kLe

X

 , Y = X
[
I 0 0

]
,

A11
ijk(ν) = XTA∗Tik (ν) +W ∗Tjk B

∗T
i (ν) +B∗Ti (v)W ∗jk,

εai = diag(εai1, ..., ε
a
iLa

), εek = diag(εek1, ..., ε
e
kLe

)

and W ∗jk = K∗jkX, then the closed loop system ensures asymptotically stable and satisfies the
given H∞ performance criteria.

Proof. If (37) and (38) are satisfied, the following parameterized inequality is obtained

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
kφ
∗
ijk(ν) < 0, ∀ν ∈ V. (39)

If the above inequality is satisfied in the vertices of the parameter box V , then the inequality
holds for the range of defined in the parameter box improved from [23]. Hence,

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
kφ
∗
ijk(θ) < 0. (40)

Based on (27), using the Schur complement Lemma and the inequality Y TZ + ZTY ≤
Y TY + ZTZ improved from [24], the matrices related to MAi(t), MBi(t) and MEk(t) can be
rewritten as follows

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
kΥ∗ijk(t, θ) < 0 (41)

with Υ∗ijk(t, θ) =

 Ω∗ijk(t, θ) ∗ ∗
D∗Ti −ρ2I ∗
Y 0 −Q−1

, W ∗Tjk , A
∗T
ik (θ), B∗Ti (θ), ∆A∗Tik (t), ∆B∗Ti (t)

have been defined in (30),
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Ω∗ijk(t, θ) = XTA∗Tik (θ) +W ∗Tjk B
∗T
i (θ) +XT∆A∗Tik (t) +W ∗Tjk ∆B∗Ti (t) + ∆B∗Ti (t)W ∗jk.

Again using Schur complement, the above inequality can be expressed as

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
k

[
Ω∗ijk(t, θ) +XTQ∗X ∗

D∗Ti −ρ2I

]
< 0, (42)

where Q∗ = diag(Q, 0, 0). Pre-multiplying (42) with diag(X−T , I) and post-multiplying with
diag(X−1, I), it gives,

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
k

[
X−TΩ∗ijk(t, θ)X−1 +Q∗ ∗

D∗Ti X−1 −ρ2I

]
< 0. (43)

Let us introduce a Lyapunov function candidate V (t) = x∗(t)E∗TX−1x∗(t). Then from the
derivative of V (t), it gives,

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t) =
r∑

i=1

r∑
j=1

re∑
k=1

µiµjµ
e
k{x∗T (t)(X−TΩ∗ijk(t, θ)X−1 +Q∗)x∗(t)}

+x∗T (t)X−TD∗i ω
∗(t) + ω∗T (t)D∗Ti X−1x∗(t)− ρ2ω∗T (t)ω∗(t)

(44)

=

r∑
i=1

r∑
j=1

re∑
k=1

µiµjµ
e
k

[
x∗T (t) ω∗T (t)

] [ X−TΩ∗ijk(t, θ)X−1 +Q∗ ∗
D∗Ti X−1 −ρ2I

] [
x∗(t)
ω∗(t)

]
.

(45)

From (43) and (45), the following inequality can be obtained,

V̇ (t) + x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t) < 0. (46)

Integrating the above inequality from 0 to ∞, it gives,

V (∞)− V (0) +

∫ ∞
0

(x∗T (t)Q∗x∗(t)− ρ2ω∗T (t)ω∗(t))dt < 0. (47)

With zero initial condition, V (0) = 0 and hence∫ ∞
0

x∗T (t)Q∗x∗(t)dt <

∫ ∞
0

ρ2ω∗T (t)ω∗(t)dt, (48)∫ ∞
0

eT (t)Q∗e(t)dt <

∫ ∞
0

ρ2ω∗T (t)ω∗(t)dt. (49)

Thus the proof is completed. �
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Figure 2. Set-up diagram of a two-joint robot arm

Table 1. Premise variables for the fuzzy rules - two-joint robot arm

Rules i Ni1 Ni2

1 Negative Negative
2 Negative Zero
3 Negative Positive
4 Zero Negative
5 Zero Zero
6 Zero Positive
7 Positive Negative
8 Positive Zero
9 Positive Positive

6. SIMULATION RESULTS

Let us consider the two-joint robot arm (see Fig. 2). The dynamics of the two-joint
robotic manipulator [20] is expressed as,

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (50)

with

M(q) =

[
(m1 +m2)l

2
i m2l1l2(s1s2 + c1c2)

m2l1l2(s1s2 + c1c2) m2l
2
2

]
,

C(q, q̇) = m2l1l2(c1s2 − s1c2)
[

0 −q̇2
−q̇1 0

]
, G(q) =

[
−(m1 +m2)l1gs1

m2l2gs2

]
.

The nominal parameters of the system are the link masses m1 = m2 = 1kg, link lengths
l1 = l2 = 1m and the gravitational acceleration gr = 9.81m/s2. In this example, structural
uncertainties in masses are considered and the perturbation is assumed to be within ±5%
from their nominal value.

The operating domain is considered as x1(t) ∈ [−π/3, π/3], x3(t) ∈ [−π/3, π/3], x2(t) ∈
[−5, 5], x4(t) ∈ [−5, 5] and the input u1(t) ∈ [−25, 25] and u2(t) ∈ [−15, 15].
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Equidistant triangular membership functions with centers −π/3, 0 and π/3 are assumed
for both of x1(t) and x3(t). With the uncertainties in masses m1 and m2, the uncertainties
in the fuzzy model can be derived as θ1(t) ∈ [−0.05, 0.05] and θ2(t) ∈ [−0.05, 0.05].

Table 2. Coefficients of matrices Ai(θ) and Bi(θ) - Two-joint manipulator

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

ai021 13.85 14.52 14.50 19.28 18.35 19.28 14.50 14.52 13.85
ai023 2.41 1.155 -0.085 2.01 2.488 2.01 -0.085 1.155 2.41
ai041 -2.34 -1.88 -1.259 -1.91 -1.78 -1.91 -1.259 -1.88 -2.34
ai043 10.49 12.08 8.531 10.10 12.19 10.10 8.531 12.08 10.49
ai121 9.244 7.775 7.25 10.29 10.98 10.29 7.25 7.775 9.244
ai123 -0.975 -0.963 -0.881 0.196 0.385 0.196 -0.881 -0.963 -0.975
ai221 19.99 4.654 2.719 13.68 10.95 13.68 2.719 4.654 19.99
ai223 -11.72 -8.13 -3.93 3.913 6.144 3.913 -3.93 -8.13 -11.72
ai241 17.37 -6.08 -0.069 5.564 -5.65 5.564 -0.069 -6.08 17.37
ai243 -8.967 3.193 9.147 13.92 14.44 13.92 9.147 3.193 -8.967

Table 3. Parameters of matrices δAi - Two-joint manipulator

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

δai21 0.835 1.489 1.152 1.331 1.588 1.311 1.152 1.489 0.835
δai22 0.067 0 0 0 0 0 0 0 0.067
δai23 0.209 0.894 0.66 1.489 1.678 1.489 0.66 0.894 0.209
δai24 0.057 0 0 0 0 0 0 0 0.057
δai41 0.463 1.502 0.925 1.13 1.464 1.13 0.925 1.502 0.463
δai42 0.05 0 0 0 0.66 0 0 0 0.05
δai43 0.68 1.283 0.94 1.508 1.516 1.508 0.94 1.283 0.68
δai44 0.068 0 0 0 0 0 0 0 0.068

Table 4. Parameters of matrices Ei(θ) and MEi(t) - Two-joint manipulator

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

e240i, ei420i 1.061 0.641 -0.574 0.641 1.206 0.641 -0.574 0.641 1.061
ei224, ei242 1.024 0.653 0.037 0.653 1.149 0.653 0.037 0.653 1.024
Mei24,Mei42 0.256 0.386 0.386 0.386 0.386 0.386 0.386 0.386 0.256

The fuzzy rules are considered as follows.

Plant law i: IF x1 is Ni1 and x3 is Ni2 THEN

(Ei(θ) + MEi(t))ẋ(t) = (Ai(θ) + MAi(t))x(t) +Bu(t) +Diw(t),

y(t) = Cix(t), i = 1, ..., 9,
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where

Ai0(t) =


0 1 0 0

a21i0 0 a23i0 0
0 0 0 1

a41i0 0 a43i0 0

 , Ai1(t) =


0 1 0 0

a21i1 0 a23i1 0
0 0 0 1

a41i1 0 a43i1 0

 ,

B =


0 0
1 0
0 0
0 1

 , Ci =

[
0 1 0 0
0 0 0 1

]
, Ei0 =


1 0 0 0
0 2 0 e24i0
0 0 1 0
0 e42i0 0 1

 ,

MAi(t) =


0 0 0 0

Ma21i(t) Ma22i(t) Ma23i(t) Ma24i(t)
0 0 0 0

Ma41i(t) Ma42i(t) Ma43i(t) Ma44i(t)

 , Di =


0 0
1 0
0 0
0 1

 ,

Ei1(t) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , Ei2(t) =


0 0 0 0
0 1 0 e24i(t)
0 0 0 0
0 e42i(t) 0 1

 ,

MEi(t) =


0 0 0 0
0 0 0 Me24i(t)
0 0 0 0
0 Me42i(t) 0 0

 .

The fuzzy sets Ni1 and Ni2 for rules i = 1, ..., 9 are shown in Table 1. The parameters
of the proposed fuzzy model are successfully computed via the linear programming method
discussed in Section 2. The values of Ai(θ) and Bi(θ) coefficients are described in Table 2.

The parameters of MAi(t) are shown in Table 3. For Ei(θ) and MEi(t), the parameters
are shown in Table 4.

Let us investigate the referential model as follows:

ẋr(t) = Arxr(t) + r(t) (51)

where

Ar =


0 1 0 0
−6 −5 0 0
0 0 0 1
0 0 −6 −5

 ,
and

r(t) =
[
0 7 sin(t) 0 7 cos(t)

]T
.

The H∞ tracking controller design problem is considered with the above referential model
given by (51). In this benchmark test, the fuzzy descriptor model satisfies the condition
µi = µei and r = re. Let us assume the mass of the links as m1 +Mm1 = 1 + 0.05 sin(2t) and
m2 + Mm2 = 1 + 0.05 cos(2t). Here 0.05 sin(2t) and 0.05 cos(2t) represent the uncertainties.
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Figure 3. Trajectorial results with zooming tracking error e(t) of state variables x(t) (dashed line &
dotted line for ρ2 = 0.001 and ρ2 = 0.01) and the referential trajectories xr(t) (solid line)

Figure 4. Trajectorial results with zooming tracking error e(t) of state variables x(t) (dashed line &
dotted line for ρ2 = 0.001 and ρ2 = 0.01) and the referential trajectories xr(t) (solid line)
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Figure 5. Control input u(t) (dashed line and dotted line for ρ2 = 0.001 and ρ2 = 0.01, respectively)

The external disturbances (e.g., cogging torque in the actuator) are assumed to be w1(t) =
0.4 cos(10t) cos(2t) + 0.2 exp(−t) sin(4t) and w2(t) = 0.3 sin(5t) + 0.25 exp(−2t).

With Q = 0.01I, the H∞ tracking controller is designed for different values by using the
proposed Algorithm 1. With zero initial condition, the simulation results are presented in
Fig. 3, Fig. 4, Fig. 5 for ρ2 = 0.001 and ρ2 = 0.01. In Fig. 3, the trajectorial results of x(t)
and the referential trajectories xr(t) for = 0.001 and = 0.01 are shown. The tracking error
plots for these two values of ρ2 are presented in Fig.3, Fig. 4. The control inputs u(t) are
plotted in Fig. 5.

7. CONCLUSIONS

This paper proposes a T-S fuzzy model-based reference trajectory controller satisfying
H∞ performance criterion for uncertain fuzzy descriptor systems. Sufficient conditions for
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controller design satisfying the given H∞ performance criterion are formulated via LMI
matrix inequalities. The proposed fuzzy descriptor system approach yields lesser number
of inequality conditions than those obtained using the standard state-space approach. It
is convincingly shown that, by the newly proposed design approach, the required tracking
controller can be successfully implemented by resolving a set of inequalities and the specified
H∞ disturbance attenuation level can be obtained. In order to demonstrate the effectiveness
of the novel fuzzy controller approach, tracking control benchmark test of a two-joint robot
arm under external disturbances is investigated and the simulation results show that the
proposed fuzzy system robustly and precisely track the referential trajectory.
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