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Abstract. In the recent works, Dang and Truong proposed an iterative method for solving some

problems of plates on one, two and three line partial internal supports (LPISs), and a cross internal

support. In nature they are problems with strongly mixed boundary conditions for biharmonic equa-

tion. For this reason the method combines a domain decomposition technique with the reduction of

the order of the equation from four to two.

In this study, the method is developed for plates on internal supports of more complex configu-

rations. Namely, we examine the cases of symmetric rectangular and H-shape supports, where the

computational domain after reducing to the first quadrant of the plate is divided into three subdo-

mains. Also, we consider the case of asymmetric rectangular support where the computational domain

needs to be divided into 9 subdomains. The problems under consideration are reduced to sequences

of weak mixed boundary value problems for the Poisson equation, which are solved by difference

method. The performed numerical experiments show the effectiveness of the iterative method.

Keywords. Rectangular Plate; Internal Line Supports; Biharmonic Equation, Iterative Method,

Domain Decomposition Method.

1. INTRODUCTION

The plates with line partial internal supports (LPIS) play very important role in engi-
neering. Therefore, recently they have attracted attention from many researchers. In the
essence, the problems of plates on internal supports are strongly mixed boundary value pro-
blems for biharmonic equation. There are some methods for analysis of these plates. It is
worthy to mention the Discrete Singular Convolution (DSC) algorithm developed by Xiang,
Zhao and Wei in 2002 [15, 16]. Essentially, DSC based on the theory of distributions and the
theory of wavelets is an algorithm for the approximation of functions and their derivatives.
Its efficiency has been proven in solving many complex engineering problems. To the best of
our knowledge a rigorous justification of DSC has not been established yet. Later, in 2007,
2008 Sompornjaroensuk and Kiattikomol [11, 12] transformed the problem with one LPIS to
dual series equations, which then by the Hankel transformation are reduced to the form of
a Fredholm integral equation. It should be noted that the kernel and the right-hand side of
the equation are represented in a series containing Hankel functions of both first and second
kinds; therefore, the numerical treatment for this integral equation is very difficult. So, this
result is of pure significance. Motivated by these mentioned works, some years ago Dang
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and Truong [3, 4] proposed a simple iterative method that reduces the problems with one
and two LPISs to sequences of boundary value problems for the Poisson equation with weak
mixed boundary conditions which can be solved by using the available efficient methods and
software for second-order equations. This is achieved due to the combination of a domain
decomposition technique and a technique for reduction of the order of differential equations.
These techniques were used separately or together in the works [1, 6, 7, 8].

In this study, we develop the method for the problems of rectangular plate with more
complex internal supports, namely for a symmetric rectangular support (lying in the center
of the plate), asymmetric rectangular support (not lying in the center of the plate) and a
symmetric H-shape support.

Suppose that the plates are subjected to a uniformly distributed load (q), their bottom
and top edges are clamped, while the left and right edges are simply supported. Then the
problems are reduced to the solution of the biharmonic equation ∆2u = f for the deflection
u(x, y) inside the plates, where f = q/D, D is the flexural rigidity of the plates, with
boundary conditions on the plate edges and the conditions on the internal supports. As seen
later, in the cases of the symmetric internal supports the problems will be reduced to ones in
the domain divided into 3 subdomains. But in the case of asymmetric rectangular plate the
domain of the problem must be divided into 9 subdomains. As was shown in [4], the boundary

conditions on the fictitious boundary inside the plate are
∂u

∂ν
=
∂∆u

∂ν
= 0 and the conditions

on the internal support are the same as clamped boundary conditions u =
∂u

∂ν
= 0. In result

of the domain decomposition method the problem for plates on internal supports will be
reduced to sequences of boundary value problems for Poisson equation in the rectangles with
weakly mixed boundary conditions. The rigorous theoretical proof of the convergence of the
iterative method can be done in a similar way as the proof for one LPIS in [4] but due to
the complexity of the internal supports we omit it.

The paper is organized as follows. In Section 2 we consider the plate with a symmetric
rectangular internal support. An iterative method for the problem with general boundary
conditions is described and the numerical results are reported. In Section 3, omitting the
description of iterative method, we briefly present the results of computation for the plate
with a symmetric H-shape internal support. In Section 3 we extend the results of Section 2
to the case of asymmetric rectangular internal support. Some concluding remarks are given
in the last section.

2. PROBLEM FOR PLATE ON A SYMMETRIC RECTANGULAR
INTERNAL SUPPORT

2.1. The problem setting

In this section we consider the problem for plate on a symmetric rectangular internal
support, i.e., a rectangular support which lies in the center of the plate as in Figure 1(a). As
in [4] and [3], due to the two-fold symmetry it suffices to consider the problem in a quadrant
of the plate. Associated conditions are given on the actual and fictitious boundaries, and on
the parts of the support inside the quadrant as depicted in Figure 1(b).

Thus, we have to solve the biharmonic equation ∆2u = f in the first quadrant of plate
which is denoted by Ω with the boundary conditions given in Figure 1(b). For this purpose
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(a) Rectangular support

u = ∂u/∂ν = 0

u = ∂u/∂ν = 0
∂u/∂ν = 0

∂∆u/∂ν = 0u = ∂u/∂ν = 0

∂u/∂ν = ∂∆u/∂ν = 0

u = ∆u = 0

(b) First quadrant of rectangular support

Figure 1. Symmetric rectangular support and its quadrant with boundary conditions

we set the problem with the general boundary conditions, namely, consider the problem

∆2u = f in Ω \ (MN ∪MQ),

u = g0 on SA ∪ SD ∪MN ∪MQ,

∂u

∂ν
= g1 on SA ∪ SB ∪ SC ∪MN ∪MQ,

∆u = g2 on SD,

∂

∂ν
∆u = g3 on SB ∪ SC ,

(1)

where Ω is the rectangle (0, a)×(0, b), SA, SB = SB1∪SB2, SC = SC1∪SC2, SD = SD1∪SD2

are its sides. See Figure 2.
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Figure 2. Domain decomposition for the problem considered in a quadrant of plate

In the case if all boundary functions gi = 0 (i = 0, 3), the problem models the bending
of the first quadrant of a rectangular plate.
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2.2. Description of the iterative method

To solve the problem, the domain Ω is divided into three subdomains Ω1, Ω2 and Ω3 as
shown in Figure 2. Next, we set v = ∆u and denote ui = u|Ωi , vi = v|Ωi and by νi denote
the outward normal to the boundary of Ωi (i = 1, 2, 3).

It should be noted that on four sides of the subrectangle Ω3 there are defined boundary
conditions sufficient for solving the biharmonic equation in this subdomain. This is a problem
with weakly mixed boundary conditions, which can be performed by iterative method in a
similar way as in [1]. After that it remains to solve the biharmonic problem in Ω1∪Ω2 by an
iterative process. Thus, we must perform two iterative processes in sequence. But we do not
handle so. Instead, we suggest the following combined iterative method for the problem (2),
which is based on the idea of simultaneous update of the boundary functions ϕ1 = v1 on SA,

ϕ2 = v2 on MQ, ϕ3 = v3 on MN , ξ =
∂v2

∂ν2
on KM, η =

∂u2

∂ν2
on KM as follows:

Combined iterative method:

1. Given

ϕ
(0)
1 = 0 on SA; ϕ

(0)
2 = 0 on MQ, ϕ

(0)
3 = 0 on MN,

ξ(0) = 0, η(0) = 0 on KM.
(2)

2. Knowing ϕ
(k)
1 , ϕ

(k)
2 , ϕ

(k)
3 , ξ(k), η(k), (k = 0, 1, ...), solve sequentially problems for v

(k)
3

and u
(k)
3 in Ω3, problems for v

(k)
2 and u

(k)
2 in Ω2, and problems for v

(k)
1 and u

(k)
1 in Ω1:

∆v
(k)
3 = f in Ω3,

v
(k)
3 = ϕ

(k)
2 on MQ,

v
(k)
3 = ϕ

(k)
3 on MN,

∂v
(k)
3

∂ν3
= g3 on SB2 ∪ SC2,


∆u

(k)
3 = v

(k)
3 in Ω3,

u
(k)
3 = g0 on MQ ∪MN,

∂u
(k)
3

∂ν3
= g1 on SB2 ∪ SC2,

(3)



∆v
(k)
2 = f in Ω2,

v
(k)
2 = g2 on SD2,

∂v
(k)
2

∂ν2
= ξ(k) on KM,

v
(k)
2 = ϕ

(k)
2 on MQ,

∂v
(k)
2

∂ν2
= g3 on SC1,



∆u
(k)
2 = v

(k)
2 in Ω2,

u
(k)
2 = g0 on SD2 ∪MQ,

∂u
(k)
2

∂ν2
= η(k) on KM,

∂u
(k)
2

∂ν2
= g1 on SC1,

(4)



∆v
(k)
1 = f in Ω1,

v
(k)
1 = g2 on SD1,

v
(k)
1 = ϕ

(k)
1 on SA,

∂v
(k)
1

∂ν1
= g2 on SB1,

v
(k)
1 = ϕ

(k)
3 on MN,

v
(k)
1 = v

(k)
2 on KM,



∆u
(k)
1 = v

(k)
1 in Ω2,

u
(k)
1 = g0 on SD1 ∪ SA
∂u

(k)
1

∂ν1
= g1 on SB1,

u
(k)
1 = g0 on MN

u
(k)
1 = u

(k)
2 on KM

(5)
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3. Calculate the new approximation

ϕ
(k+1)
1 = ϕ

(k)
1 − τ

(∂u(k)
1

∂ν1
− g1

)
on SA, ϕ

(k+1)
2 = ϕ

(k)
2 − τ

(∂u(k)
2

∂ν2
− g1

)
on MQ,

ϕ
(k+1)
3 = ϕ

(k)
3 − τ

(∂u(k)
3

∂ν2
− g1

)
on MN,

ξ(k+1) = (1− θ)ξ(k) − θ
∂v

(k)
2

∂ν2
, η(k+1) = (1− θ)η(k) − θ

∂u
(k)
2

∂ν2
on KM

(6)

where τ and θ are iterative parameters to be chosen for guaranteeing the convergence of the
iterative process.

The convergence of the above iterative method can be proved in the same way as for the
case of one and of two LPIS in [4]. But this is very cumbersome work, therefore we omit it.

2.3. Numerical example

In order to realize the above combined iterative method we use difference schemes of
second order of accuracy for mixed boundary value problems (3)-(5) and compute the normal
derivatives in (6) by difference derivatives of the same order of accuracy. All computations
are performed for uniform grids on rectangles Ωi (i = 1, 2, 3). The convergence of the discrete
analog of the iterative method (2)-(6) was verified on some exact solutions for some sizes
of the rectangular support and for some grid sizes. Performed experiments show that the
convergence rate depends on the sizes e1, e2 (see Figure 2) and the values of the iteration
parameters τ and θ. From the results of the experiments we observe that the values τ = 0.9
and θ = 0.95 give good convergence. The number of iterations for achieving the accuracy
‖u(k) − u‖∞ ≤ 10−4, where u is the exact solution, changes from 30 to 45.

Using the chosen above iteration parameters τ and θ we solve the problem for computing
the deflection of the symmetric rectangular support. As said in the end of the previous
subsection, for the problem of bending of the plate gi = 0 (i = 0, 3). We perform numerical
experiments for plate of the sizes π× π with the flexural rigidity D = 0.0057 under the load
q = 0.3. The surfaces of deflection of the whole plate for some sizes of the support under
uniform load are depicted in Figure 3(a) and 3(b).

3. PROBLEMS FOR PLATES ON H-SHAPE INTERNAL SUPPORT

As in the case of a symmetric rectangular internal support, the problem for plate on
a H-shape support (see Figure 4(a)) is reduced to boundary value problems with strongly
mixed boundary conditions in a quadrant of the plate. For the latter one, the computational
domain can also be divided into three subdomains (rectangles) as shown in Figure 4(b).

The iterative method combining decrease of the equation order and domain decomposi-
tion for these problems is constructed in an analogous way. The results of computation of
deflection surfaces for some sizes of H-shape support are given in Figure 5(a) and 5(b).
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Figure 3. The surfaces of deflection of the whole plate for e1/π, e2/π equal 0.30, 0.50 (a) and 0.25, 0.50
(b), respectively
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(b) First quadrant of H-shape support

Figure 4. H-shape support and its first quadrant

4. PROBLEM FOR PLATE ON AN ASYMMETRIC RECTANGULAR
INTERNAL SUPPORT

4.1. The problem setting

Now we consider the plate on an asymmetric rectangular internal support when the
support lies not in the middle of the plate. In this case the problem has no symmetry, so it
cannot be reduced to one in a quadrant of the plate.

In order to construct a solution method for the problem, as in the previous section, we
consider it with general boundary conditions. Namely, consider the following BVP

∆2u = f in Ω,

u = g0 on OF ∪HC ∪ FH ∪OC ∪MN ∪MP ∪ PQ ∪NQ,
∂u

∂ν
= g1 on FH ∪OC ∪MN ∪MP ∪ PQ ∪NQ,

∆u = g2 on OF ∪HC.

(7)
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Figure 5. The surfaces of deflection of the plate on a H-shape support for e1/π, e2/π equal 0.15, 0.30
(a) and 0.30, 0.40 (b), respectively

where Ω = ∪9
i=1Ωi (the interior of the plate excluding the internal support). See Figure 6.
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Figure 6. Domain decomposition for the problem for plate on asymmetric rectangular internal
support

4.2. Solution method

To solve the problem, the domain Ω is divided into 9 subdomains {Ωi, i = 1, 2, ...9} by
the fictitious boundaries Γ41, Γ42, Γ58, Γ59, Γ61, Γ68, Γ72, Γ79 as described in Figure 6.
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As usual, we set: ui = u|Ωi , vi = ∆ui|Ωi , i = 1, 2, ..., 9.
Further, set

ξ41 =
∂v4

∂ν
|Γ41 , η41 =

∂u4

∂ν
|Γ41 ,

ξ42 =
∂v4

∂ν
|Γ42 , η42 =

∂u4

∂ν
|Γ42 ,

ξ58 =
∂v5

∂ν
|Γ58 , η58 =

∂u5

∂ν
|Γ58 ,

ξ59 =
∂v5

∂ν
|Γ59 , η59 =

∂u5

∂ν
|Γ59 ,

ξ72 =
∂v7

∂ν
|Γ72 , η72 =

∂u7

∂ν
|Γ72 ,

ξ79 =
∂v7

∂ν
|Γ79 , η79 =

∂u7

∂ν
|Γ79 ,

ξ61 =
∂v6

∂ν
|Γ61 , η61 =

∂u6

∂ν
|Γ61 ,

ξ68 =
∂v6

∂ν
|Γ68 , η68 =

∂u6

∂ν
|Γ68 ,

and set

ϕ1 = v1|OA,
ϕ2 = v2|FG,
ϕ6 = v6|AB,
ϕ7 = v7|GI ,
ϕ8 = v8|BC ,
ϕ9 = v9|IH ,
ϕ34 = v3|MP ,

ϕ43 = v4|MP ,

ϕ35 = v3|NQ,
ϕ53 = v5|NQ,
ϕ36 = v3|PQ,
ϕ63 = v6|PQ,
ϕ37 = v3|MN ,

ϕ73 = v7|MN ,

I = {1, 2, 6, 7, 8, 9, 34, 43, 35, 53, 36, 63, 37, 73} ,
J = {41, 42, 58, 59, 61, 68, 72, 79} .

Consider the following parallel iterative method with the idea of simultaneous update of ξ,
η, ϕ on boundaries:
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1. Given starting approximations ϕ
(0)
i , i ∈ I; ξ

(0)
j , η

(0)
j , j ∈ J on respective boundaries,

for example, ϕ
(0)
i = 0, ξ

(0)
j = 0, η

(0)
j = 0.

2. Knowing ϕ
(k)
i , ξ

(k)
j , η

(k)
j (k = 0, 1, 2, ...), solve in parallel five problems for v

(k)
3 , u

(k)
3 in

Ω3, problems for v
(k)
4 , u

(k)
4 in Ω4, problems for v

(k)
5 , u

(k)
5 in Ω5, problems for v

(k)
6 , u

(k)
6

in Ω6, problems for v
(k)
7 , u

(k)
7 in Ω7:

On domain Ω3

∆v
(k)
3 = f in Ω3,

v
(k)
3 = ϕ

(k)
34 on MP,

v
(k)
3 = ϕ

(k)
35 on NQ,

v
(k)
3 = ϕ

(k)
36 on PQ,

v
(k)
3 = ϕ

(k)
37 on MN,

{
∆u

(k)
3 = v

(k)
3 in Ω3,

u
(k)
3 = g0 on ∂Ω3.

(8)

On domain Ω4

∆v
(k)
4 = f in Ω4,

v
(k)
4 = g2 on ED,

v
(k)
4 = ϕ

(k)
43 on MP,

∂v
(k)
4
∂ν = ξ

(k)
41 on Γ41,

∂v
(k)
4
∂ν = ξ

(k)
42 on Γ42,


∆u

(k)
4 = v

(k)
4 in Ω4,

u
(k)
4 = g0 on ED ∪MP,
∂u

(k)
4
∂ν = η

(k)
41 on Γ41,

∂u
(k)
4
∂ν = η

(k)
42 on Γ42.

(9)

On domain Ω5

∆v
(k)
5 = f in Ω5,

v
(k)
5 = g2 on KL,

v
(k)
5 = ϕ

(k)
53 on NQ,

∂v
(k)
5
∂ν = ξ

(k)
58 on Γ58,

∂v
(k)
5
∂ν = ξ

(k)
59 on Γ59,


∆u

(k)
5 = v

(k)
5 in Ω5,

u
(k)
5 = g0 on NQ ∪KL,
∂u

(k)
5
∂ν = η

(k)
58 on Γ58,

∂u
(k)
5
∂ν = ξ

(k)
59 on Γ59.

(10)

On domain Ω6

∆v
(k)
6 = f in Ω6,

v
(k)
6 = ϕ

(k)
6 on AB,

v
(k)
6 = ϕ

(k)
63 on PQ,

∂v
(k)
6
∂ν = ξ

(k)
61 on Γ61,

∂v
(k)
6
∂ν = ξ

(k)
68 on Γ68,


∆u

(k)
6 = v

(k)
6 in Ω6,

u
(k)
6 = g0 on PQ ∪AB,
∂u

(k)
6
∂ν = η

(k)
61 on Γ61,

∂u
(k)
6
∂ν = η

(k)
68 on Γ68.

(11)
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On domain Ω7

∆v
(k)
7 = f in Ω7,

v
(k)
7 = ϕ

(k)
73 on MN,

v
(k)
7 = ϕ

(k)
7 on GI,

∂v
(k)
7
∂ν = ξ

(k)
72 on Γ72,

∂v
(k)
7
∂ν = ξ

(k)
79 on Γ79,


∆u

(k)
7 = v

(k)
7 in Ω7,

u
(k)
7 = g0 on GI ∪MN,
∂u

(k)
7
∂ν = η

(k)
72 on Γ72,

∂u
(k)
7
∂ν = η

(k)
79 on Γ79.

(12)

3. Solve parallel problems for v
(k)
1 , u

(k)
1 in Ω1, problems for v

(k)
2 , u

(k)
2 in Ω2, problems for

v
(k)
8 , u

(k)
8 in Ω8, problems for v

(k)
9 , u

(k)
9 in Ω9

On domain Ω1


∆v

(k)
1 = f in Ω1,

v
(k)
1 = g2 on OD ∪OA,
v

(k)
1 = v

(k)
6 on Γ61,

v
(k)
1 = v

(k)
4 on Γ41,


∆u

(k)
1 = v

(k)
1 in Ω1,

u
(k)
1 = g0 on OD ∪OA,
u

(k)
1 = u

(k)
4 on Γ41,

u
(k)
1 = u

(k)
6 on Γ61.

(13)

On domain Ω2


∆v

(k)
2 = f in Ω2,

v
(k)
2 = g2 on EF ∪ FG,
v

(k)
2 = v

(k)
4 on Γ42,

v
(k)
2 = v

(k)
7 on Γ72,


∆u

(k)
2 = v

(k)
2 in Ω2,

u
(k)
2 = g0 on EF ∪ FG,
u

(k)
2 = u

(k)
4 on Γ41,

u
(k)
2 = u

(k)
7 on Γ72.

(14)

On domain Ω8


∆v

(k)
8 = f in Ω8,

v
(k)
8 = g2 on BC ∪ LC,
v

(k)
8 = v

(k)
6 on Γ68,

v
(k)
8 = v

(k)
5 on Γ58,


∆u

(k)
8 = v

(k)
8 in Ω8,

u
(k)
8 = g0 onBC ∪ CL,
u

(k)
8 = u

(k)
6 on Γ68,

u
(k)
8 = u

(k)
5 on Γ58.

(15)

On domain Ω9


∆v

(k)
9 = f in Ω9,

v
(k)
9 = g2 on IH ∪HK,
v

(k)
9 = v

(k)
5 on Γ59,

v
(k)
9 = v

(k)
7 on Γ79,


∆u

(k)
9 = v

(k)
9 in Ω9,

u
(k)
9 = g0 on IH ∪HK,
u

(k)
9 = u

(k)
5 on Γ59,

u
(k)
9 = u

(k)
7 on Γ79.

(16)
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4. Calculate the new approximations

ϕ
(k+1)
1 = ϕ

(k)
1 − τ

(∂u(k)
1

∂ν
− g1

)
on OA, ϕ

(k+1)
2 = ϕ

(k)
2 − τ

(∂u(k)
2

∂ν
− g1

)
on FG,

ϕ
(k+1)
6 = ϕ

(k)
6 − τ

(∂u(k)
6

∂ν
− g1

)
on AB, ϕ

(k+1)
7 = ϕ

(k)
7 − τ

(∂u(k)
7

∂ν
− g1

)
on GI,

ϕ
(k+1)
8 = ϕ

(k)
8 − τ

(∂u(k)
8

∂ν
− g1

)
on BC, ϕ

(k+1)
9 = ϕ

(k)
9 − τ

(∂u(k)
9

∂ν
− g1

)
on IH,

ϕ
(k+1)
34 = ϕ

(k)
34 − τ

(∂u(k)
3

∂ν
− g1

)
on MP, ϕ

(k+1)
43 = ϕ

(k)
43 − τ

(∂u(k)
4

∂ν
− g1

)
on MP,

ϕ
(k+1)
35 = ϕ

(k)
35 − τ

(∂u(k)
3

∂ν
− g1

)
on NQ, ϕ

(k+1)
53 = ϕ

(k)
53 − τ

(∂u(k)
5

∂ν
− g1

)
on NQ,

ϕ
(k+1)
37 = ϕ

(k)
37 − τ

(∂u(k)
3

∂ν
− g1

)
on MN, ϕ

(k+1)
73 = ϕ

(k)
73 − τ

(∂u(k)
7

∂ν
− g1

)
on MN,

ϕ
(k+1)
36 = ϕ

(k)
36 − τ

(∂u(k)
3

∂ν
− g1

)
on PQ, ϕ

(k+1)
63 = ϕ

(k)
63 − τ

(∂u(k)
6

∂ν
− g1

)
on PQ,

ξ
(k+1)
41 = θξ

(k)
41 − (1− θ)

∂v
(k)
1

∂ν
, η

(k+1)
41 = θη

(k)
41 − (1− θ)

∂u
(k)
1

∂ν
on Γ41,

ξ
(k+1)
42 = θξ

(k)
42 − (1− θ)

∂v
(k)
2

∂ν
, η

(k+1)
42 = θη

(k)
42 − (1− θ)

∂u
(k)
2

∂ν
on Γ42,

ξ
(k+1)
58 = θξ

(k)
58 − (1− θ)

∂v
(k)
8

∂ν
, η

(k+1)
58 = θη

(k)
58 − (1− θ)

∂u
(k)
8

∂ν
on Γ58,

ξ
(k+1)
59 = θξ

(k)
59 − (1− θ)

∂v
(k)
9

∂ν
, η

(k+1)
59 = θη

(k)
59 − (1− θ)

∂u
(k)
9

∂ν
on Γ59,

ξ
(k+1)
61 = θξ

(k)
61 − (1− θ)

∂v
(k)
1

∂ν
, η

(k+1)
61 = θη

(k)
61 − (1− θ)

∂u
(k)
1

∂ν
on Γ61,

ξ
(k+1)
68 = θξ

(k)
68 − (1− θ)

∂v
(k)
8

∂ν
, η

(k+1)
68 = θη

(k)
68 − (1− θ)

∂u
(k)
8

∂ν
on Γ68,

ξ
(k+1)
72 = θξ

(k)
72 − (1− θ)

∂v
(k)
2

∂ν
, η

(k+1)
72 = θη

(k)
72 − (1− θ)

∂u
(k)
2

∂ν
on Γ72,

ξ
(k+1)
79 = θξ

(k)
79 − (1− θ)

∂v
(k)
9

∂ν
, η

(k+1)
79 = θη

(k)
79 − (1− θ)

∂u
(k)
9

∂ν
on Γ79,

(17)
where τ and θ are iterative parameters to be selected for guaranteeing the convergence
of the iterative process.

4.3. Numerical example

For the problem of plate on asymmetric rectangular internal support we verify the conver-
gence of the discrete analog of the parallel iterative process (8)-(17) on some exact solutions
for some sizes of the rectangular support. The performed experments show that the conver-
gence rate depends on the sizes (e11, e12), (e21, e22) and the values of the iteration parameters
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τ and θ. The numerical results show that the values of the iteration parameters, which give
good convergence of the iterative method are τ = 0.95 and θ = 0.75.

Using the chosen above iteration parameters τ and θ we solve the problem for compu-
ting the deflection of the asymmetric rectangular support. The sizes of the plate now are
normalized as 1 × 1. The surfaces of deflection u(x, y) of the whole plate for some sizes of
the support under uniform constant unit load are depicted in Figure 7 and 8.

Figure 7. The surfaces of deflection of the whole plate for e11/π = 1/4, e12/π = 2/3, e21/π =
1/3, e22/π = 5/6

Figure 8. The surfaces of deflection of the whole plate for e11/π = 1/3, e12/π = 4/5, e21/π =
2/7, e22/π = 2/3

5. CONCLUDING REMARKS

In this study, we have just constructed an iterative method for finding the solutions to
the problems for plates having a symmetric or asymmetric rectangular support and H-shape
internal support. The idea of the method is to lead the problems to sequences of problems
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for the Poisson equation with weakly mixed boundary conditions, which can be efficiently
solved numerically by the difference method. The performed numerical results demonstrate
the effectiveness of the iterative method. This method based on the combination of the
reduction of order of differential equation and domain decomposition method can be applied
to the plates having combination of some internal supports of the types considered in this
paper and in [3, 4].

It is remarked that the studied problems for plates on internal supports are linear boun-
dary value problems for biharmonic equation. Their difficulty and complexity are in condi-
tions on the supports inside the plates. Recently, many authors concentrate their attention
to solving nonlinear biharmonic equations (see e.g. [2, 9, 10, 13, 14]). Especially, in [5] an
iterative method was studied for the problem of nonlinear biharmonic equation describing
the plate rested on nonlinear foundation. So, if the foundation is on internal supports then
combine the method in [5] with the method of [3, 4], and the present work, we think that
in principle we can solve this complicated problem. This is a topic of our research in the
future.
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