
Journal of Computer Science and Cybernetics, V.35, N.3 (2019), 197–216

DOI 10.15625/1813-9663/35/3/13620

A NEW APPROACH TO EXACT PATTERN MATCHING

NGUYEN HUY TRUONG

School of Applied Mathematics and Informatics, Hanoi University of Science and
Technology, Vietnam; truong.nguyenhuy@hust.edu.vn

�

Abstract. In this paper we introduce a flexible approach to design an effective algorithm for exact

pattern matching, and compare it with some of the most efficient algorithms, such as AOSO, EBOM,

FJS, FSBNDM, HASHq, LBNDM, SA, BMH-SBNDM, SBNDMq, TVSBS. These results are based on

the concept of the degree of fuzziness (appearance) presented by P. T. Huy et al. in 2002. Theoretical

analyses and experimental results indicate that in practice our proposed algorithm is faster than the

above mentioned algorithms in most of the cases of patterns and alphabets.

Keywords. Exact Pattern Matching; String Matching; Automata Approach.

1. INTRODUCTION

Pattern matching is a classic problem in computer science and one of the most cited
problems in word processing algorithms. The applications of pattern matching algorithms
are used daily to access information, such as in the search engine Google, database queries,
search and replace in text editing systems, etc. At present, there are two research directions
for the problem that are exact and approximate pattern matching. Moreover, based on the
number of patterns found by the algorithm, the pattern matching problem can be divided
into single and multiple pattern matching.

Our work addresses the exact single pattern matching problem (hereafter, commonly
called the exact pattern matching problem).

Given a pattern string x of length m and a text y of length n on the same alphabet. The
exact pattern matching problem is to search for occurrences of the pattern x in the text y.

Since 1977, with the two famous publications of the Boyer-Moore [6] and Knuth-Morris-
Pratt [18] exact pattern matching algorithms, there have been about hundreds, if not thou-
sands, of papers published that dealt with the exact pattern matching problem [13].

The worst case lower bound of the pattern matching problem is O(n). The first algorithm
to achieve the bound was proposed by Morris and Pratt in 1970, afterwards improved by
Knuth et al. in 1977 [12, 18].

In 2013, S. Faro and T. Lecroq reviewed the 85 exact pattern matching algorithms pu-
blished during the 2000 - 2010 period and presented experimental results to compare them.
According to this evaluation, they listed 10 most efficient sequential algorithms in practice,
as well as their best results. They were AOSO, EBOM, FJS, FSBNDM, HASHq, LBNDM,
SA, BMH-SBNDM, SBNDMq, TVSBS (for short, called 10 algorithms) [12].

Nearly all of these algorithms are concerned with how to slide the window. They scan
the text with the help of a window, actually the window is a substring of the text whose size

c© 2019 Vietnam Academy of Science & Technology

mailto:truong.nguyenhuy@hust.edu.vn

198 NGUYEN HUY TRUONG

equals the length of the pattern. For each window of y, they try to find an occurrence of x in
y by comparing the letters of the window with the letters of x (FJS [6, 13, 18, 24], HASHq
for q = 3; 5; 8 [12, 19, 26], TVSBS [3, 23, 25]) or moving the state of an automaton when one
letter of window is scanned at a time (AOSO [14], EBOM [1, 7, 11], FSBNDM [1, 7, 11, 12],
LBNDM [5, 9, 10, 15, 16, 20, 21], SA [2], BMH-SBNDM [5, 9, 12, 15, 16, 20, 21], SBNDMq
for q = 2; 4; 6; 8 [10, 12]) in a certain way. After each occurrence of x, or a mismatch occurs
at any position being scanned in window, they shift the window to the right by a certain
number of positions depending on the approach used by the algorithms. This mechanism
is called the sliding window mechanism [12] and repeated until the right end of the window
does not belong to y. At the beginning of the matching, the left ends of the window and the
text are aligned. The sliding window mechanism is shown in the following figure.

Window

Window

Window

Độ mờ = 4 (mức xuất hiện p tại vị trí đang duyệt trên xâu đích x)

 c d b c b a d b c c.....

 b c b a c

Xâu đích x:

Xâu mẫu p:

(khúc đầu của p)

The degree of fuzziness of x in y at the position being scanned is equal to 4

At the beginning of the matching

Shift the window to the right

At the end of the matching

Figure 1. Sliding Window mechanism

According to our knowledge, the 10 algorithms have some common features as follows.
They first do not take advantage of the relationship between the size of the pattern and the
alphabet, then they are not flexible to shift the window regularly to the right by the most
possible maximum number of positions with high probability (except for HASHq, SBNDMq).
Secondly, the appearance of a part of the pattern is not immediately reflected or updated
at a position being scanned in the text, hence when the windows overlap, the letters of the
text could still be scanned more than once (except for SA, but this algorithm does not use
the sliding window mechanism).

Our main goal will be to attempt to handle the two above situations. All of the best
sequential algorithms in [12] have an O(n) time complexity in the worst case and perform
well in practice.

As we know that theoretical analyses in the worst case are not sufficient to predict actual
running time accurately for exact pattern matching algorithms [3, 25]. For example, two of
the best algorithms listed in [12], EBOM [11] and TVSBS [25], have O(mn) time complexity
in the worst case, where m and n are lengths of the pattern and the text. So, for the exact
pattern matching problem, authors mainly focus on the efficiency of algorithms in practice.

Theoretically, it is not possible to make the time complexity less than the linear level,
but in fact, the running time might decrease by reducing the number of letters of the text
accessed. To solve this problem, we need to avoid scanning an arbitrary letter of the text

A NEW APPROACH TO EXACT PATTERN MATCHING 199

repeatedly and shift the window regularly to the right by a possible maximum number of
letters. Based on the concept of the degree of fuzziness [17], we propose a flexible approach
to design an effective algorithm which deals with above analyses successfully in practice.

In our approach, we construct an automaton corresponding to a given pattern to accept
the pattern, where a state of the automaton is a degree of fuzziness. This tool will reflect
and update the appearance of the longest prefix of the pattern in the text at any position.
If the longest prefix of the pattern is the pattern, then a occurrence of the pattern in the
text is found. A new window is always scanned from left to right. However, the window
scanning process is only started when the right end substring of length c (for short, called
c block) of the window belongs to the pattern, where c is a given positive integer, 1 ≤ c ≤
m. Further, the window scanning process will be stopped immediately if the current state
of the automaton holds a given condition. These techniques make the window be shifted
more regularly to the right by the most possible maximum number of positions with high
probability. The first position scanned in each new window is determined based on the last
occurrence of the c block in the pattern. Depending on this position, the initial state of the
automaton is also set up newly. These help our algorithm to scan each letter of the text at
most once and reflect exactly the appearance of a part of the pattern at any position in the
text.

The total number of all letters of y accessed by our algorithm is n+ 2c for 1 ≤ c ≤ m in

the worst case and is
cn

m− c+ 1
for 1 ≤ c ≤ m in the best case. Experimental results show

that in practice our algorithm is faster than the above mentioned algorithms in most of the
cases of given patterns and alphabets.

The rest of the paper is organized as follows. In Section 2, we recall some terminologies
and definitions used in sequel [4, 8, 10, 17, 19, 22]. Section 3 proposes a new approach
by using the automaton to design a pattern matching algorithm (the MRc algorithm). Also
some theoretical analyses of the MRc algorithm are discussed. In Section 4, the experimental
results comparing our algorithm with the 10 algorithms [12] are presented in the tables.
Finally, we draw some conclusions from our approach and experimental results in Section 5.

2. PRELIMINARIES

Let Σ be a finite set which is called an alphabet. The number of all elements in the
alphabet Σ is denoted by |Σ|. We call an element of Σ a letter. A finite sequence of n letters
of Σ is called a string of length n over Σ and a string s can be represented by

s = s[1]s[2]..s[n], s[i] ∈ Σ, 1 ≤ i ≤ n,

where n is a positive integer.
Denote a special string, the empty string having no letters called the empty string, by ε.

Denote the number of letters in the string s called the length of it by |s|. The length of the
empty string is 0.

The set of all strings on the alphabet Σ is denoted by Σ∗. The operator of strings is
concatenation that writes strings as a compound. Denote the concatenation of the two
strings s1 and s2 by s1s2.

Given strings x, u1 and u2, if x = u1su2, then call the string s a substring of the string
x. Call the string s a prefix (resp. suffix) of the string x if u1 = ε (resp. u2 = ε). Call the

200 NGUYEN HUY TRUONG

prefix (resp. suffix) s to be proper if s 6= x. Note that the prefix or the suffix can be empty.
Let y be a string of length n, the ith element of y is denoted by y[i] and call i a position

in y. With 1 ≤ i ≤ j ≤ n, denote the substring y[i]y[i + 1]..y[j] of y by y[i..j]. For m is a
positive integer, if a string x of length m is a substring of y, then ∃i, n−m+ 1 ≥ i ≥ 1 such
that y[i..i+m− 1] = x. Then we call that x occurs in y at position i or a match for x in y
occurs at position i.

Below we recall the definition of the exact pattern matching problem.

Definition 2.1 ([19]). Let x be a pattern of length m and y be a text of length n over the alphabet
Σ. Then the exact pattern matching problem is to find all occurrences of the pattern x in y.

To illustrate the most original and simple way to solve this problem, we use the Brute
Force (BF) algorithm [8] in the following example.

Example 2.2. We are given a pattern x = fah, and a text y = dfahfkfaha. Then there are two
occurrences of x in y as shown below dfahfkfaha. The BF algorithm is performed by the following
steps presented in Table 1 (when comparing the letters of the pattern and the text, the bold letters
correspond to the mismatches, the underlined letters represent the matches). We know that many
letters scanned will be scanned again by the BF algorithm because each time either a mismatch or a
match occurs, the pattern is only moved to the right one position.

Table 1. The performing steps of the BF algorithm

Step y d f a h f k f a h a

1 x f a h

2 x f a h

3 x f a h

4 x f a h

5 x f a h

6 x f a h

7 x f a h

8 x f a h

In our work, the degree of fuzziness in [17] is used to determine the longest prefix of
the pattern in the text at any position. However, this terminology can lead to several
misunderstandings for the readers. So throughout this paper, we will replace the degree
of fuzziness with the degree of appearance. Next, we restate the concept of the degree of
appearance.

Definition 2.3 ([17]). Let x be a pattern and y be a text of length n over the alphabet Σ.
Then for each 1 ≤ i ≤ n, a degree of appearance of x in y at position i is equal to the length of a
longest substring of y such that the substring is a prefix of x, where the right end letter of this
substring is y[i].

Notice that obviously, if the degree of appearance of x in y at an arbitrary position i
equals |x|, then a match for x in y occurs at position i − |x| + 1. Figure 2 illustrates the
concept of the degree of appearance of the pattern x in y.

A NEW APPROACH TO EXACT PATTERN MATCHING 201

 c d b c b a d b c c

 b c b a c

The degree of appearance of x in y at the position being scanned is equal to 4

(a prefix of x)

y

 x

Figure 2. The degree of appearance of the pattern x

3. THE NEW ALGORITHM - THE MRc ALGORITHM

In this section, based on the degree of appearance recalled in Section 2, we show a way to
build an automaton corresponding to a given pattern to accept the pattern (Theorem 3.5),
present a new approach by using the automaton to design a pattern matching algorithm
(the MRc algorithm). Some theoretical results which analyze the MRc algorithm are also
considered (Propositions 3.11, 3.12 and 3.13, Theorem 3.14).

According to our design of the automaton, each state of the automaton is a degree of
appearance. So, to determine the degree of appearance, we give the following concept.

Definition 3.1. Given a pattern x of length m. Then Next of x is a function such that
Next : {1, . . . ,m} → {0, . . . ,m− 1} defined by

Next(l) = max{|s| : s is both a proper prefix and a suffix of x[1..l]}

for l ∈ {1, . . . ,m}.

Example 3.2. Given a pattern x = acbac. Then Next of x is determined as follows.

l 1 2 3 4 5

Next 0 0 0 1 2

The following algorithm is used to compute the Next of the given x.

Algorithm 1
Input: An arbitrary pattern x with length m;
Output: The Next of x;
1: Next[1] = 0;
2: for l = 2 to m do
3: k = Next[l − 1];
4: while (k > 0 and x[k + 1] 6= x[l]) do
5: k = Next[k];
6: end while
7: if (k == 0 and x[k + 1] == x[l]) then
8: Next[l] = 1;
9: end if
10: if (k == 0 and x[k + 1] 6= x[l]) then
11: Next[l] = 0;
12: end if
13: if (k 6= 0) then
14: Next[l] = k + 1;
15: end if

202 NGUYEN HUY TRUONG

16: end for
17: return Next;

The correctness of the Algorithm 1 is confirmed by the following theorem.

Theorem 3.3. For any given pattern x of length m, Algorithm 1 correctly computes the Next
of x.

Proof. By an application of Definition 3.1, Next[1] = 0, then (1) is true. Consider l = 2, then
k = Next[l − 1] = Next[1] = 0. Thus, clearly, either the block of (7), (8) and (9) or the block of
(10), (11) and (12) correctly computes Next[2] by Definition 3.1. Assume that Algorithm 1 correctly
computes Next[l] for all 2 ≤ l < m. We must prove that it is also true for l+ 1. By (3), k = Next[l],
at the end of the block of (4), (5) and (6), then either k = 0 or there exists a maximum number k
such that x[1..k + 1] = x[l − k..l]. In the case k = 0 the proof is analogous to the case l = 2. In the
contrary case, by Definition 3.1, therefore, the block of (13), (14) and (15) correctly computes the
Next of x. �

Based on the function Next of x, the following lemma offers us a way to compute the degree of
appearance of x at any position when the degree of appearance of x at the adjacent position ahead
is given.

Lemma 3.4. Given a pattern x, a text y on Σ and assume that the degree of appearance of
x in y at the position i equals l, 0 ≤ l ≤ |x|. Then the degree of appearance l′ at the position
i + 1 in y is computed by the formula l′ = Appearance(l, a), where a = yi+1 and the function
Appearance corresponding to x is defined by

Appearance(l, a) =


0 a /∈ x; or l = 0, a 6= x[1], (3.1a)

1 a = x[1], l = 0, (3.1b)

l + 1 a = x[l + 1] for 0 < l < |x|, (3.1c)

Appearance(Next(l), a) l = |x|; or 0 < l < |x|, a 6= x[l + 1]. (3.1d)

Proof. From Definition 2.3, (3.1a), (3.1b) and (3.1c) are true. The equation (3.1d) has two cases.
Consider the first case of (3.1d) 0 < l < |x| and a 6= x[l + 1], then l = Next(l), if a 6= x[l + 1] then
the statement l = Next(l) is repeated until one of the possibilities (3.1a), (3.1b) and (3.1c) occurs,
as the proof above leads to this case is true. In the second case of (3.1d) l = |x|, since Next(l) < l,
then the statement l = Next(l) is done once and it follows 0 < l < |x|. Then at this time, it means
that the second case returns to the first case. So, this case is true. �

Next, we construct an automaton corresponding to a given pattern to accept the pattern in the
following theorem by Lemma 3.4.

Theorem 3.5. Given a pattern x of length m and an automaton Mx = (Σ, Q, q0, δ, F) corre-
sponding to x on the same alphabet Σ, where
• The set of states Q = {0, 1, . . . ,m},
• The initial state q0 = 0,
• The set of final states F = {m},
• The transition function δ : Q × Σ → Q such that δ(q, a) = Appearance(q, a), where the

function Appearance corresponding to x defined as in Lemma 3.4,
• To accept an input string, the transition function δ is extended as follows

δ : Q× Σ∗ → Q

such that ∀q ∈ Q, ∀s ∈ Σ∗, ∀a ∈ Σ, δ(q, as) = δ(δ(q, a), s) and δ(q, ε) = q.
Then Mx accepts the pattern x.

A NEW APPROACH TO EXACT PATTERN MATCHING 203

Proof. By Lemma 3.4, clearly Appearance(i, x[i + 1]) = i + 1 for all 0 ≤ i < m. Based on the
construction of the Mx as above, for any input pattern x,

δ(q0, x) = δ(δ(0, x[1]), x[2..m]) = δ(Appearance(0, x[1]), x[2..m])

= δ(Appearance(1, x[2]), x[3..m]) = . . . = δ(Appearance(m− 1, x[m]), ε) = δ(m, ε) = m ∈ F.

Thus Mx accepts x. �

Example 3.6. Consider a pattern x = abcba and the automaton Mx given as in Theorem 3.5, denote
an arbitrary letter, which is not in x, by the symbol #. Then transition function δ is represented by
the following table.

δ a b c #
0 1 0 0 0
1 1 2 0 0
2 1 0 3 0
3 1 4 0 0
4 5 0 0 0
5 1 2 0 0

To make the window slide more regularly while the text is being scanned, we use the breaking points
defined as follows.

Definition 3.7. Let x be a pattern and y be a text over the alphabet Σ. Consider a position i in y
for 1 ≤ i < |y| and the degree of appearance of x in y at positions i and i+1 are q and q′, respectively.
Then the position i is called a breaking point if one of the two following conditions is satisfied.

(a) q = 0,

(b) q′ ≤ q < |x|.

Notice that if only the condition (a) in Definition 3.7 is satisfied, then breaking points are called
type a breaking points.

One of problems that needs to solve in our approach is to avoid scanning each letter of the text
repeatedly. So, we give some terminologies and a concept below.

Given a positive integer c, a string of length c is called a c block. A c block is called (resp. not)
to be in x, denoted by c block ∈ x (resp. c block /∈ x), if the c block is (resp. not) a substring of
x. For a given positive integer c, 1 ≤ c ≤ m and c ≤ i ≤ m, the substring x[i − c + 1..i] is called a
c block of x at position i, denoted by c blocki

x. In particular, c = 1, then c block is only a letter.

Definition 3.8. Let x be a pattern and z be a c block of x, where c is a positive integer for
1 ≤ c ≤ |x|. Let i be some position in x for c ≤ i ≤ |x|. Then i is called the last position of
appearance of z in x, denoted by Pos(z), if z = c blocki

x and ∀j > i, j ≤ |x|, z 6= c blockj
x.

Based on the automaton Mx and the two concepts of the breaking point and Pos, we present the
basic idea of our new approach to exact pattern matching as follows:

1. Use the automaton Mx to reflect and update the degree of appearance of x in y at any position.
If the degree of appearance ofx at some position equals |x|, then mark an occurrence ofx in y.

2. Take advantage of the relationship between the size of the pattern x and the alphabet Σ flexibly,
and use the breaking point. These make our approach flexible and the window be shifted more
regularly to the right by the most possible maximum number of positions with high probability.

204 NGUYEN HUY TRUONG

3. A new window is scanned from left to right. The window scanning process is only started when
the right end c block of the window belongs to x (do the test jump). The first position scanned
in the window (called the backtracking position) depends on the Pos value of the c block and
the initial state of Mx will be set up again. These make our approach scan each letter of the
text at most once and reflect exactly the appearance of a part of the pattern at any position
in the text. The window scanning process will be stopped if the breaking point occurs. At
this moment, one next window is determined (slide the window) and immediately do the next
test jump. Repeat this mechanism until reach out of y. This mechanism helps our approach
to design a pattern matching algorithm effectively.

Figure 3 shows our approach.

The breaking point occurs, do the next test jump Set q = 0

Window

A backtracking position

b,c,#

c,#

a

b,#

a

c,#

a

b

a

b,c,#

c,#

a b c b a 0 1 2 5

0

3

0

4

0

A c_blocky x

y

A c_blocky x, slide the window and do the next test jump

Figure 3. The basic idea of our approach

Based on our approach, we construct a pattern matching algorithm. The pseudo-code for our
algorithm (called the MRc algorithm) is shown as follows.

Algorithm 2 (The MRc algorithm)
Input: Two arbitrary pattern x and text y;
Output: All occurrences of the pattern x in y;
1: q = 0;;
2: jump = |x|;
3: while (jump ≤ |y|) do

4: if (c block
jump
y ∈ x) then

5: bt = Pos(c block
jump
y);

6: if (q == 0) then
7: i = jump− bt+ 1;
8: else if (bt ≤ |x| − q′) then
9: q = 0;
10: i = jump− bt+ 1;
11: else
12: q = q′;
13: i = jump− |x|+ q′ + 1;
14: end if
15: q′ = δ(q, y[i]);
16: do
17: q = q′;
18: if (q == |x|) then
19: Mark an occurrence of x at i− |x|+ 1 in y;
20: end if

A NEW APPROACH TO EXACT PATTERN MATCHING 205

21: i++;
22: if (i ≤ |y| and q 6= 0) then
23: q′ = δ(q′, y[i]);
24: else
25: break;
26: end if
27: while (q 6= 0 and q′ > q or q == |x|);
28: if (q == 0) then
29: jump = i− 1;
30: else
31: jump = i− q′;
32: end if
33: else
34: jump = jump− c+ 1;
35: if (q 6= 0) then
36: q = 0;
37: end if
38: end if
39: jump = jump + |x|;
40: end while

The performing steps of the MRc for c = 1 is illustrated in the following example.

Table 2. The performing steps of the MR1 algorithm

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

y[i] a b a b c b a d a b e e g a t k a u

Jump
Test
Back

jump=5
c ∈ x
i = 3

jump=13
g /∈ x

jump=18
u /∈ x

q=0 Ignore 1 2 3 4 5 0 Ignore

The breaking point occurs, do the next test jump Set q = 0

Window

A backtracking position

b,c,#

c,#

a

b,#

a

c,#

a

b

a

b,c,#

c,#

a b c b a 0 1 2 5

0

3

0

4

0

A c_blocky x

y

A c_blocky x, slide the window and do the next test jump

Figure 4. The transition diagram of Mx, x = abcba

206 NGUYEN HUY TRUONG

Example 3.9. Consider a pattern x = abcba and the automaton Mx given by Theorem 3.5, denote
an arbitrary letter, which is not in x, by the symbol #. Then the transition diagram of Mx is shown
in Figure 4. Here, we use the MR1 to find x in y. It is easy to compute Pos values for the given x
above, Pos(a) = 5, Pos(b) = 4, Pos(c) = 3. Let a text y = ababcbadabeegatkau. Then the whole
process of the pattern matching of the MR1 is presented in Table 2.

The correctness of the MRc algorithm is guaranteed by the following theorem.

Theorem 3.10. For any given pattern x and text y, the MRc algorithm finds all occurrences
of the pattern x in y.

Proof. Assume that the process of the scanning y starts at the position 1 and i is the position being
scanned in y. Algorithm 2 is only correct if the following two cases are true:

(a) The state q of automaton Mx is the degree of appearance of x in y at position i.
(b) The process of the scanning y does not ignore any occurrences of x.

Suppose that if (a) and (b) are true, then when q = m at the position i, this means x occurs at the
position i −m + 1 in y by Definition 2.3, at this time the occurrence is marked immediately by the
block of (18), (19) and (20). So all occurrences of x in y are not never ignored.

Prove (a): The process of the scanning y only occurs if c blockjump
y ∈ x. Starting with i determined

by (5), the block of (6) and (7), (10) and (13), the state of Mx is always initialized newly before
scanning y by (1), (9), (12) and the block of (35), (36) and (37), after each time y is scanned by (15)
and the block of (22) and (23), i increases by one unit by (21) when the conditions in (22) and (27)
hold. Since δ is defined as in Theorem 3.5, this leads to q is always the degree of appearance of x in
y at position i. So (a) is true.

Prove (b): Note that jump is a position in y to test whether or not c blockjump
y is x. If

c blockjump
y /∈ x in (4), then the substring y[jump − m + 1..jump] of length m does not contain

x, but c blockjump+1
y can belong to x. Thus y[jump −m + 1..jump-c+1] must not be scanned by

(2), (34) and (39), it means that the window is shifted to the right by m− c+ 1 letters and jump is

always the left end of this new window. So (b) is true. Conversely, if c blockjump
y ∈ x in (4), then

the next process of the scanning y starts with the new current position i determined by (5), the block
of (6) and (7), (10) and (13). By the Definitions 2.3, 3.8 and the way to determine i, all occurrences
of x are not ignored. Thus (b) is true and the proof is complete. �

The theoretical analyses of the MRc algorithm given in Propositions 3.11, 3.12, 3.13 and Theorem
3.14 are as follows.

Proposition 3.11. Let x be a pattern of length m and y be a text of length n over the alphabet
Σ. Let c be a positive integer constant such that 1 ≤ c ≤ m. Then the MRc algorithm requires

cn

m− c+ 1
letters of y accessed in the best case.

Proof. In the best case all letters of y are not matched in whole process of the pattern matching, y
is only accessed by (4) in the MRc algorithm. Let T (n) be the number of all letters of y accessed by

the MRc algorithm. Since each time (4) is performed and c blockjump
y /∈ x, the window is shifted by

m− c+ 1 positions and c letters of y are accessed. Thus T (n) =
cn

m− c+ 1
. �

Proposition 3.12. Let x be a pattern of length m and y be a text of length n over the alphabet
Σ. Let c be a positive integer constant such that 1 ≤ c ≤ m. Then MRc algorithm requires
n+ 2c letters of y accessed in the worst case.

A NEW APPROACH TO EXACT PATTERN MATCHING 207

Proof. Similarly, as in the proof of Proposition 3.11, T (n) is the number of all letters of y accessed
by the MRc algorithm. The worst case occurs when all letters are matched in whole process of the
pattern matching. By the block of (6) and (7), (15), the block of (22) and (23), and (27), y is scanned
once for every letter, this implies that n letters are accessed. Clearly, the two statements (4) and (5)
in the MRc algorithm are only performed once in the whole process of the matching, then there are
2c letters of y accessed by them. Thus T (n) = n+ 2c. �

We use the notation p to denote the probability of an arbitrary event.

Proposition 3.13. Let x be a pattern of length m over the alphabet Σ. If |Σ| ≥ 4 and 8 ≤ m ≤
2048, then there exists c, 1 ≤ c ≤ 8 such that for an arbitrary c block z over the alphabet Σ,
p(z ∈ x) ≤ 2−5 with a uniform distribution over the alphabet Σ.

Proof. Set P = p(z ∈ x). Let d be the number of different c blocks in x. Then for a uniform
distribution over Σ, clearly we have

P = p(z ∈ x) =
d

|Σ|c
≤ m− c+ 1

|Σ|c
.

Consider the case 1 ≤ c, then

P ≤ m

|Σ|c
.

To have P ≤ 2−5, we let
m

|Σ|c
≤ 2−5,

or equivalently
2−5|Σ|c ≥ m. (3.2)

For (3.2) hold with |Σ| ≥ 4 and 8 ≤ m ≤ 2048, we choose c, 1 ≤ c ≤ 8 such that 22c−5 ≥ m. Let
22c−5 ≥ 2048, then we can choose c = 8. �

Theorem 3.14. Let x be a pattern of length m and y be a text of length n over the alphabet
Σ. Let T (n) be the number of all letters of y accessed by the MRc algorithm. If |Σ| ≥ 4, 16 ≤
m ≤ 2048 or |Σ| ≥ 32, 8 ≤ m ≤ 2048, then there exists c, 1 ≤ c ≤ 8 such that the two following
conditions are satisfied with a uniform distribution over Σ.

(a) T (n) < n,
(b) p(z ∈ x) ≤ 2−5, where z is an arbitrary c block over the alphabet Σ.

Proof. Let S be the set of all letters of y scanned by (15) and the block of (22) and (23). Let I be the
set of all unscanned letters of y. Actually, I consists of (m− c+ 1) blocks or (m− q − c+ 1) blocks,
where q is a degree of appearance of x in y at a position after some breaking point. Note that (13)
helps the MRc algorithm to avoid scanning y again, it means that any letter is only scanned once.
Thus n = |S|+ |I|.

Let T1 (resp. T2) be the set of all c blocks of y tested by (4) such that these c blocks /∈ x
(resp. c blocks ∈ x) and BT be the set of all c blocks of y accessed by (5). Clearly, in the case a
c block ∈ x, this c block is both always accessed only once by (4) and (5). Thus T2 = BT . Then
T (n) = |S|+ |T1|+ |T2|+ |BT | = n− |I|+ |T1|+ 2|T2|.

Set P = p(z ∈ x), then p(z /∈ x) = 1− P .
Suppose that c is chosen so that (b) satisfies. Then clearly, P � 1 − P . This implies that

|T2| � |T1|. Thus we can remove 2|T2| in the formula of T (n). So the new formula of T (n) is
n − |I| + |T1| given P � 1 − P . Obviously, by the block of (28) and (29), the block of (30) and
(31), (34) and (39), an arbitrary c block ∈ T1 corresponds to one to one either (m-c+1) block or

208 NGUYEN HUY TRUONG

(m-q-c+1) block belonging to I. Then to have T (n) < n, we need |T1| < |I|, this means m−c+1 > c
and m− q− c+ 1 > c. For given P � 1−P , then q < c, thus m− 2c+ 1 < m− q− c+ 1. Therefore

c < m− c+ 1⇒ c <
m+ 1

2
.

To have m− q − c+ 1 > c, we let

c < m− 2c+ 1⇒ c <
m+ 1

3
.

Since
m+ 1

3
<
m+ 1

2
, thus to have T (n) < n with supposing that given P � 1 − P , we need to

choose c such that

1 ≤ c < m+ 1

3
. (3.3)

Now, to have (b), similarly, as in the proof of Proposition 3.13, we need to have (3.2). By the
hypotheses of Σ and m, we can choose c such that (3.3) and (b) hold as follows.

• The case |Σ| ≥ 4; 16 ≤ m ≤ 32: Let 22c−5 ≥ 32 (c holds (b)) and to satisfy (3.3), we can only choose
c = 5.

• The case |Σ| ≥ 4; 32 < m ≤ 2048: Let 22c−5 ≥ 2048, then choose c = 8.

• The case |Σ| ≥ 32; 8 ≤ m ≤ 16: Let 25c−5 ≥ 16, then choose c = 2.

• The case |Σ| ≥ 32; 16 < m ≤ 2048: Let 25c−5 ≥ 2048, then choose c = 4.

We complete the proof. �

From the theoretical analyses in Propositions 3.11, 3.12, 3.13 and Theorem 3.14, we can provide

an explanation of why the MRc algorithm seems to be better for large alphabets and the length of

the text when comparing with other methods [12] as follows.

• First, according to our knowledge, the 10 algorithms have some common features: they first

do not take advantage of the relationship between the size of the pattern and the alphabet,

then they are not flexible to shift the window regularly to the right by the most possible

maximum number of positions with high probability (except for HASHq, SBNDMq). Next,

the appearance of a part of the pattern is not immediately reflected or updated at a position

being scanned in the text, hence when the windows overlap, the letters of the text can be

scanned more than once (except for SA, but this algorithm does not use the sliding window

mechanism).

• Second, the MRc algorithm never scans any letter of the text more than once (proof of Theorem

3.14).

• Third, in our approach, shifting the window depends on the probability

P =
d

|Σ|c
,

where d is the number of different c blocks in the pattern, |Σ| is the size of the alphabet, c is a

positive integer, 1 ≤ c ≤ m, m is the length of the pattern (proof of Proposition 3.13). If P is

small, then sliding the window will usually occurs. For a given pattern, d is a constant. Hence,

A NEW APPROACH TO EXACT PATTERN MATCHING 209

P is only small if |Σ|c is big. Suppose Σ is a large alphabet, then by Proposition 3.13 and

Theorem 3.14, the constant c can be small such that |Σ|c is still big. On the other hand, when

c is small, the size of a c block will be small. It follows the number of letters of all c blocks

accessed will be reduced (proofs of Propositions 3.11, 3.12, 3.13 and Theorem 3.14). Then the

total number of letters of the text accessed decreases. In addition, each time the window is

shifted, the number of letters of the text which are ignored is m− c+ 1 or m− q− c+ 1, where

q is a degree of appearance of the pattern in the text at a position after some breaking point

(proof of Theorem 3.14). For c is small, m− c+ 1 or m− q− c+ 1 will be small, then the total

number of letters of the text accessed also decreases.

In brief, MRc will be more efficient for large alphabets. Further, obviously, if the length of the

text is large, then MRc takes the advantage of shifting the window the most effectively.

4. EXPERIMENTAL RESULTS

In this section, we make a number of experiments to compare the MRc algorithm with 10 algo-

rithms whose codes can be found at http://www.dmi.unict.it/∼faro/smart/ [12]. We used test data

of Faro et al. [12] and generated new test data for the alphabet of size 256 to determine the fastest

algorithms.

All algorithms are implemented in the C# programming language, compiled Microsoft Visual

Studio 2010. We ran experiments in 64-bit Operating System (Win 7), Intel Core I3, 2.20GHz, 4 GB

RAM.

We used the MRc algorithm with the 9 following versions:

• MR1: c = 1, use the type a breaking point.

• MR1-Pos: c = 1, use the type a breaking point and Pos.

• MR2: c = 2, use the type a breaking point.

• MR2-Pos: c = 2, use the type a breaking point and Pos.

• MR2-Pos-Breaking: c = 2, use the breaking point and Pos.

• MRc: c = 3, 4, 5, 8, use the breaking point and Pos.

We used the following test data:

• For each alphabet Σ, |Σ| = 4, 8, 16, 32, 64, 128, we use a text y over the Σ with a uniform

distribution of letters consisted in a rand|Σ| file of length 5MB. In cases |Σ| = 4, 20, we addi-

tionally use files containing genome and protein sequences. All these files can be downloaded

from website http://www.dmi.unict.it/∼faro/smart/corpus.php [12]. Just because the rand256

file corresponding to the alphabet of size 256 is not available now on this website, it follows

that we must use a text y which is a file of length about 24MB to ensure randomness of the

text and consider the value of each byte of the file to be a code of a letter of the alphabet of

size 256.

• For each text y over the alphabet Σ with |Σ| = 4, 8, 16, 20, 32, 64, 128 (resp. 256), we generate

sets of 400 (resp. 83) patterns of fixed length m randomly extracted from the text, for m

ranging over the values 8, 16, 32, 64, 128, 256, 512, 1024 and 2048.

• For each set of patterns over the alphabet Σ with |Σ| = 4, 8, 16, 20, 32, 64, 128 (resp. 256), the

mean over the running times of the 400 (resp. 83) runs is reported in a table.

210 NGUYEN HUY TRUONG

Experimental results are presented in the following tables. Each table corresponds to a size of an

alphabet. The rows 3 through 17 of all tables are results of 10 algorithms [12]. The rest of the tables

are results of our algorithm. Running times are expressed in seconds. The best results are printed in

bold.

According to our experimental results as below, our MRc algorithm is the fastest in most of the

cases of given patterns and alphabets, except for the following cases:

• |Σ| = 4,m = 32: SBNDM4 is the fastest (for Rand4 and Genome Sequence).

• |Σ| = 8,m = 8: SBNDM2 is the fastest.

• |Σ| = 20,m = 32: SBNDM2 is the fastest (for Protein Sequence).

• |Σ| = 64,m = 2048: TVSBS, SBNDM6, SBNDM8 are similar to MR2.

• |Σ| = 128,m = 2048: SBNDM4, SBNDM6 are similar to MR2 and MR2-Pos.

1

Experimental Results on Rand4 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0694 0.0734 0.0688 0.0670 0.0606 0.0607 0.0587 0.0512 0.0450

TVSBS 0.0453 0.0365 0.0294 0.0270 0.0258 0.0263 0.0244 0.0252 0.0223

SA 0.0695 0.0802 0.0806 - - - - - -

BMH-SBNDM 0.0534 0.0423 0.0275 0.0191 0.0134 0.0124 0.0067 0.0037 0.0018

EBOM 0.0405 0.0310 0.0193 0.0116 0.0070 0.0047 0.0024 0.0014 0.0009

AOSO 0.1355 0.0617 0.0155 0.0702 0.1939 0.3102 0.3534 0.3703 0.3680

FSBNDM 0.0334 0.0207 0.0118 0.0093 0.0082 0.0095 0.0049 0.0024 0.0013

HASH3 0.0418 0.0247 0.0175 0.0144 0.0135 0.0126 0.0111 0.0111 0.0115

HASH5 0.0844 0.0332 0.0165 0.0097 0.0069 0.0058 0.0045 0.0044 0.0046

HASH8 0.0334 0.0574 0.0220 0.0107 0.0062 0.0047 0.0032 0.0029 0.0029

SBNDM2 0.0311 0.0203 0.0119 0.0095 0.0085 0.0093 0.0052 0.0025 0.0013

SBNDM4 0.0356 0.0165 0.0086 0.0085 0.0079 0.0084 0.0049 0.0025 0.0013

SBNDM6 0.0801 0.0254 0.0109 0.0067 0.0073 0.0082 0.0049 0.0023 0.0012

SBNDM8 0.3083 0.0399 0.0151 0.0073 0.0069 0.0079 0.0046 0.0023 0.0012

LBNDM 0.0385 0.0254 0.0150 0.0131 0.0131 0.0465 0.2750 0.2488 0.2041

MR3 0.0301 0.0210 0.0170 0.0130 0.0110 0.0106 0.0102 0.0103 0.0093

MR4 0.0291 0.0145 0.0088 0.0059 0.0048 0.0043 0.0038 0.0036 0.0034

MR8 0.4603 0.0311 0.0123 0.0061 0.0031 0.0021 0.0013 0.0006 0.0004

A NEW APPROACH TO EXACT PATTERN MATCHING 211

2

Experimental Results on Rand8 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0379 0.0293 0.0262 0.0269 0.0254 0.0235 0.0228 0.0218 0.0202

TVSBS 0.0256 0.0161 0.0101 0.0069 0.0054 0.0049 0.0050 0.0049 0.0050

SA 0.0679 0.0698 0.0714 - - - - - -

BMH-SBNDM 0.0316 0.0231 0.0181 0.0146 0.0105 0.0081 0.0064 0.0042 0.0023

EBOM 0.0207 0.0131 0.0092 0.0063 0.0041 0.0028 0.0017 0.0011 0.0007

AOSO 0.0797 0.0234 0.0130 0.0281 0.1143 0.1276 0.2526 0.3590 0.3639

FSBNDM 0.0202 0.0120 0.0076 0.0053 0.0041 0.0042 0.0043 0.0026 0.0013

HASH3 0.0380 0.0193 0.0112 0.0081 0.0064 0.0060 0.0057 0.0055 0.0053

HASH5 0.0817 0.0299 0.0137 0.0077 0.0046 0.0039 0.0032 0.0029 0.0027

HASH8 0.0202 0.0549 0.0211 0.0104 0.0058 0.0044 0.0036 0.0032 0.0031

SBNDM2 0.0185 0.0112 0.0073 0.0052 0.0042 0.0044 0.0044 0.0028 0.0013

SBNDM4 0.0350 0.0142 0.0067 0.0038 0.0038 0.0036 0.0042 0.0027 0.0013

SBNDM6 0.0815 0.0232 0.0097 0.0048 0.0030 0.0034 0.0041 0.0026 0.0012

SBNDM8 0.3151 0.0365 0.0135 0.0064 0.0033 0.0032 0.0041 0.0027 0.0012

LBNDM 0.0280 0.0153 0.0092 0.0069 0.0057 0.0058 0.0177 0.1579 0.1637

MR3 0.0199 0.0095 0.0053 0.0035 0.0027 0.0024 0.0022 0.0020 0.0020

MR4 0.0266 0.0107 0.0052 0.0029 0.0019 0.0012 0.0008 0.0006 0.0006

MR5 0.0402 0.0142 0.0068 0.0034 0.0023 0.0012 0.0007 0.0006 0.0005

3

Experimental Results on Rand16 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0309 0.0188 0.0149 0.0139 0.0135 0.0136 0.0129 0.0121 0.0117

TVSBS 0.0232 0.0127 0.0073 0.0043 0.0030 0.0027 0.0021 0.0019 0.0019

SA 0.0778 0.0716 0.0758 - - - - - -

BMH-SBNDM 0.0261 0.0156 0.0121 0.0100 0.0084 0.0071 0.0053 0.0043 0.0031

EBOM 0.0185 0.0091 0.0054 0.0038 0.0031 0.0022 0.0013 0.0009 0.0007

AOSO 0.0542 0.0161 0.0136 0.0177 0.0777 0.0654 0.1640 0.2401 0.3519

FSBNDM 0.0178 0.0090 0.0051 0.0040 0.0029 0.0025 0.0023 0.0020 0.0014

HASH3 0.0396 0.0184 0.0094 0.0058 0.0043 0.0039 0.0035 0.0033 0.0031

HASH5 0.0881 0.0297 0.0135 0.0068 0.0040 0.0033 0.0027 0.0024 0.0024

HASH8 0.0178 0.0539 0.0204 0.0101 0.0056 0.0044 0.0035 0.0031 0.0030

SBNDM2 0.0172 0.0086 0.0048 0.0038 0.0030 0.0026 0.0023 0.0020 0.0014

SBNDM4 0.0391 0.0149 0.0068 0.0035 0.0024 0.0023 0.0021 0.0021 0.0013

SBNDM6 0.0901 0.0249 0.0102 0.0048 0.0027 0.0017 0.0020 0.0020 0.0013

SBNDM8 0.3498 0.0385 0.0141 0.0063 0.0033 0.0018 0.0018 0.0019 0.0013

LBNDM 0.0252 0.0137 0.0070 0.0048 0.0036 0.0034 0.0034 0.0091 0.1012

MR2 0.0148 0.0075 0.0050 0.0039 0.0036 0.0037 0.0046 0.0172 0.2119

MR3 0.0213 0.0087 0.0063 0.0036 0.0018 0.0011 0.0007 0.0006 0.0005

MR4 0.0332 0.0123 0.0045 0.0025 0.0022 0.0013 0.0007 0.0006 0.0004

212 NGUYEN HUY TRUONG

4

Experimental Results on Rand32 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0222 0.0126 0.0087 0.0069 0.0058 0.0057 0.0059 0.0056 0.0055

TVSBS 0.0180 0.0100 0.0055 0.0031 0.0025 0.0018 0.0012 0.0008 0.0006

SA 0.0646 0.0637 0.0638 - - - - - -

BMH-SBNDM 0.0189 0.0109 0.0070 0.0053 0.0046 0.0044 0.0038 0.0033 0.0026

EBOM 0.0144 0.0069 0.0038 0.0023 0.0018 0.0012 0.0008 0.0008 0.0006

AOSO 0.0292 0.0123 0.0117 0.0126 0.0433 0.0252 0.0980 0.1044 0.2051

FSBNDM 0.0132 0.0067 0.0036 0.0025 0.0021 0.0014 0.0012 0.0010 0.0006

HASH3 0.0347 0.0153 0.0075 0.0042 0.0029 0.0026 0.0022 0.0020 0.0019

HASH5 0.0735 0.0253 0.0115 0.0059 0.0035 0.0028 0.0023 0.0021 0.0021

HASH8 0.0132 0.0509 0.0189 0.0088 0.0050 0.0039 0.0032 0.0029 0.0028

SBNDM2 0.0140 0.0067 0.0035 0.0023 0.0020 0.0015 0.0013 0.0010 0.0010

SBNDM4 0.0333 0.0128 0.0059 0.0030 0.0020 0.0012 0.0011 0.0009 0.0006

SBNDM6 0.0773 0.0211 0.0087 0.0041 0.0023 0.0013 0.0008 0.0009 0.0006

SBNDM8 0.2988 0.0331 0.0121 0.0055 0.0028 0.0015 0.0008 0.0008 0.0006

LBNDM 0.0162 0.0105 0.0059 0.0033 0.0026 0.0021 0.0017 0.0017 0.0044

MR2 0.0097 0.0051 0.0029 0.0021 0.0015 0.0010 0.0008 0.0009 0.0011

MR2-Pos-Breaking 0.0130 0.0063 0.0035 0.0023 0.0017 0.0013 0.0012 0.0010 0.0006

MR3 0.0188 0.0083 0.0043 0.0024 0.0017 0.0009 0.0005 0.0004 0.0003

5

Experimental Results on Rand64 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0204 0.0109 0.0065 0.0044 0.0040 0.0038 0.0037 0.0037 0.0038

TVSBS 0.0176 0.0098 0.0054 0.0030 0.0022 0.0014 0.0008 0.0006 0.0004

SA 0.0644 0.0639 0.0638 - - - - - -

BMH-SBNDM 0.0171 0.0097 0.0056 0.0037 0.0036 0.0034 0.0032 0.0030 0.0025

EBOM 0.0153 0.0069 0.0038 0.0021 0.0016 0.0010 0.0006 0.0006 0.0006

AOSO 0.0202 0.0118 0.0117 0.0120 0.0277 0.0154 0.0691 0.0545 0.1360

FSBNDM 0.0126 0.0064 0.0034 0.0022 0.0016 0.0012 0.0008 0.0006 0.0005

HASH3 0.0375 0.0164 0.0080 0.0044 0.0028 0.0024 0.0020 0.0018 0.0018

HASH5 0.0741 0.0252 0.0113 0.0058 0.0035 0.0028 0.0023 0.0021 0.0021

HASH8 0.0126 0.0481 0.0176 0.0086 0.0049 0.0038 0.0031 0.0027 0.0027

SBNDM2 0.0137 0.0065 0.0033 0.0020 0.0015 0.0011 0.0008 0.0006 0.0005

SBNDM4 0.0331 0.0127 0.0059 0.0030 0.0020 0.0011 0.0006 0.0006 0.0005

SBNDM6 0.0770 0.0211 0.0087 0.0041 0.0024 0.0013 0.0007 0.0005 0.0004

SBNDM8 0.3013 0.0335 0.0123 0.0055 0.0029 0.0016 0.0009 0.0006 0.0004

LBNDM 0.0132 0.0081 0.0053 0.0032 0.0021 0.0015 0.0013 0.0010 0.0010

MR1 0.0125 0.0094 0.0087 0.0085 0.0119 0.0743 0.1820 0.1857 0.1852

MR2 0.0124 0.0060 0.0031 0.0018 0.0013 0.0007 0.0005 0.0004 0.0004

MR2-Pos-Breaking 0.0132 0.0063 0.0034 0.0020 0.0014 0.0009 0.0006 0.0005 0.0005

A NEW APPROACH TO EXACT PATTERN MATCHING 213

6

Experimental Results on Rand128 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0191 0.0102 0.0056 0.0035 0.0032 0.0029 0.0026 0.0027 0.0026

TVSBS 0.0175 0.0100 0.0055 0.0032 0.0024 0.0013 0.0008 0.0006 0.0004

SA 0.0637 0.0638 0.0637 - - - - - -

BMH-SBNDM 0.0164 0.0090 0.0048 0.0030 0.0030 0.0027 0.0024 0.0024 0.0024

EBOM 0.1992 0.0070 0.0037 0.0022 0.0016 0.0009 0.0006 0.0005 0.0005

AOSO 0.0160 0.0118 0.0115 0.0118 0.0199 0.0128 0.0438 0.0255 0.0974

FSBNDM 0.0123 0.0063 0.0033 0.0020 0.0014 0.0008 0.0007 0.0005 0.0004

HASH3 0.0380 0.0166 0.0082 0.0044 0.0028 0.0025 0.0020 0.0018 0.0018

HASH5 0.0759 0.0257 0.0115 0.0059 0.0035 0.0029 0.0023 0.0021 0.0021

HASH8 0.0123 0.0476 0.0177 0.0086 0.0048 0.0038 0.0030 0.0027 0.0027

SBNDM2 0.0136 0.0065 0.0033 0.0019 0.0014 0.0008 0.0006 0.0004 0.0004

SBNDM4 0.0329 0.0128 0.0059 0.0029 0.0020 0.0011 0.0006 0.0004 0.0003

SBNDM6 0.0765 0.0211 0.0087 0.0042 0.0024 0.0013 0.0007 0.0005 0.0003

SBNDM8 0.2958 0.0331 0.0121 0.0046 0.0028 0.0016 0.0009 0.0006 0.0004

LBNDM 0.0115 0.0067 0.0042 0.0029 0.0020 0.0012 0.0009 0.0007 0.0005

MR1 0.0098 0.0064 0.0049 0.0046 0.0046 0.0066 0.0335 0.1793 0.1893

MR2 0.0119 0.0058 0.0030 0.0018 0.0013 0.0011 0.0004 0.0003 0.0003

MR2-Pos 0.0123 0.0060 0.0031 0.0018 0.0013 0.0007 0.0004 0.0003 0.0003

7

Experimental Results on Rand256 Problem

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0905 0.0456 0.0246 0.0142 0.0116 0.0103 0.0099 0.0087 0.0085

TVSBS 0.0888 0.0518 0.0306 0.0180 0.0117 0.0064 0.0039 0.0030 0.0019

SA 0.2998 0.2990 0.2988 - - - - - -

BMH-SBNDM 0.0753 0.0386 0.0208 0.0124 0.0112 0.0099 0.0093 0.0081 0.0080

EBOM 0.0713 0.0350 0.0196 0.0114 0.0074 0.0045 0.0027 0.0017 0.0012

AOSO 0.0651 0.0549 0.0550 0.0548 0.0739 0.0560 0.1343 0.0737 0.3248

FSBNDM 0.0570 0.0290 0.0152 0.0093 0.0063 0.0037 0.0023 0.0019 0.0013

HASH3 0.2111 0.0756 0.0370 0.0200 0.0131 0.0109 0.0087 0.0082 0.0083

HASH5 0.3354 0.1153 0.0525 0.0271 0.0160 0.0131 0.0106 0.0100 0.0103

HASH8 0.0570 0.1554 0.0848 0.0397 0.0224 0.0176 0.0137 0.0125 0.0124

SBNDM2 0.0637 0.0303 0.0154 0.0088 0.0063 0.0039 0.0022 0.0017 0.0012

SBNDM4 0.1539 0.0596 0.0277 0.0139 0.0094 0.0052 0.0030 0.0021 0.0012

SBNDM6 0.3585 0.0992 0.0410 0.0194 0.0109 0.0062 0.0035 0.0025 0.0016

SBNDM8 1.3897 0.2292 0.0568 0.0256 0.0132 0.0074 0.0042 0.0029 0.0016

LBNDM 0.0506 0.0276 0.0163 0.0112 0.0083 0.0055 0.0034 0.0026 0.0017

MR1 0.0394 0.0235 0.0160 0.0134 0.0121 0.0127 0.0159 0.0404 0.6889

MR1-Pos 0.0407 0.0248 0.0170 0.0131 0.0115 0.0121 0.0101 0.0098 0.0102

MR2 0.0582 0.0281 0.0146 0.0087 0.0062 0.0033 0.0020 0.0013 0.0008

MR2-Pos 0.0628 0.0309 0.0172 0.0106 0.0067 0.0036 0.0021 0.0014 0.0010

214 NGUYEN HUY TRUONG

8

Experimental Results on a Genome Sequence (with = 4)

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0611 0.0540 0.0491 0.0459 0.0453 0.0433 0.0430 0.0433 0.0405

TVSBS 0.0388 0.0268 0.0207 0.0182 0.0180 0.0181 0.0181 0.0180 0.0183

SA 0.0594 0.0587 0.0580 - - - - - -

BMH-SBNDM 0.0462 0.0314 0.0198 0.0130 0.0097 0.0087 0.0054 0.0029 0.0015

EBOM 0.0355 0.0233 0.0141 0.0082 0.0051 0.0033 0.0020 0.0012 0.0008

AOSO 0.1181 0.0466 0.0112 0.0498 0.1370 0.2139 0.2886 0.2996 0.3001

FSBNDM 0.0291 0.0157 0.0088 0.0067 0.0058 0.0067 0.0041 0.0020 0.0011

HASH3 0.0366 0.0191 0.0126 0.0101 0.0091 0.0090 0.0087 0.0087 0.0089

HASH5 0.0684 0.0241 0.0117 0.0069 0.0047 0.0040 0.0037 0.0036 0.0035

HASH8 0.0291 0.0454 0.0166 0.0081 0.0046 0.0036 0.0028 0.0025 0.0025

SBNDM2 0.0278 0.0159 0.0090 0.0069 0.0059 0.0068 0.0043 0.0021 0.0010

SBNDM4 0.0312 0.0128 0.0065 0.0062 0.0055 0.0062 0.0041 0.0021 0.0010

SBNDM6 0.0703 0.0192 0.0080 0.0048 0.0051 0.0060 0.0040 0.0020 0.0010

SBNDM8 0.2723 0.0300 0.0110 0.0051 0.0049 0.0059 0.0039 0.0019 0.0010

LBNDM 0.0350 0.0196 0.0111 0.0091 0.0090 0.0331 0.2007 0.1977 0.1600

MR3 0.0269 0.0167 0.0126 0.0097 0.0080 0.0074 0.0072 0.0074 0.0073

MR4 0.0268 0.0117 0.0068 0.0047 0.0038 0.0034 0.0029 0.0027 0.0026

MR8 0.2044 0.0234 0.0096 0.0087 0.0029 0.0013 0.0008 0.0005 0.0004

9

Experimental Results on a Protein Sequence (with = 20)

m 8 16 32 64 128 256 512 1024 2048

FJS 0.0161 0.0100 0.0080 0.0063 0.0054 0.0052 0.0053 0.0051 0.0047

TVSBS 0.0124 0.0069 0.0040 0.0024 0.0017 0.0014 0.0014 0.0009 0.0008

SA 0.0413 0.0406 0.0407 - - - - - -

BMH-SBNDM 0.0138 0.0083 0.0058 0.0045 0.0039 0.0033 0.0026 0.0022 0.0016

EBOM 0.0097 0.0050 0.0029 0.0020 0.0016 0.0011 0.0007 0.0006 0.0004

AOSO 0.0284 0.0089 0.0075 0.0094 0.0413 0.0315 0.0811 0.1112 0.1734

FSBNDM 0.0094 0.0049 0.0028 0.0021 0.0016 0.0013 0.0011 0.0009 0.0007

HASH3 0.0221 0.0098 0.0051 0.0031 0.0021 0.0019 0.0018 0.0016 0.0016

HASH5 0.0484 0.0159 0.0073 0.0038 0.0023 0.0018 0.0015 0.0013 0.0014

HASH8 4.7711 0.0320 0.0122 0.0057 0.0032 0.0024 0.0019 0.0017 0.0018

SBNDM2 0.0094 0.0047 0.0026 0.0019 0.0017 0.0015 0.0011 0.0009 0.0007

SBNDM4 0.0210 0.0081 0.0038 0.0019 0.0013 0.0011 0.0010 0.0009 0.0007

SBNDM6 0.0488 0.0135 0.0056 0.0027 0.0015 0.0009 0.0009 0.0009 0.0007

SBNDM8 4.7711 0.0210 0.0076 0.0035 0.0018 0.0010 0.0008 0.0008 0.0006

LBNDM 0.0130 0.0076 0.0039 0.0027 0.0020 0.0017 0.0016 0.0021 0.0120

MR2 0.0086 0.0045 0.0028 0.0021 0.0018 0.0016 0.0017 0.0022 0.0046

MR2-Pos-Breaking 0.0092 0.0049 0.0031 0.0022 0.0018 0.0016 0.0013 0.0012 0.0012

MR3 0.0120 0.0053 0.0027 0.0015 0.0010 0.0007 0.0005 0.0004 0.0003

From the above tables, we know that experiment results are suitable for the theoretical analyses

A NEW APPROACH TO EXACT PATTERN MATCHING 215

in Section 3. It means that we can choose at least one appropriate constant c for the MRc algorithm

for the given patterns and texts. This leads to the flexibility of our approach.

5. CONCLUSIONS

By using the automaton Mx to reflect and update the degrees of appearance of x in y at all positions,

and taking advantage of the relationship between the size of the pattern x and the alphabet Σ,

our approach is flexible to design the MRc algorithm for the exact pattern matching problem. The

effectiveness of MRc is expressed in two main features as follows. It never scans an arbitrary letter

of the text repeatedly. In the cases of |Σ| ≥ 4, 16 ≤ m ≤ 2048 and |Σ| ≥ 32, 8 ≤ m ≤ 2048, we

always choose a constant c with 1 ≤ c ≤ 8 such that T (n) < n and p(z ∈ x) ≤ 2−5 hold, where

z is an arbitrary c block over the alphabet Σ. In addition, experimental results comparing with 10

algorithms [12] also show the efficiency of our approach in practice.

The appearance of a part of the pattern is immediately reflected or updated at any position being

scanned in the text, so our approach can be applied to secure data environment. This issue will be

presented in the next works.

ACKNOWLEDGMENT

The author is extremely grateful to Late Assoc. Prof. Phan Trung Huy, Assoc. Prof. Phan Thi

Ha Duong and Dr. Vu Thanh Nam for their valuable suggestions and encouragements.

The author also gives thanks to the reviewers for their worthy comments, which improve the

quality of the paper.

REFERENCES

[1] C. Allauzen, M. Crochemore, M. Raffinot, “Factor oracle: A new structure for pattern mat-

ching,” SOFSEM 1999: Theory and Practice of Informatics, Czech Republic, November 27

- December 4, 1999, pp. 295–310. Doi: https://doi.org/10.1007/3-540-47849-3 18

[2] R. Baeza-Yates, G. H. Gonnet, “A new approach to text searching,” Communications of the

ACM, vol. 35, no. 10, pp. 74–82, 1992.

[3] T. Berry, S. Ravindran, “Fast string matching algorithm and experimental results,” A Procee-

dings of the Prague Stringology Club Workshop ’99, Collaborative Report DC-99-05, Czech

Technical University, Prague, pp. 16–26, 2001.

[4] J. Berstel, D. Perrin, Theory of Codes. Academic Press, pp. 5–6, 1985.

[5] A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, J. I. Seiferas, “The smallest

automaton recognizing the subwords of a text,” Theoretical Computer Science, vol. 40, pp.

31–55, 1985.

[6] R. S. Boyer, J. S. Moore, “A fast string searching algorithm,” Communications of the ACM,

vol. 20, no. 10, pp. 762–772, 1977.

[7] D. Cantone, S. Faro, “Fast-search algorithms: New efficient variants of the Boyer-Moore pattern-

matching algorithm,” J. Autom. Lang. Comb., vol. 10, no. 5/6, pp. 589–608, 2005.

216 NGUYEN HUY TRUONG

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms. (Second

edition), MIT Press, Chapter 32, 2001.

[9] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, pp. 79–142, 1994.

[10] B. Durian, J. Holub, H. Peltola, J. Tarhio, “Tuning BNDM with q-grams,” Proceeding Procee-

dings of the Meeting on Algorithm Engineering & Expermiments, New York, January 03 -

03, 2009. Pages 29-37.

[11] S. Faro, T. Lecroq, “Efficient variants of the backward-oracle-matching algorithm,” Internatio-

nal Journal of Foundations of Computer Science, vol. 20, no. 6, pp. 967–984, 2009.

[12] S. Faro, T. Lecroq, “The exact online string matching problem: A review of the most recent

results,” ACM Computing Surveys, vol. 45, no. 2, Article 13, 2013.

[13] F. Franek, C. G. Jennings, W. F. Smyth, “A simple fast hybrid pattern-matching algorithm,”

Journal of Discrete Algorithms, vol. 5, no. 4, pp. 682–695, 2007.

[14] K. Fredriksson, S. Grabowski, “Practical and optimal string matching,” String Processing and

Information Retrieval 12th International Conference, SPIRE 2005, Buenos Aires, Argen-

tina, November 2–4, 2005. Proceedings. Doi: https://doi.org/10.1007/11575832 42

[15] J. Holub, B. Durian, “Fast Variants of Bit Parallel Approach to Suffix Automata,” Stringology

Research Workshop’2005, 2005.

[16] R. N. Horspool, “Practical fast searching in strings,” Software Practice and Experience, vol.

10, no. 6, pp. 501–506, 1980.

[17] N. T. T. Huyen, P. T. Huy, “Fuzzy approach in some pattern matching algorithms,” J. of

Computer Science and Cybernetics, vol. 18, no. 3, pp. 201–210, 2002.

[18] D. E. Knuth, J. H. Morris, Jr., V. R. Pratt, “Fast pattern matching in strings,” SIAM J.

Comput., vol. 6, no. 2, pp. 323–350, 1977.

[19] T. Lecroq, “Fast exact string matching algorithms,” Information Processing Letters, vol. 102,

no. 6, pp. 229–235, 2007.

[20] G. Navarro, M. Raffinot, “Fast and flexible string matching by combining bit-parallelism and

suffix automata,” ACM Journal of Experimental Algorithmics (JEA), vol. 5, no. 4, Article

4, 2000.

[21] H. Peltola, J. Tarhio, “Alternative Algorithms for Bit-Parallel String Matching”, String Proces-

sing and Information Retrieval, 10th International Symposium, SPIRE 2003. Proceedings,

Manaus, Brazil, October 8–10, 2003, pp. 80–93.

[22] K. Ruohonen, “Formal Languages,” Tampere University of Technology, pp. 1–3, 2009.

[23] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan, K. Sekar, “A fast pattern matching

algorithm,” J. Chem. Inf. Comput. Sci., vol. 44, no. 4, pp. 1251–1256, 2004.

[24] D. M. Sunday, “A very fast substring search algorithm,” Communications of the ACM, vol.

33, no. 8, pp. 132–142, 1990.

[25] R. Thathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan, K. Sekar, “TVSBS: A fast exact

pattern matching algorithm for biological sequences,” Current Sci., vol, 91, no. 1, pp. 47–53,

2006.

[26] S. Wu, U. Manber, “A fast algorithm for multi-pattern searching,” Technical Report TR-94-17,

University of Arizona, Tucson, 1994.

Received on February 19, 2019

Revised on August 08, 2019

	INTRODUCTION
	PRELIMINARIES
	THE NEW ALGORITHM - THE MRc ALGORITHM
	EXPERIMENTAL RESULTS
	CONCLUSIONS

