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Abstract. For multivariate Besov-type classes Uge of functions having nonuniform mixed

smoothness a € Ri, we obtain the asumptotic order of entropy numbers en(Uﬁe, L,) and non-
linear widths pn(U;’g, L,) defined via pseudo-dimension. We obtain also the asymptotic order of
optimal methods of adaptive sampling recovery in Lg-norm of functions in US’ g by sets of a finite
capacity which is measured by their cardinality or pseudo-dimension.

Keywords. Besov-Type Spaces; Linear Sampling Recovery; Nonlinear Adaptive Sampling
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1. INTRODUCTION

We are interested in nonlinear approximations of multivariate functions having a given
mixed smoothness and their optimality in terms of entropy numbers €, (W, L,) and non-linear
widths py, (W, L) defined via pseudo-dimension. The problem of €, (W, L) has a long history
and there have been many papers devoted to it. We refer the reader to the book [7] for a
survey and bibliography therein. The non-linear widths p, (W, L,) has been introduced in
[12, 13] and investigated there for classical Sobolev classes of functions. In [3], Dinh Dung has
investigated optimal non-linear approximations by sets of a finite capacity which is measured
by their cardinality or pseudo-dimension, of multivariate periodic functions having uniform
Besov mixed smoothness » > 0. In the present paper, we extend these results to multivariate
Besov-type classes Uso of functions having nonuniform mixed smoothness a € R‘i and the
problems of entropy numbers en(Uﬁe,Lq) and non-linear widths p”(Uz?ﬁ’Lq)' Moreover,
generalizing the results in [1, 4, 5, 6] on adaptive sampling recovery, we obtain the asymptotic
order of optimal methods of adaptive sampling recovery of functions in U7, by sets of a finite
capacity which is measured by their cardinality or pseudo-dimension.

We begin with a setting of the problems. Let T¢ be the d-dimensional torus which is
defined as the cross product of d copies of the interval [0, 27] with the identification of the
end points. For 0 < ¢ < oo, let L, := Lq('IFd) be the quasi-normed space of all functions on
T¢ with the integral quasi-norm | - ||, for 0 < ¢ < oo, and the normed space C(T%) of all
continuous functions on T with the max-norm | - ||s for ¢ = co. Let B and W be subsets
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in Ly. We approximate the elements in W by B via the deviation of W from B

E(W, B, Ly) := sup inf [|f — ¢l
few weB

Definition 1. Given a family B of subsets in L4, we consider the best approximation by
B € B in terms of the quantity

d(W,B, Lg) = EI;E%E(VV’ B, Lg). (1)

If B in (1) is the family of all subsets B of L, which satisfy |B| < 2", then d(W, B, L,) is
the well known entropy number which is denoted by e, (W, Ly). If B in (1) is the family of
all subsets B of L, such that dim,(B) < n, then d(W, B, L,) is denoted by p, (W, L;). Here,
| B| denotes the cardinality of the finite set B and dim,(B) denotes the pseudo-dimension of
set B.

The pseudo-dimension of a set B of real-valued functions on a set €2, is defined as the
largest integer n such that there exist points a',a?,...,a" in Q and b = (by,...,b,) € R",
such that the cardinality of the set

{sen () :y = (f(a") + by, f(@®) + ba,..., f(a") + by) , f € B}

is 2", where sgn (t) =1 for t > 0, sgn (t) = —1 for t <0, and for z € R",

sgn () = (sgn (1), sgn (w2),..., sgn ().

We are also interested in the problem of adaptive sampling recovery by functions from W,
of periodic functions in W. The error of sampling recovery is measured in the quasi-norm of
L,. We define a sampling recovery method with free choice of sample points and recovering
function from B as follows. For each f € W we choose n of sample points z!,... 2",
and a function g = SZ(f) € B to recover f based on the information of sampled values
f(h),..., f(z™). Then SZ is an adaptive recovering method which can be defined as follows.

Denote by I™ the set of subsets ¢ in T? of cardinality at most n. Let V™ be the set whose
elements are collections of real numbers a¢ = {a(z)},c¢, § € I", a(x) € R. Let I, be a
mapping from W into I"™ and P a mapping from V" into B. Then the pair (I, P) generates

the mapping Sf from W into B by the formula

SE(F) = P (1 @haernip)) - (2)

We want to choose a sampling recovery method SZ so that the error of this recovery
I f — SB(f)|l; is as small as possible. Clearly, such an efficient choice should be adaptive

to f.
Definition 2. Given a family B of subsets in L, then the error of optimal sampling recovery
methods S with B € B is defined by

Ra(W,B)y 1= jnt inf sup £ = S/l (3)
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Denote R, (W,B), by en(W), if B in (3) is the family of all subsets B in L, such that
|B| < 2", and by r,(W), if B (3) is the family of all subsets B in L, such that dim,(B) < n.

The quantities e, (W), and r,, (W), which are similar to €, (W), and p,, (W), respectively,
are related to the problem of optimal adaptive storage of data of a signal. The difference
between them is that the quantities €, (W), and p, (W), are based on any information, while
the quantities e, (W), and r,(W), are based on standard information, i.e., the sampling
values of a signal.

The concept of e-entropy introduced by Kolmogorov and Tikhomirov [9], comes from
Information Theory. It expresses the necessary number of binary signs for approximate
recovery of a signal from a certain set with accuracy ¢.

The concept of pseudo-dimension of a real-valued functions set was introduced by Pollard
[11] and later Haussler [8] as an extention of the Vapnik Chervonekis [14] dimension of an
indicator function set. The pseudo-dimension and Vapnik Chervonekis dimension measure
the capacity of a set of functions. They play an important role in theory of pattern recognition
and regression estimation, empirical processes and Computational Learning Theory (see also
[3, 12, 13] for details).

We define Besov-type space Bj, = Bgﬁ(’]l’d). For univariate functions f on T the Ith
difference operator Ah is defined by

l
AL(f,x Z ( > (x + jh).
7=0
For f € L,(T%). If e is any subset of [d], for multivariate functions f on T¢ the mixed (r,e)th
difference operator Ai{e is defined by

lze e l l7® —
Ay =TT AL A =1
ice
where the univariate operator Alhi is applied to the univariate function f by considering f
as a function of variable z; with the other variables held fixed.
Let

wi(f,t)p:= sup HAﬁf ,teT,

|hi|<t;ic€e

be the mixed (r,e)th modulus of smoothness of f. In particular, wl@(f, t)p = | fllp-
Let 1 <p< o0, 0<0< 00, a=(a1,a2,...,aq9) € Ri. We introduce the quasi-semi-
norm \f|Ba,Ge for a set e C {1,...,d} and a function f € L, by
p,

0 1/6
<f {H t Wb (f, t)p} 1 t;ldt> . 0 < oo,
|flpee = '

Td \i€e 1€e
sup {H ti_“iwf(f,t)p} : 0 = oo,
teTd \ice
in particular, | f] oo = = || f|lp, where [ is a fixed integer such that [ > max a;. The Besov-type

1<i<d
space B, = By O(Td) is defined as the set of all functions f € L, such that the Besov-type
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quasi-norm
1 llBs, = D Iflsme
eCld]
is finite.
It is well known that different admissible values of [ define equivalent Besov-type quasi-
norm. Denote by U7y = ;G(Td) the unit ball in the space By, i. e.,

Upo =1{f €Bpg: Iflpz, <1}.
We denote by A, (f) < Bn(f) if An(f) < C.By(f), where C is a constant independent
of nand feW; A,(f) < B,(f) if A,(f) < Bn(f) and B,(f) < An(f).

Through this paper we assume that the mixed smoothness a = (a1,aq,...,aq) € ]R‘i of
the space By, is fixed and such that

O<r=ar=a=...=as=0a541<a542<...<aq, 0<s<d—1.

Let us briefly formulate the main results of the present paper. Let 1 < p, ¢ < 00,0 < 0 < 00
and 7 > 1/p. We establish the asymptotic orders

6n(Ug,9> Lq) = Pn(Ug’g, Lq) = n_r(]og n)S(T+1/2—1/9) (4)

which exends the results in [3] for the case of uniformed mixed smoothness a, i. e., for the
case s =d — 1, and

en( ;Gqu) = 7 ;equ) = n_r(logn)s(""‘l/?—l/@)' (5)

To prove (4) and (5) we develop the method and technique in [3] with overcoming certain
difficulties. The proof of the upper bounds, in particular, is based on a trigonometric sam-
pling representations in the space Bg,e with a discrete equivalent quasi-norm, and a special
decomposition of functions f € Bj 4 into a series corresponding to the non-uniformed mixed
smoothness a (see (18) and (19)).

Let us give a brief outline of the present paper. In Section 2, we introduce a notion
of Besov-type spaces BJy of functions having a mixed smoothness a € ]R‘i and describe a
trigonometric sampling representations in the space B;ﬁ with a discrete equivalent quasi-
norm. In Section 3, we prove the asymptotic orders (4) and (5) and construct corresponding
asymptotically optimal methods of nonlinear approximations.

2. TRIGONOMETRIC SAMPLING REPRESENTATIONS IN BESOV
SPACES

In this section, we describe a trigonometric sampling representations in the space BJ,
with a discrete equivalent quasi-norm.

As usual, f(k:) denotes the kth Fourier coefficient of f € L, for 1 < p < oo. Let
k= (ki,ko,...,kq) € Z4 and Py, := {s € Z% : |2~71] < |s;| < 2%, 5 = 1,...,d}, where |a]

denotes the integer part of a € R,. We define the operator d; as

5(f) == 3 Fls)eile).

SEPy
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The well known Littlewood-Paley theorem (see [10]) states that for 1 < p < oo there holds
the norm equivalence

1/2
171 =< [ 22 1)
kezd
We next recall some known equivalences of quasi-norms (see [2]). If x = (z1,x2,...,2q),

d
y = (y1,92,...,yq) € RY denote (z,y) = > x;;. For 1 < p < oo and 6 < oo we have that
i=1

1/6

6
I, = | 32 {2990hln b |

k€Z+

with the right side changed to a supremum for 6 = co.
For a positive integer m, the de la Vallée Poussin kernel V,,, of order m is defined as

2m—1

Voo (t) = % Z Di(t) = sin(mt/2) sin(3mt/2)
k=m

msin?(t/2) ’

where

Dy, (t) := Z ekt

k|<m

is the univariate Dirichlet kernel of order m. For completeness we put Vj = 1.
For univariate functions f € L,(T), we define the function U,,(f) as

Um(f) = f * Vm = % T f(t) Vm( - t)dt,
and the function V,,,(f) as
Vinlf) o= 5= 37 Fh) Vinl- — ), (6)
kePp,

where h = 27 /3m and P, := {k € Z : 0 < k < 3m}. If m € Z<, the mixed operator V,, is
defined for multivariate functions f € L,(T%) by

d
Viu(f) = T Vi, (),
j=1

where the univariate operator V,,,; is applied to the function f by considering f as a function
of variable x; with the other variables held fixed. Notice that V,(f) is a trigonometric
polynomial of order at most 2m; — 1 in the variable z;, and

Vin(f,hk) = f(hk), k€ P2,
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where h = (2r/3)(mi*,...,m; "), P& :={ke€Z?:0<kj <3my, j=1,...,d}. We get

d
Vi (P)llp = [T PILF (k)Y g, 1< p < oo,
j=1

where v = |P%| = 34 H?:1 mj. Denote by T, the space of all trigonometric polynomials of

order at most m; in the variable x; for j = 1,...,d. It is easy to check that

Vin(f) = f, Vf € Tm.

Next, for univariate functions f € L,(T"), we define
v (f) = Vi(f),

Uk(f) = V2k(f) - Vzk_1(f), k= 1,2, cee

(7)

For k € fo_, the definition of the mixed operator vy for multivariate functions in L, is similar

to the mixed operator V,,,. The mixed operators ug, k € Zi are defined in a similar way by

replacing V;,,(f) by U, (f).

Note that vy (f) and ug(f) are a trigonometric polynomial of order at most 251 — 1 in

the variable z; for j =1,...,d.

To prove the main results (4) and (5), we need the following two lemmas.

d
’k‘|1 = Z |k‘1| for k € 74,
=1

Put

Lemma 2.1. Let A, = {¢: & = (a,k), k € Z4}, De := {k € Z : (a, k) = £}. Then we

have

D okl <otires g e A,
k€D§

Lemma 2.2, Let 1 <p<o0,0< 0 <00 andr > 0. Then for § < oo, we have

1/0
6
1lse, = {0 {2 wDlb} |
keZ4
and if in addition r > 1/p,
1/6
6
1les, = [ > {2 anlln} |
k€Z+

with the right side changed to a supremum for 8 = oco.

Lemma 2.1 and Lemma 2.2 have been proved in [2].
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Lemma 2.3.

(i) Let G¢ := {k € UL : (a,k) < &}, € > 0. Then there exist positive constants Cy and Cs

such that
0225/7"58 < Z 9lkl < 0125/753_ (8)
k‘EGg
(ii) For a fized number A > rlogy C1/Cy, let {&;}52, be any positive sequence of numbers
such that £41 — & > A, j > 1. Then we have that
Z olkli o 251‘/%;‘. (9)
k€G5j+1\G§j

Proof. (i) This assertion follows from Lemma 2.1.
(ii) From (8), we have

Z olkli — Z olkli _ Z olkl1
keGe;, \Ge; keGe; ) keGe;
> 0225j+1/7"§;?+1 _ Cl2fj/T§;
> C2 &I/ (g + 0T — Cy257m¢s
> (02N — Oy)2877¢es.

Hence

> alFhi<otiires

keG&jJrl\G&j

Let ¢ s := V,ux (- — sh¥), and
Qri={sez:0<s;<32%, j=1,...,d}.

where mF = (2F1, ... 2Fa) Bk .= (2n/3)(27F1, ... 27 Fa).
From Lemma 2.2 and (6)-(7) we derive the following trigonometric sampling representa-
tion in spaces Bj,. Let 1 < p < o0, 0 < 0 < oo, and r > 0. Then every f € Bpy can be

represented as the series
f= Z Z Jk,5%k,s (10)
kezZd s€Qx

for which there holds the quasi-norm equivalence

1/0

0
£y, = | D2 {2902 L} o | (11)

kEZy

for 8 < oo, with the sum replaced by a supremum for § = co. Based on the representation
(10)-(11), we can extend the definition of Besov space of mixed smoothness a for a € R% and
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0 < p, 6 < oo, as the space of all functions f on T¢ which can be represented by the series
(10) for which the discrete quasi-norm in the right-hand side of (11) is finite. We also use
the notation By, g = By, for a = 0,...,0).

Let 1 < g < oo. From these quasi-norm equivalences, it is easy to verify the inequalities

1By maxtazy < 1Fllg S NFIBy minga - (12)

Let 0 < p < oo, we define /' as the quasi-normed space of all real number sequences
x = {x},-, equipped with the quasi-norm

m 1/p
H{zi} i = [zl = (Z\$k|p> :

k=1

with the change to max norm when p = oc.

Let 0 < p,6 < 0o and N = {Ny}req be a sequence of natural numbers, with Q a finite
set of indices. Denote by bgg a the space of all such sequences = = {z*}1cq = {{x?}jvz’“l}keQ
for which the mixed quasi-norm H{{:):;“}}Hbéve = H:):Hb% is finite. Here, the mixed quasi-norm
H'Hbﬁe is defined as

1/6

k
lzllyy, = | >_ Il ||

ke@Q

for finite 6, the sum is replaced by a supremum when 0 = co. Let Szﬁ\,[@ be the unit ball in
by .

3. ASYMPTOTIC ORDER FOR ENTROPY NUMBERS

In this section, we give the asymptotic order of entropy numbers en(Up 9> Lq), non-linear
widths pn(Uyy, Lg) and e, (U, Lq), mn(Uy g, Lqg).
By Definition 1 and Definition 2, we have inequalities

en(Upos Lg) 2 en(Up g Lg)s mn(Upgs L) 2 pn(Up g, Lq)- (13)

Moreover, from the definitions we can see that dim,(B) < log|B|, and consequently, the
pseudo-dimension of a set B of cardinality < 2" is not greater than n, and therefore, there
hold the inequalities

(Up 0> ) = Tn(Up 0> )7 (Up 0> ) > pn(U;ﬁvLQ)' (14)

Hence, the upper bounds of rn(Upe, ), (Upg,L ) and pn(Uga,Lq) in (4) and (5) are
implied from the upper bound of en(Up 0> Lq)-
Let ® = {¢} }req a family of elements in L,. Denote by M, (®) the nonlinear manifold of

all linear combinations of the form ¢ = > apyk, where K is a subset of ) having cardinality
keK
n. The n-term L ,-approximation of an element f € L, with regard to the family ® is called
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the Lg-approximation of f by elements from M,(®). To establish the upper bound for
the asymptotic orders of ER(U;, 9> Lg), we use the non-linear n-term Lg-approximation with
respect to the family
V= {@k,s}ser,keZi'
Note that the family V' is formed from the integer translates of the mixed dyadic scales
of the tensor product multivariate de la Vallée Poussin kernel.

Theorem 3.1. Let 1 <p, ¢ < o0, 0< 6 <00 andr > 1/p. Then we have that

en(Ulg, Lg) < en(Uly, Ly) < (n/log® n) " (logn)*/271/9), (15)

In addition, we can explicitly construct a finite subset V* of V', a subset B in M, (V*) having
|B| < 2", and a mapping SB Uyg — B of the form (2) such that

E(Uyg, B L) < sup ||f = S7(f)lly < (n/log®n) ™" (logn)* /210,
feus

p,0

Theorem 3.1 is derived from the following theorem.

Theorem 3.2. Let 0 <p, q, 0 < oo, 0<7 <0 andr > 1/p. Then, we have that
en(Upg, Br) < en(Ugg, Byr) < Eor(n), (16)

where Ep,(n) = (n/log®n)~" (logn)s(1/7=1/9),
In addition, we can explicitly construct a finite subset V* in V', a subset B in M, (V*)
having |B| < 2", and a mapping SZ Uyg — B of the form (2) such that

E(Uy9: B; Byr) < S 1f = 87 (N, < Bor(n). (17)

p,0

Proof. Obviously, (16) follows from (17), and consequently, it is enough to prove (17). Take

d
k= (k‘l, ko, --~7ks+17 ksio, ...,k‘d) S [Ui Denote by A= { Z a;k; : k; € U+, i =s+2,..,d }
1=5+2
We fix a subsequence A" := {1y ;}32; C A such that v9; — 151 > max{ag, A} (number A
is defined in Lemma 2.3).
d
Let GVQJ = {(k‘SJrQ, ceey ]{d) : Z CLz‘]{Z’ < 1/273‘}, D;,QJ_ = Gl/2,j \GV2,J'—17 ] > 2
1=5+2

and D), :=G,,,.

V21

By (10), (11) we can verify that every f € By, is represented as the series
[ = Z fvs (18)
v=(v1,v2)

converging in the norm of By, any v = (v1,12) € Z4 x A and

fl/ = Z Z fk,s‘pk,m (19)

keD, seQy.
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where D, := D/ N D, ., D :={(ki,ka....kss+1) : k1 + ko + -+ + ksy1 = 11}. Moreover,

v 57
there hold the quasi-norm equivalences

1follgs, = 24 ({2 W2y 3
’ P,

(20)
1fllBe = {279 i Yy, N = {Nidren, = {Qx}ren, -

The representation (18) — (19) with the the quasi-norm equivalences (20) plays a basic role
in the proof of the theorem. Notice that in the case of the uniform mixed smoothness it
required a much simpler representation [3].

Obviously, D, N D, = @ if v # v/ and ZSIF = Uyez, xaD,. We have

D] = 1272, | DY = vy

and consequently,
|D,| = |D.||D"] =< v 518572,

Let 7' = as12 = ... = Gs1 512 < As1913 < ... < ag. From (9) we get
my, =313 " 2l <y pamgn/ryy (21)
keD,
where m, := > |Qg|- Given a positive integer n, we take a positive integer £ = £(n)
keD,

satisfying the condition
C28¢% < m =< 28¢°, (22)

where C' is an absolute constant whose value will be chosen below.
Notice that there hold the inequality [/f|s,, < [/flB., and the inclusion Ug, C
U;max{pye}. Therefore, it suffices to treat the case p < 6 and ¢ = co. We choose fixed
numbers 0, «, € satisfying 0 < 6 < min{l, p(r — 1/p)}, max{r, (1 + 6)r'/pr} < a <

', (14 9)/pr < e < a/r’. Let the sequence {n,},-, be given by
{myz(lfé)(nglfVQ/a)J + 1 if 0 S V1 —+ VQ/O( < 57 (23)

n, =
v Lmy2(1+6)(5_V1—V2/O‘)J if v + y2/a > f

It is easy to check that n, > 0 for vy +vo/a < E(1+0)/(1+8 —¢€) — v, where vy = vo(6,d)
is a positive constant. Since (149)/(14+9d—¢) > r/(r —1/p), we can fix a number v so that
r/(r—1/p) <y < (14+0)/(1+J—¢). Put & = [y£]. Then for £ large enough, we have
ny, >0, Vv +uvy/a <

Let 0 < vy +wv9/a <. Then n, > m,. Take a number p such that 0 < p < min{1,p, 6}
and Ny = 2lkl < grigra/r’ . — Ny, Vk € D,. From the inequalities

—1/6 a7l/p—1
I oy < 1DV ONG T e

and
- sy, < 1Dy M7 [P



NONLINEAR APPROXIMATIONS OF FUNCTIONS HAVING MIXED SMOOTHNESS 129

it follows that for any subset M, C béVO?T and mapping G, : b,

o M,, such that

sup ||z — Gy (@) llyyr < [Dy[VPVOTYTNGPTYP sup o — Gy (@)
a:GSI\fV ’ zESé\fZ ’

Considering SZ)Y; and bévoljoo as B)™ and [} and applying the result proved in [3, Lemma
1], then for any positive integer n we can explicitly construct a subset M of I for n > m
having cardinality at most 2" and a mapping S : [;" — M such that

sup [l — S(@)lliz < Clpym="e2-n/m.
:cEB;"

NV

Hence, we obtain there exists a set M, C by ;

G, b}],\fg — M, such that

of cardinality at most 2™ and a mapping

sup ||z — Gy(z)|lpyr, < ’DV‘1/P*1/9+1/TNol/P—l/pm;l/prny/my.

We define a subset B, of By » and a mapping S, : Bjy — By as follows. From (11),

1/6
0
1lss, = | 32 {20902 (b lgen ) |
ke, P
1/6
9
||fl/”Bgﬂ = Z {Q(a,k)*lkll/pH {fr.s} HZLQ’C‘} 7
keD,

we obtain ||quBg’9 < ||fHB;79. Hence, if f € By, then f, € Bj,, and consequently
{{fk.s}seqi YkeD, belongs to b)Yy, We put

Su(f) = Z Z fl:,sspk,s

keD, seQy,

and B, = S,(M,), where {{f; }scq.tken, = Gu({{fks}scqi}ren,). We can see that
|B,| <|M,| <2™ and

1o = Su (N Boe.r = I{{Fbs = Fic s Hlpy,

< D, [Hom VO N 07 Py oyl NP

AU e (€2 AI pfa y f f

<< 58(1/7—1/9)2_7"§27’(§_V1_VQ/OC)2_2(176“&*1’17”2/0‘) ||fl/”BZ76’

where p=(d—s—2)(1/p—1/0+1/7) — §'/p.
Therefore

1o = 8ol r < AW Follsz,- (24)
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where A(v) = 55(1/771/9)2*7"52’”(57”17”2/0‘)2*2(175)(57”7'/2/&).
Let £ <11 +1vo/a < &*. Then n, < m,. The following result was proved in [3, Lemma

4]. Let 0 < p, 8, 7 < co. Then for any positive integer n < m = > Nj, we can explicitly
ke@

construct a subset M C béVOJ of cardinality at most 2" (ZZ) and a mapping S : bg ¢ — M such
that
sup [z — S(z)llpy | < C(p)n= /P |Q|V/7+(1/p=1/0)+

xGSIJX 0
Therefore, we can construct a subset B, of B ; having cardinality at most 2"~ (7;1”), as well

as a mapping S, : B;ﬁ — B, such that
1o = SuPBucr = I{{ s = L3l <=2 (DT APZYO L £ FY e (25)
We have |k|; < 11 + v2/r’, hence
Ills, = 2 {2 M2 P > 2m eyl (L e,

and consequently H{{fks}}Hbg’;’ < 2_T”1_”22”1/p2”2/pr/||quBg’6. We continue the estimation
(25),

1y = Su()Boc.» = I frs = frs 3 Hlpyw,
<, 7Y DO £ W
P,
< {yis2u12u2/r’l/28’2(1+6)u1}—1/1)(,/19,/51—5—2)“2 2—ru1—u22u1/P2u2/pr’HfVHBZﬁ
< 2T T =49 i [ fog=1rfin) |
p,0
< 27T O =D P £ |
p,0
< C)Ifllse,.

where C(v) = _”fyf(l/T*l/e)2_5(”1+”2/"‘_5), B=r—1A+0)/p>0, pu =§—11 —1n/a,
pe =1/7+1/p—1/6. It is easy to check that

2 78¢s(1/7=1/0) 9= (1 tra/a—f) if v <&,
(v) < 27 rEes(UT=1/0) (1 4 1y Joy — £)SW/T=YO)g=Blitra/a=) if 1) > €

Finally, let v1 + vo/a > &*. From (20) and the Holder inequality, it follows that for any
vi+vo/a>E* Put p=r—1/p, we get
1fill B, < 271D P72 /P | |l
—(rv1+ve) v vy /pr! 1/7—1/6

< gl logalor |, [T £, g

< 2 HE (5*)5(1/7—1/0)(,/1 +ufa— g*)s(l/r—l/e)2—u(u1+u2/a—§*)ny”B;g (26)

< 270 () vy o — €4)3 /T O) gmlntva/a=E)) £ )|

p,0

< EW)|fullss,.
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where E(v) = 27750/ 7=10) (1) 4 vy /o — £%)5(1/7=1/0) g=nlvitrz/a—€7)
For a function f € U;‘ﬁ, we define the mapping S by

S(f) =Y Sulf)

V€Z+XA
We obtain e
F=sh= > U=-Sm+ > fn
vi+va/a=0 vitve/a>E*

Therefore, by (22), (24)~(26) and the inequalities ||f,[|pe, < [|f]|Be, we get the following
estimates for any f € Upy

é‘*
1f =SB < D I =Sl + D IfullBecnr
v1tve/a=0 vt /a>E*
< D> A+ D). Ccw+ D EW)
0<vi4va/a<lé E<vitra /a<lEr vitve fa>E*
<UD Y grlemnm/a) g2l
0<vi+va/a<é
LoD S (o o — €)1/ g B e
E<vitg /alEr
+ 277{&3(1/771/9) Z (Vl + V2/a - f*)8(1/T*1/9)27M(V1+I/2/Osz*)
l/1+1/2/0£>£*

< 2—7“555(1/7——1/9) - EQ,T(”)-

This means that

sup [|f = S(f)|| < Epr(n). (27)
Us,
Notice that S is a mapping from U, into B := 3. B,. Moreover, by (21), (23) we
' vi+v2/a=0
have
5* ! /
log|B| < Z log | B,| < Z 2f¢sg—0(Eri—ra/a)g-1a(l/a=1/r ),/25
vi4ve/a=0 0<vi+va/a<é
T Z (2_6(V1+V2/a_§)2555(7/1 +vpfor— £)%27 2/ 4 log <m”>> .
E<vitre/a<lé* v

Stirling’s formula gives

< 2700002 (b vpfa — €)°27 ATV (b 1 (16) (11 + v2/a - €)),
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where b is a constant. Hence,

[ee]
log |B| < C'28¢5 ) " 270,
t=0
o0
where C’ is an absolute constant. Setting C” := C’ 3" 27%*, we obtain log|B| < n, and

consequently |B| < 2™. Let V* = U,V,*, where V :S{Sakvs}segk, keD,. By construction, it
follows that V* is a finite subset of V' and B is a subset of M, (V™).

Summing up, we have constructed a subset B in M, (V*) having cardinality does not
exceed 2" and a sampling recovery method SZ := S of the form (2) satisfying the inequality
(27) and therefore, the upper bound of (16) and (17). [

Proof of Theorem 3.1. Notice that
o < l-llgzy 1 < o (28)

From (28), it is sufficient to prove (15) for ¢ > 2. By (12), we can verify that

en(Ugﬁ, Lq) < en(Ugﬁ» Bq,min{q,?})‘

Using this inequality and Theorem 3.2, we get the upper bound of en(U]‘;ﬂ, Ly). [ ]

The lower bound of p(Ugy, Lg) in obtained from the following theorem.

Theorem 3.3. Let 1 <p, ¢ < o0, 0<6 <00 andr > 1/p. Then we have

p(Usg: Lg) > (n/log®n) ™" (log n)*/>=1/0).

Proof. Denote by Ugty(T**!) the unit ball in the space BJ,(T**!) C Ly(T**'), where a* :=
(a1,az,...,as11) = (r,7,...,7) € RS In [3] it was proven that
Pn( ;;(Ts+1),Bq,7—(TS+1)) > nf’“(log n)s(r+1/271/9).

Notice that for any function f € Lg(T**1), the function g : T¢ — R which is defined
by g(z1,29,...,24) = f(z1,...,2Zs11), belongs to Ly(T¢). Moreover, if f € US’Z(TSH), then
g€ Uge(’]l‘d) . Hence we deduce that

pn(Upg(T?), By, (T7) = pu(Upg(T*H1), By r (T*H)).

Therefore,
Uy g(T), Byr(T4) > (n/log® n) " (log n)*(/271/%).

The proof is complete. ]

We now can state and prove the main results (4) and (5) as follows.
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Theorem 3.4. Let 1 < p, ¢ <00, 0< 0 <00 andr>1/p. Then

en(Up g Lq) =< pn(Upg, Lg) = n=" (log n)*(+1/2-1/9),

Moreover, we have also the asymptotic order of optimal methods of adaptive sampling recovery
following

en( ;;,0, Lq) = Tn(Up97 Lq) = nfr(log n)s(r+1/2,1/9)'

Proof. By Theorem 3.1, Theorem 3.3 and (14), we have

en(Upgs Lg) = pn(Up g, Lg) > n""(log n)3(r+1/2-1/9)

and
pn(Upg, Lq) < €n(Upg, Lg) < n”"(log n)s(r+1/2-1/0)

Hence
en(Ulg, Lg) < pu(USg, Ly) = 0" (logn)>0+1/271/0),
Using Theorem 3.1 and (14), we get

rn(Ulg, Lg) < en(Uly, Ly) < n™"(logn)*rT1/271/0),

Since Theorem 3.3 and (13), we obtain

ra(Usgs Lq) = pu(Uggs Lg) > n™" (log n)*"+1/271/9),

By the last two inequalities, we get

en(Upgs Lq) X 0 (Upg, Lq) =< n=" (log n)*(r+1/2-1/9),

4. CONCLUSION

In this paper, we extend the results in [3] to multivariate Besov-type classes U]‘ie of
functions having nonuniform mixed smoothness a € R‘fr and the problems of entropy num-
bers €, (U o> Lg ) and non-linear widths pn(Uzﬁ‘,g,Lq). We obtain the asymptotic order of
entropy numbers €,(Uyy, Lg) and non-linear widths p, (U, Lg). Moreover, we construct
corresponding asymptotically optimal methods of nonlinear approximations. In result we
obtain the asymptotic order of optimal methods of adaptive sampling recovery of functions
in Uy o by sets of a finite capacity which is measured by their cardinality or pseudo-dimension.
In the future we shall consider the above problems in the space B4 .0 which is the intersection
of spaces Bpy, where A is a finite subset in Ri.
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