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Abstract. For multivariate Besov-type classes Uap,θ of functions having nonuniform mixed

smoothness a ∈ Rd+, we obtain the asumptotic order of entropy numbers εn(Uap,θ, Lq) and non-

linear widths ρn(Uap,θ, Lq) defined via pseudo-dimension. We obtain also the asymptotic order of

optimal methods of adaptive sampling recovery in Lq-norm of functions in Uap,θ by sets of a finite

capacity which is measured by their cardinality or pseudo-dimension.

Keywords. Besov-Type Spaces; Linear Sampling Recovery; Nonlinear Adaptive Sampling

Recovery.

1. INTRODUCTION

We are interested in nonlinear approximations of multivariate functions having a given

mixed smoothness and their optimality in terms of entropy numbers εn(W,Lq) and non-linear

widths ρn(W,Lq) defined via pseudo-dimension. The problem of εn(W,Lq) has a long history

and there have been many papers devoted to it. We refer the reader to the book [7] for a

survey and bibliography therein. The non-linear widths ρn(W,Lq) has been introduced in

[12, 13] and investigated there for classical Sobolev classes of functions. In [3], Dinh Dũng has

investigated optimal non-linear approximations by sets of a finite capacity which is measured

by their cardinality or pseudo-dimension, of multivariate periodic functions having uniform

Besov mixed smoothness r > 0. In the present paper, we extend these results to multivariate

Besov-type classes Uap,θ of functions having nonuniform mixed smoothness a ∈ Rd+ and the

problems of entropy numbers εn(Uap,θ, Lq) and non-linear widths ρn(Uap,θ, Lq). Moreover,

generalizing the results in [1, 4, 5, 6] on adaptive sampling recovery, we obtain the asymptotic

order of optimal methods of adaptive sampling recovery of functions in Uap,θ by sets of a finite

capacity which is measured by their cardinality or pseudo-dimension.

We begin with a setting of the problems. Let Td be the d-dimensional torus which is

defined as the cross product of d copies of the interval [0, 2π] with the identification of the

end points. For 0 < q ≤ ∞, let Lq := Lq(Td) be the quasi-normed space of all functions on

Td with the integral quasi-norm ‖ · ‖q for 0 < q < ∞, and the normed space C(Td) of all

continuous functions on Td with the max-norm ‖ · ‖∞ for q = ∞. Let B and W be subsets
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in Lq. We approximate the elements in W by B via the deviation of W from B

E(W,B,Lq) := sup
f∈W

inf
ϕ∈B
‖f − ϕ‖q.

Definition 1. Given a family B of subsets in Lq, we consider the best approximation by

B ∈ B in terms of the quantity

d(W,B, Lq) := inf
B∈B

E(W,B,Lq). (1)

If B in (1) is the family of all subsets B of Lq which satisfy |B| ≤ 2n, then d(W,B, Lq) is

the well known entropy number which is denoted by εn(W,Lq). If B in (1) is the family of

all subsets B of Lq such that dimp(B) ≤ n, then d(W,B, Lq) is denoted by ρn(W,Lq). Here,

|B| denotes the cardinality of the finite set B and dimp(B) denotes the pseudo-dimension of

set B.

The pseudo-dimension of a set B of real-valued functions on a set Ω, is defined as the

largest integer n such that there exist points a1, a2, . . . , an in Ω and b = (b1, . . . , bn) ∈ Rn,
such that the cardinality of the set{

sgn (y) : y =
(
f(a1) + b1, f(a2) + b2, . . . , f(an) + bn

)
, f ∈ B

}
is 2n, where sgn (t) = 1 for t > 0, sgn (t) = −1 for t ≤ 0, and for x ∈ Rn,

sgn (x) = ( sgn (x1), sgn (x2), . . . , sgn (xn)) .

We are also interested in the problem of adaptive sampling recovery by functions from W,

of periodic functions in W . The error of sampling recovery is measured in the quasi-norm of

Lq. We define a sampling recovery method with free choice of sample points and recovering

function from B as follows. For each f ∈ W we choose n of sample points x1, . . . , xn,

and a function g = SBn (f) ∈ B to recover f based on the information of sampled values

f(x1), . . . , f(xn). Then SBn is an adaptive recovering method which can be defined as follows.

Denote by In the set of subsets ξ in Td of cardinality at most n. Let V n be the set whose

elements are collections of real numbers aξ = {a(x)}x∈ξ , ξ ∈ In, a(x) ∈ R. Let In be a

mapping from W into In and P a mapping from V n into B. Then the pair (In, P ) generates

the mapping SBn from W into B by the formula

SBn (f) := P
(
{f(x)}x∈In(f)

)
. (2)

We want to choose a sampling recovery method SBn so that the error of this recovery

‖f − SBn (f)‖q is as small as possible. Clearly, such an efficient choice should be adaptive

to f .

Definition 2. Given a family B of subsets in Lq, then the error of optimal sampling recovery

methods SBn with B ∈ B is defined by

Rn(W,B)q := inf
B∈B

inf
SBn

sup
f∈W
‖f − SBn (f)‖q. (3)
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Denote Rn(W,B)q by en(W )q if B in (3) is the family of all subsets B in Lq such that

|B| ≤ 2n, and by rn(W )q if B (3) is the family of all subsets B in Lq such that dimp(B) ≤ n.

The quantities en(W )q and rn(W )q which are similar to εn(W )q and ρn(W )q, respectively,

are related to the problem of optimal adaptive storage of data of a signal. The difference

between them is that the quantities εn(W )q and ρn(W )q are based on any information, while

the quantities en(W )q and rn(W )q are based on standard information, i.e., the sampling

values of a signal.

The concept of ε-entropy introduced by Kolmogorov and Tikhomirov [9], comes from

Information Theory. It expresses the necessary number of binary signs for approximate

recovery of a signal from a certain set with accuracy ε.

The concept of pseudo-dimension of a real-valued functions set was introduced by Pollard

[11] and later Haussler [8] as an extention of the Vapnik Chervonekis [14] dimension of an

indicator function set. The pseudo-dimension and Vapnik Chervonekis dimension measure

the capacity of a set of functions. They play an important role in theory of pattern recognition

and regression estimation, empirical processes and Computational Learning Theory (see also

[3, 12, 13] for details).

We define Besov-type space Ba
p,θ = Ba

p,θ(Td). For univariate functions f on T the lth

difference operator ∆l
h is defined by

∆l
h(f, x) :=

l∑
j=0

(−1)l−j
(
l

j

)
f(x+ jh).

For f ∈ Lp(Td). If e is any subset of [d], for multivariate functions f on Td the mixed (r, e)th

difference operator ∆l,e
h is defined by

∆l,e
h :=

∏
i∈e

∆l
hi
, ∆l,Ø

h = I,

where the univariate operator ∆l
hi

is applied to the univariate function f by considering f

as a function of variable xi with the other variables held fixed.

Let

ωel (f, t)p := sup
|hi|<ti,i∈e

∥∥∆l,e
h f
∥∥
p
, t ∈ Td,

be the mixed (r, e)th modulus of smoothness of f . In particular, ωØ
l (f, t)p = ‖f‖p.

Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞, a = (a1, a2, . . . , ad) ∈ Rd+. We introduce the quasi-semi-

norm |f |Ba,ep,θ for a set e ⊂ {1, ..., d} and a function f ∈ Lp by

|f |Ba,ep,θ :=


(∫
Td

{∏
i∈e

t−aii ωel (f, t)p

}θ ∏
i∈e

t−1
i dt

)1/θ

, θ <∞,

sup
t∈Td

{∏
i∈e

t−aii ωel (f, t)p

}
, θ =∞,

in particular, |f |
Ba,Øp,θ

= ‖f‖p, where l is a fixed integer such that l > max
1≤i≤d

ai. The Besov-type

space Ba
p,θ = Ba

p,θ(Td) is defined as the set of all functions f ∈ Lp such that the Besov-type
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quasi-norm

‖f‖Bap,θ :=
∑
e⊂[d]

|f |Ba,ep,θ

is finite.

It is well known that different admissible values of l define equivalent Besov-type quasi-

norm. Denote by Uap,θ = Uap,θ(Td) the unit ball in the space Ba
p,θ, i. e.,

Uap,θ :=
{
f ∈ Ba

p,θ : ‖f‖Bap,θ ≤ 1
}
.

We denote by An(f)� Bn(f) if An(f) ≤ C.Bn(f), where C is a constant independent

of n and f ∈W ; An(f) � Bn(f) if An(f)� Bn(f) and Bn(f)� An(f).

Through this paper we assume that the mixed smoothness a = (a1, a2, . . . , ad) ∈ Rd+ of

the space Ba
p,θ is fixed and such that

0 < r = a1 = a2 = . . . = as = as+1 < as+2 ≤ . . . ≤ ad, 0 ≤ s ≤ d− 1.

Let us briefly formulate the main results of the present paper. Let 1 < p, q <∞, 0 < θ ≤ ∞
and r > 1/p. We establish the asymptotic orders

εn(Uap,θ, Lq) � ρn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ) (4)

which exends the results in [3] for the case of uniformed mixed smoothness a, i. e., for the

case s = d− 1, and

en(Uap,θ, Lq) � rn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ). (5)

To prove (4) and (5) we develop the method and technique in [3] with overcoming certain

difficulties. The proof of the upper bounds, in particular, is based on a trigonometric sam-

pling representations in the space Ba
p,θ with a discrete equivalent quasi-norm, and a special

decomposition of functions f ∈ Ba
p,θ into a series corresponding to the non-uniformed mixed

smoothness a (see (18) and (19)).

Let us give a brief outline of the present paper. In Section 2, we introduce a notion

of Besov-type spaces Ba
p,θ of functions having a mixed smoothness a ∈ Rd+ and describe a

trigonometric sampling representations in the space Ba
p,θ with a discrete equivalent quasi-

norm. In Section 3, we prove the asymptotic orders (4) and (5) and construct corresponding

asymptotically optimal methods of nonlinear approximations.

2. TRIGONOMETRIC SAMPLING REPRESENTATIONS IN BESOV
SPACES

In this section, we describe a trigonometric sampling representations in the space Ba
p,θ

with a discrete equivalent quasi-norm.

As usual, f̂(k) denotes the kth Fourier coefficient of f ∈ Lp for 1 ≤ p ≤ ∞. Let

k = (k1, k2, . . . , kd) ∈ Zd+ and Pk := {s ∈ Zd : b2kj−1c ≤ |sj | < 2kj , j = 1, ..., d}, where bac
denotes the integer part of a ∈ R+. We define the operator δk as

δk(f) :=
∑
s∈Pk

f̂(s)ei(s,·).



NONLINEAR APPROXIMATIONS OF FUNCTIONS HAVING MIXED SMOOTHNESS 123

The well known Littlewood-Paley theorem (see [10]) states that for 1 < p < ∞ there holds

the norm equivalence

‖f‖p �

∥∥∥∥∥∥∥∥
∑
k∈Zd+

|δk(f)|2


1/2
∥∥∥∥∥∥∥∥
p

.

We next recall some known equivalences of quasi-norms (see [2]). If x = (x1, x2, . . . , xd),

y = (y1, y2, . . . , yd) ∈ Rd, denote (x, y) =
d∑
i=1

xiyi. For 1 < p <∞ and θ <∞ we have that

‖f‖Bap,θ �

∑
k∈Z+

{
2(a,k)‖δk(f)‖p

}θ1/θ

,

with the right side changed to a supremum for θ =∞.

For a positive integer m, the de la Vallée Poussin kernel Vm of order m is defined as

Vm(t) :=
1

m

2m−1∑
k=m

Dk(t) =
sin(mt/2) sin(3mt/2)

m sin2(t/2)
,

where

Dm(t) :=
∑
|k|≤m

eikt

is the univariate Dirichlet kernel of order m. For completeness we put V0 = 1.

For univariate functions f ∈ Lp(T), we define the function Um(f) as

Um(f) := f ∗ Vm =
1

2π

∫
T
f(t) Vm(· − t)dt,

and the function Vm(f) as

Vm(f) :=
1

3m

∑
k∈Pm

f(hk) Vm(· − hk), (6)

where h = 2π/3m and Pm := {k ∈ Z : 0 ≤ k < 3m}. If m ∈ Zd+, the mixed operator Vm is

defined for multivariate functions f ∈ Lp(Td) by

Vm(f) :=
d∏
j=1

Vmj (f),

where the univariate operator Vmj is applied to the function f by considering f as a function

of variable xj with the other variables held fixed. Notice that Vm(f) is a trigonometric

polynomial of order at most 2mj − 1 in the variable xj , and

Vm(f, hk) = f(hk), k ∈ P dm,
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where h = (2π/3)(m−1
1 , . . . ,m−1

d ), P dm := {k ∈ Zd : 0 ≤ kj < 3mj , j = 1, . . . , d}. We get

‖Vm(f)‖p �
d∏
j=1

m
−1/p
j ‖{f(hk)}‖lνp , 1 ≤ p ≤ ∞,

where ν = |P dm| = 3d
∏d
j=1mj . Denote by Tm the space of all trigonometric polynomials of

order at most mj in the variable xj for j = 1, . . . , d. It is easy to check that

Vm(f) = f, ∀f ∈ Tm. (7)

Next, for univariate functions f ∈ Lp(T ), we define

v0(f) := V1(f),

vk(f) := V2k(f)− V2k−1(f), k = 1, 2, . . . .

For k ∈ Zd+, the definition of the mixed operator vk for multivariate functions in Lp is similar

to the mixed operator Vm. The mixed operators uk, k ∈ Zd+ are defined in a similar way by

replacing Vm(f) by Um(f).

Note that vk(f) and uk(f) are a trigonometric polynomial of order at most 2kj+1 − 1 in

the variable xj for j = 1, . . . , d.

To prove the main results (4) and (5), we need the following two lemmas. Put

|k|1 =
d∑
i=1
|ki| for k ∈ Zd.

Lemma 2.1. Let Λa := {ξ : ξ = (a, k), k ∈ Zd+}, Dξ := {k ∈ Zd+ : (a, k) = ξ}. Then we

have ∑
k∈Dξ

2|k|1 � 2ξ/rξs, ∀ ξ ∈ Λa.

Lemma 2.2. Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞ and r > 0. Then for θ <∞, we have

‖f‖Bap,θ �

∑
k∈Z+

{
2(a,k)‖uk(f)‖p

}θ1/θ

,

and if in addition r > 1/p,

‖f‖Bap,θ �

∑
k∈Z+

{
2(a,k)‖vk(f)‖p

}θ1/θ

,

with the right side changed to a supremum for θ =∞.

Lemma 2.1 and Lemma 2.2 have been proved in [2].
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Lemma 2.3.

(i) Let Gξ := {k ∈ Ud+ : (a, k) ≤ ξ}, ξ > 0. Then there exist positive constants C1 and C2

such that

C22ξ/rξs ≤
∑
k∈Gξ

2|k|1 ≤ C12ξ/rξs. (8)

(ii) For a fixed number λ > r log2C1/C2, let {ξj}∞j=1 be any positive sequence of numbers

such that ξj+1 − ξj ≥ λ, j ≥ 1. Then we have that∑
k∈Gξj+1

\Gξj

2|k|1 � 2ξj/rξsj . (9)

Proof. (i) This assertion follows from Lemma 2.1.

(ii) From (8), we have∑
k∈Gξj+1

\Gξj

2|k|1 =
∑

k∈Gξj+1

2|k|1 −
∑
k∈Gξj

2|k|1

≥ C22ξj+1/rξsj+1 − C12ξj/rξsj

≥ C22(ξj+λ)/r(ξj + λ)s − C12ξj/rξsj

≥ (C22λ/r − C1)2ξj/rξsj .

Hence ∑
k∈Gξj+1

\Gξj

2|k|1 � 2ξj/rξsj .

�

Let ϕk,s := Vmk(· − shk), and

Qk := {s ∈ Zd : 0 ≤ sj < 3.2kj , j = 1, . . . , d}.

where mk := (2k1 , . . . , 2kd), hk := (2π/3)(2−k1 , . . . , 2−kd).

From Lemma 2.2 and (6)-(7) we derive the following trigonometric sampling representa-

tion in spaces Ba
p,θ. Let 1 ≤ p ≤ ∞, 0 < θ ≤ ∞, and r > 0. Then every f ∈ Ba

p,θ can be

represented as the series

f =
∑
k∈Zd+

∑
s∈Qk

fk,sϕk,s (10)

for which there holds the quasi-norm equivalence

‖f‖Bap,θ �

∑
k∈Z+

{
2(a,k)−|k|1/p‖ {fk,s} ‖l|Qk|p

}θ1/θ

(11)

for θ < ∞, with the sum replaced by a supremum for θ = ∞. Based on the representation

(10)-(11), we can extend the definition of Besov space of mixed smoothness a for a ∈ Rd and
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0 < p, θ ≤ ∞, as the space of all functions f on Td which can be represented by the series

(10) for which the discrete quasi-norm in the right-hand side of (11) is finite. We also use

the notation Bp,θ = Ba
p,θ for a = (0, . . . , 0).

Let 1 < q <∞. From these quasi-norm equivalences, it is easy to verify the inequalities

‖f‖Bq,max{q,2} ≤ ‖f‖q ≤ ‖f‖Bq,min{q,2} . (12)

Let 0 < p ≤ ∞, we define lmp as the quasi-normed space of all real number sequences

x = {xk}mk=1 equipped with the quasi-norm

‖ {xk} ‖lmp = ‖x‖lmp :=

(
m∑
k=1

|xk|p
)1/p

,

with the change to max norm when p =∞.

Let 0 < p, θ ≤ ∞ and N = {Nk}k∈Q be a sequence of natural numbers, with Q a finite

set of indices. Denote by bNp,θ a the space of all such sequences x = {xk}k∈Q = {{xkj }
Nk
j=1}k∈Q

for which the mixed quasi-norm ‖{{xkj }}‖bNp,θ = ‖x‖bNp,θ is finite. Here, the mixed quasi-norm

‖.‖bNp,θ is defined as

‖x‖bNp,θ :=

∑
k∈Q
‖xk‖θ

l
Nk
p

1/θ

for finite θ, the sum is replaced by a supremum when θ = ∞. Let SNp,θ be the unit ball in

bNp,θ.

3. ASYMPTOTIC ORDER FOR ENTROPY NUMBERS

In this section, we give the asymptotic order of entropy numbers εn(Uap,θ, Lq), non-linear

widths ρn(Uap,θ, Lq) and en(Uap,θ, Lq), rn(Uap,θ, Lq).

By Definition 1 and Definition 2, we have inequalities

en(Uap,θ, Lq) ≥ εn(Uap,θ, Lq), rn(Uap,θ, Lq) ≥ ρn(Uap,θ, Lq). (13)

Moreover, from the definitions we can see that dimp(B) ≤ log |B|, and consequently, the

pseudo-dimension of a set B of cardinality ≤ 2n is not greater than n, and therefore, there

hold the inequalities

en(Uap,θ, Lq) ≥ rn(Uap,θ, Lq), εn(Uap,θ, Lq) ≥ ρn(Uap,θ, Lq). (14)

Hence, the upper bounds of rn(Uap,θ, Lq), εn(Uap,θ, Lq) and ρn(Uap,θ, Lq) in (4) and (5) are

implied from the upper bound of en(Uap,θ, Lq).

Let Φ = {ϕk}k∈Q a family of elements in Lq. Denote by Mn(Φ) the nonlinear manifold of

all linear combinations of the form ϕ =
∑
k∈K

akϕk, where K is a subset of Q having cardinality

n. The n-term Lq-approximation of an element f ∈ Lq with regard to the family Φ is called
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the Lq-approximation of f by elements from Mn(Φ). To establish the upper bound for

the asymptotic orders of εn(Uap,θ, Lq), we use the non-linear n-term Lq-approximation with

respect to the family

V := {ϕk,s}s∈Qk,k∈Zd+ .

Note that the family V is formed from the integer translates of the mixed dyadic scales

of the tensor product multivariate de la Vallée Poussin kernel.

Theorem 3.1. Let 1 < p, q <∞, 0 < θ ≤ ∞ and r > 1/p. Then we have that

εn(Uap,θ, Lq) ≤ en(Uap,θ, Lq)� (n/ logs n)−r(log n)s(1/2−1/θ). (15)

In addition, we can explicitly construct a finite subset V ∗ of V , a subset B in Mn(V ∗) having

|B| ≤ 2n, and a mapping SBn : Uap,θ → B of the form (2) such that

E(Uap,θ, B, Lq) ≤ sup
f∈Uap,θ

‖f − SBn (f)‖q � (n/ logs n)−r(log n)s(1/2−1/θ).

Theorem 3.1 is derived from the following theorem.

Theorem 3.2. Let 0 < p, q, θ ≤ ∞, 0 < τ ≤ θ and r > 1/p. Then, we have that

εn(Uap,θ, Bq,τ ) ≤ en(Uap,θ, Bq,τ )� Eθ,τ (n), (16)

where Eθ,τ (n) = (n/ logs n)−r(log n)s(1/τ−1/θ).

In addition, we can explicitly construct a finite subset V ∗ in V , a subset B in Mn(V ∗)

having |B| ≤ 2n, and a mapping SBn : Uap,θ → B of the form (2) such that

E(Uap,θ, B,Bq,τ ) ≤ sup
f∈Uap,θ

‖f − SBn (f)‖Bq,τ � Eθ,τ (n). (17)

Proof. Obviously, (16) follows from (17), and consequently, it is enough to prove (17). Take

k = (k1, k2, ..., ks+1, ks+2, ..., kd) ∈ Ud+. Denote by Λ = {
d∑

i=s+2
aiki : ki ∈ U+, i = s+2, ..., d }.

We fix a subsequence Λ′ := {ν2,j}∞j=1 ⊂ Λ such that ν2,j − ν2,j−1 > max{ad, λ} (number λ

is defined in Lemma 2.3).

Let Gν2,j := {(ks+2, ..., kd) :
d∑

i=s+2
aiki ≤ ν2,j}, D′ν2,j

= Gν2,j \Gν2,j−1 , j ≥ 2

and D′ν2,1
:= Gν2,1 .

By (10), (11) we can verify that every f ∈ Ba
p,θ is represented as the series

f =
∑

ν=(ν1,ν2)

fν , (18)

converging in the norm of Bq,τ , any ν = (ν1, ν2) ∈ Z+ × Λ and

fν =
∑
k∈Dν

∑
s∈Qk

fk,sϕk,s, (19)
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where Dν := D′′ν ∩ D′ν2,j
, D′′ν := {(k1, k2, ..., ks+1) : k1 + k2 + · · · + ks+1 = ν1}. Moreover,

there hold the quasi-norm equivalences

‖fν‖Bap,θ � 2rν1+ν2‖{{2−|k|1/pfk,s}}‖bNνp,θ ,

‖fν‖Bq,τ � ‖{{2−|k|1/qfk,s}}‖bNνq,τ , N
ν := {Nk}k∈Dν = {|Qk|}k∈Dν .

(20)

The representation (18) – (19) with the the quasi-norm equivalences (20) plays a basic role

in the proof of the theorem. Notice that in the case of the uniform mixed smoothness it

required a much simpler representation [3].

Obviously, Dν ∩Dν′ = Ø if ν 6= ν ′ and Zd+ = ∪ν∈Z+×ΛDν . We have

|D′ν | � ν2
d−s−2, |D′′ν | � νs1

and consequently,

|Dν | = |D′ν ||D′′ν | � ν1
sν2

d−s−2.

Let r′ = as+2 = . . . = as+s′+2 < as+s′+3 ≤ . . . ≤ ad. From (9) we get

mν = 3d
∑
k∈Dν

2|k|1 � νs12ν12ν2/r′νs
′

2 , (21)

where mν :=
∑
k∈Dν

|Qk|. Given a positive integer n, we take a positive integer ξ = ξ(n)

satisfying the condition

C2ξξs ≤ n � 2ξξs, (22)

where C is an absolute constant whose value will be chosen below.

Notice that there hold the inequality ‖f‖Bq,τ ≤ ‖f‖B∞,τ and the inclusion Uap,θ ⊂
Uap,max{p,θ}. Therefore, it suffices to treat the case p ≤ θ and q = ∞. We choose fixed

numbers δ, α, ε satisfying 0 < δ < min{1, p(r − 1/p)}, max{r, (1 + δ)r′/pr} < α <

r′, (1 + δ)/pr < ε < α/r′. Let the sequence {nν}∞ν=0 be given by

nν :=

{
bmν2(1−δ)(ξ−ν1−ν2/α)c+ 1 if 0 ≤ ν1 + ν2/α < ξ,

bmν2(1+δ)(ξ−ν1−ν2/α)c if ν1 + ν2/α ≥ ξ.
(23)

It is easy to check that nν > 0 for ν1 + ν2/α ≤ ξ(1 + δ)/(1 + δ− ε)− ν0, where ν0 = ν0(δ, d)

is a positive constant. Since (1 + δ)/(1 + δ− ε) > r/(r− 1/p), we can fix a number γ so that

r/(r − 1/p) < γ < (1 + δ)/(1 + δ − ε). Put ξ∗ = bγξc. Then for ξ large enough, we have

nν > 0, ∀ ν1 + ν2/α ≤ ξ∗.
Let 0 ≤ ν1 + ν2/α ≤ ξ. Then nν ≥ mν . Take a number ρ such that 0 < ρ ≤ min{1, p, θ}

and Nk = 2|k|1 ≤ 2ν12ν2/r′ := N0, ∀k ∈ Dν . From the inequalities

‖· ‖bNνρ,ρ ≤ |Dν |1/ρ−1/θN
1/ρ−1/p
0 ‖· ‖bNνp,θ

and

‖· ‖bNν∞,τ ≤ |Dν |1/τ‖· ‖bNν∞,∞ ,
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it follows that for any subset Mν ⊂ bN
ν

∞,τ and mapping Gν : bN
ν

p,θ →Mν such that

sup
x∈SNνp,θ

‖x−Gν(x)‖bNν∞,τ ≤ |Dν |1/ρ−1/θ+1/τN
1/ρ−1/p
0 sup

x∈SNνρ,ρ
‖x−Gν(x)‖bNν∞,∞ .

Considering SN
ν

ρ,ρ and bN
ν

∞,∞ as Bmν
ρ and lmν∞ and applying the result proved in [3, Lemma

1], then for any positive integer n we can explicitly construct a subset M of lm∞ for n ≥ m

having cardinality at most 2n and a mapping S : lmρ →M such that

sup
x∈Bmp

‖x− S(x)‖lm∞ ≤ C(p)m−1/ρ2−n/m.

Hence, we obtain there exists a set Mν ⊂ bN
ν

∞,τ of cardinality at most 2nν and a mapping

Gν : bN
ν

p,θ →Mν such that

sup
x∈SNνp,θ

‖x−Gν(x)‖bNν∞,τ ≤ |Dν |1/ρ−1/θ+1/τN
1/ρ−1/p
0 m−1/ρ

ν 2−nν/mν .

We define a subset Bν of B∞,τ and a mapping Sν : Ba
p,θ → Bν as follows. From (11),

‖f‖Bap,θ =

∑
k∈Z+

{
2(a,k)−|k|1/p‖ {fk,s} ‖l|Qk|p

}θ1/θ

,

‖fν‖Bap,θ =

∑
k∈Dν

{
2(a,k)−|k|1/p‖ {fk,s} ‖l|Qk|p

}θ1/θ

,

we obtain ‖fν‖Bap,θ ≤ ‖f‖Bap,θ . Hence, if f ∈ Ba
p,θ then fν ∈ Ba

p,θ, and consequently

{{fk,s}s∈Qk}k∈Dν belongs to bN
ν

p,θ . We put

Sν(f) =
∑
k∈Dν

∑
s∈Qk

f∗k,sϕk,s

and Bν = Sν(Mν), where {{f∗k,s}s∈Qk}k∈Dν = Gν({{fk,s}s∈Qk}k∈Dν ). We can see that

|Bν | ≤ |Mν | ≤ 2nν and

‖fν − Sν(f)‖B∞,τ � ‖{{fk,s − f∗k,s}}‖bNν∞,τ
� |Dν |1/ρ−1/θ+1/τN

1/ρ−1/p
0 m−1/ρ

ν 2−nν/mν2−rν1−ν2N
1/p
0 ‖fν‖Bap,θ

� ν
s(1/τ−1/θ)
1 2−rξ2r(ξ−ν1−ν2/α)2−2(1−δ)(ξ−ν1−ν2/α)

2(r/α−1)ν2νµ2 ‖fν‖Bap,θ
� ξs(1/τ−1/θ)2−rξ2r(ξ−ν1−ν2/α)2−2(1−δ)(ξ−ν1−ν2/α)‖fν‖Bap,θ ,

where µ = (d− s− 2)(1/ρ− 1/θ + 1/τ)− s′/ρ.

Therefore

‖fν − Sν(f)‖B∞,τ � A(ν)‖fν‖Bap,θ , (24)
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where A(ν) = ξs(1/τ−1/θ)2−rξ2r(ξ−ν1−ν2/α)2−2(1−δ)(ξ−ν1−ν2/α)
.

Let ξ < ν1 + ν2/α ≤ ξ∗. Then nν < mν . The following result was proved in [3, Lemma

4]. Let 0 < p, θ, τ ≤ ∞. Then for any positive integer n < m =
∑
k∈Q

Nk, we can explicitly

construct a subset M ⊂ bN∞,τ of cardinality at most 2n
(
m
n

)
and a mapping S : bNp,θ →M such

that

sup
x∈SNp,θ

‖x− S(x)‖bN∞,τ ≤ C(p)n−1/p |Q|1/τ+(1/p−1/θ)+ .

Therefore, we can construct a subset Bν of B∞,τ having cardinality at most 2nν
(
mν
nν

)
, as well

as a mapping Sν : Ba
p,θ → Bν such that

‖fν − Sν(f)‖B∞,τ � ‖{{fk,s − f∗k,s}}‖bNν∞,τ � nν
−1/p |Dν |1/τ+(1/p−1/θ)+‖{{fk,s}}‖bNνp,θ . (25)

We have |k|1 ≤ ν1 + ν2/r
′, hence

‖fν‖Bap,θ � 2rν1+ν2‖{{2−|k|1/pfk,s}}‖bNνp,θ ≥ 2rν1+ν22−ν1/p2−ν2/pr′‖{{fk,s}}‖bNνp,θ ,

and consequently ‖{{fk,s}}‖bNνp,θ � 2−rν1−ν22ν1/p2ν2/pr′‖fν‖Bap,θ . We continue the estimation

(25),

‖fν − Sν(f)‖B∞,τ � ‖{{fk,s − f∗k,s}}‖bNν∞,τ
� nν

−1/p |Dν |1/τ+(1/p−1/θ)+‖{{fk,s}}‖bNνp,θ
� {νs12ν12ν2/r′νs

′
2 2(1+δ)µ1}−1/p(νs1ν

d−s−2
2 )µ2 2−rν1−ν22ν1/p2ν2/pr′‖fν‖Bap,θ

� 2−rξν
s(1/τ−1/θ)
1 2(r−(1+δ)/p)µ1ν

(d−s−2)µ2−s′/p
2 2−(1−r/α)ν2‖fν‖Bap,θ

� 2−rξν
s(1/τ−1/θ)
1 2(r−(1+δ)/p)µ1‖fν‖Bap,θ

� C(ν)‖fν‖Bap,θ ,

where C(ν) = 2−rξν
s(1/τ−1/θ)
1 2−β(ν1+ν2/α−ξ), β = r − (1 + δ)/p > 0, µ1 = ξ − ν1 − ν2/α,

µ2 = 1/τ + 1/p− 1/θ. It is easy to check that

C(ν) ≤

{
2−rξξs(1/τ−1/θ)2−β(ν1+ν2/α−ξ) if ν1 ≤ ξ,
2−rξξs(1/τ−1/θ)(ν1 + ν2/α− ξ)s(1/τ−1/θ)2−β(ν1+ν2/α−ξ) if ν1 > ξ.

Finally, let ν1 + ν2/α > ξ∗. From (20) and the Holder inequality, it follows that for any

ν1 + ν2/α > ξ∗. Put µ = r − 1/p, we get

‖fν‖B∞,τ � 2−(rν1+ν2)2ν1/p2ν2/pr′‖fν‖Bap,τ
� 2−(rν1+ν2)2ν1/p2ν2/pr′ |Dν |1/τ−1/θ‖fν‖Bap,θ
� 2−µξ

∗
(ξ∗)s(1/τ−1/θ)(ν1 + ν2/α− ξ∗)s(1/τ−1/θ)2−µ(ν1+ν2/α−ξ∗)‖fν‖Bap,θ

� 2−rξξs(1/τ−1/θ)(ν1 + ν2/α− ξ∗)s(1/τ−1/θ)2−µ(ν1+ν2/α−ξ∗)‖fν‖Bap,θ
� E(ν)‖fν‖Bap,θ ,

(26)



NONLINEAR APPROXIMATIONS OF FUNCTIONS HAVING MIXED SMOOTHNESS 131

where E(ν) = 2−rξξs(1/τ−1/θ)(ν1 + ν2/α− ξ∗)s(1/τ−1/θ)2−µ(ν1+ν2/α−ξ∗).

For a function f ∈ Uap,θ, we define the mapping S by

S(f) :=
∑

ν∈Z+×Λ

Sν(f).

We obtain

f − S(f) =

ξ∗∑
ν1+ν2/α=0

(f − Sν(f)) +
∑

ν1+ν2/α>ξ∗

fν .

Therefore, by (22), (24)–(26) and the inequalities ‖fν‖Bap,θ � ‖f‖Bap,θ we get the following

estimates for any f ∈ Uap,θ

‖f − S(f)‖B∞,τ ≤
ξ∗∑

ν1+ν2/α=0

‖f − Sν(f)‖B∞,τ +
∑

ν1+ν2/α>ξ∗

‖fν‖B∞,τ

�
∑

0≤ν1+ν2/α≤ξ

A(ν) +
∑

ξ<ν1+ν2/α≤ξ∗
C(ν) +

∑
ν1+ν2/α>ξ∗

E(ν)

� 2−rξξs(1/τ−1/θ)
∑

0≤ν1+ν2/α≤ξ

2r(ξ−ν1−ν2/α)2−2(1−δ)(ξ−ν1−ν2/α)

+ 2−rξξs(1/τ−1/θ)
∑

ξ<ν1+ν2/α≤ξ∗
(ν1 + ν2/α− ξ)s(1/τ−1/θ)2−β(ν1+ν2/α−ξ)

+ 2−rξξs(1/τ−1/θ)
∑

ν1+ν2/α>ξ∗

(ν1 + ν2/α− ξ∗)s(1/τ−1/θ)2−µ(ν1+ν2/α−ξ∗)

� 2−rξξs(1/τ−1/θ) � Eθ,τ (n).

This means that

sup
f∈Uap,θ

∥∥f − S(f)
∥∥� Eθ,τ (n). (27)

Notice that S is a mapping from Uap,θ into B :=
ξ∗∑

ν1+ν2/α=0

Bν . Moreover, by (21), (23) we

have

log |B| ≤
ξ∗∑

ν1+ν2/α=0

log |Bν | �
∑

0≤ν1+ν2/α≤ξ

2ξξs2−δ(ξ−ν1−ν2/α)2−ν2(1/α−1/r′)νs
′

2

+
∑

ξ<ν1+ν2/α≤ξ∗

(
2−δ(ν1+ν2/α−ξ)2ξξs(ν1 + ν2/α− ξ)s2−ν2(1/α−1/r′)νs

′
2 + log

(
mν

nν

))
.

Stirling’s formula gives

log

(
mν

nν

)
≤ nν log

bmν

nν

≤ 2−δ(ν1+ν2/α−ξ)2ξξs(ν1 + ν2/α− ξ)s2−ν2(1/α−1/r′)νs
′

2 (b+ (1δ)(ν1 + ν2/α− ξ)),
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where b is a constant. Hence,

log |B| ≤ C ′2ξξs
∞∑
t=0

2−δtts,

where C ′ is an absolute constant. Setting C ′′ := C ′
∞∑
s=0

2−δtts, we obtain log |B| ≤ n, and

consequently |B| ≤ 2n. Let V ∗ = ∪νV ∗ν , where V ∗ν = {ϕk,s}s∈Qk, k∈Dν . By construction, it

follows that V ∗ is a finite subset of V and B is a subset of Mn(V ∗).

Summing up, we have constructed a subset B in Mn(V ∗) having cardinality does not

exceed 2n and a sampling recovery method SBn := S of the form (2) satisfying the inequality

(27) and therefore, the upper bound of (16) and (17). �

Proof of Theorem 3.1. Notice that

‖.‖q1 � ‖.‖q2 , q1 ≤ q2. (28)

From (28), it is sufficient to prove (15) for q > 2. By (12), we can verify that

en(Uap,θ, Lq)� en(Uap,θ, Bq,min{q,2}).

Using this inequality and Theorem 3.2, we get the upper bound of en(Uap,θ, Lq). �

The lower bound of ρ(Uap,θ, Lq) in obtained from the following theorem.

Theorem 3.3. Let 1 < p, q <∞, 0 < θ ≤ ∞ and r > 1/p. Then we have

ρ(Uap,θ, Lq)� (n/ logs n)−r(log n)s(1/2−1/θ).

Proof. Denote by Ua
∗

p,θ(Ts+1) the unit ball in the space Ba∗
p,θ(Ts+1) ⊂ Lq(Ts+1), where a∗ :=

(a1, a2, . . . , as+1) = (r, r, . . . , r) ∈ Rs+1
+ . In [3] it was proven that

ρn(Ua
∗

p,θ(Ts+1), Bq,τ (Ts+1))� n−r(log n)s(r+1/2−1/θ).

Notice that for any function f ∈ Lq(Ts+1), the function g : Td → R which is defined

by g(x1, x2, . . . , xd) = f(x1, . . . , xs+1), belongs to Lq(Td). Moreover, if f ∈ Ua∗p,θ(Ts+1), then

g ∈ Uap,θ(Td) . Hence we deduce that

ρn(Uap,θ(Td), Bq,τ (Td)) ≥ ρn(Ua
∗

p,θ(Ts+1), Bq,τ (Ts+1)).

Therefore,

ρn(Uap,θ(Td), Bq,τ (Td))� (n/ logs n)−r(log n)s(1/2−1/θ).

The proof is complete. �

We now can state and prove the main results (4) and (5) as follows.
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Theorem 3.4. Let 1 < p, q <∞, 0 < θ ≤ ∞ and r > 1/p. Then

εn(Uap,θ, Lq) � ρn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ).

Moreover, we have also the asymptotic order of optimal methods of adaptive sampling recovery

following

en(Uap,θ, Lq) � rn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ).

Proof. By Theorem 3.1, Theorem 3.3 and (14), we have

εn(Uap,θ, Lq) ≥ ρn(Uap,θ, Lq)� n−r(log n)s(r+1/2−1/θ)

and

ρn(Uap,θ, Lq) ≤ εn(Uap,θ, Lq)� n−r(log n)s(r+1/2−1/θ).

Hence

εn(Uap,θ, Lq) � ρn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ).

Using Theorem 3.1 and (14), we get

rn(Uap,θ, Lq) ≤ en(Uap,θ, Lq)� n−r(log n)s(r+1/2−1/θ).

Since Theorem 3.3 and (13), we obtain

rn(Uap,θ, Lq) ≥ ρn(Uap,θ, Lq)� n−r(log n)s(r+1/2−1/θ).

By the last two inequalities, we get

en(Uap,θ, Lq) � rn(Uap,θ, Lq) � n−r(log n)s(r+1/2−1/θ).

�

4. CONCLUSION

In this paper, we extend the results in [3] to multivariate Besov-type classes Uap,θ of

functions having nonuniform mixed smoothness a ∈ Rd+ and the problems of entropy num-

bers εn(Uap,θ, Lq) and non-linear widths ρn(Uap,θ, Lq). We obtain the asymptotic order of

entropy numbers εn(Uap,θ, Lq) and non-linear widths ρn(Uap,θ, Lq). Moreover, we construct

corresponding asymptotically optimal methods of nonlinear approximations. In result we

obtain the asymptotic order of optimal methods of adaptive sampling recovery of functions

in Uap,θ by sets of a finite capacity which is measured by their cardinality or pseudo-dimension.

In the future we shall consider the above problems in the space BA
p,θ, which is the intersection

of spaces Ba
p,θ, where A is a finite subset in Rd+.
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