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Abstract. This work addresses the problem of feature indexing to significantly accelerate the mat-

ching process which is commonly known as a cumbersome task in many computer vision applications.

To this aim, we propose to perform product sub-vector quantization (PSVQ) to create finer repre-

sentation of underlying data while still maintaining reasonable memory allocation. In addition, the

quantized data can be jointly used with a clustering tree to perform approximate nearest search very

efficiently. Experimental results demonstrate the superiority of the proposed method for different

datasets in comparison with other methods.
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1. INTRODUCTION

Feature indexing has been known as an important technique which allows fast retrieval
and matching of visual objects in computer vision filed. The most active application of
feature indexing is probably concerned with fast approximate nearest neighbor (ANN) search.
In the literature, popular approaches for this problem can be listed as space partitioning
methods (typically, KD-tree [5] and randomized KD-trees [26], or LM-tree [24]), hashing
methods (such as LSH [8], Kernelized LSH [12]), hierarchical clustering methods (such as
vocabulary K-means tree [19], POC-trees [22]).

Recently, product quantization (PQ) [9] has been actively studied for its applications in
fast approximate nearest neighbor search (ANN) and feature indexing. Different variants of
PQ technique have been presented to optimize the quantization stage such as optimized PQ
[6, 20], locally optimized PQ [10], or distribution sensitive PQ (DSPQ) [13]. PQ can be also
combined with hierarchical clustering idea to boost the search performance as presented in
[23, 25]. Extensive experiments have been conducted in [23, 25], demonstrating outstanding
results of the combined PQ and K-means trees when comparing to existing approaches.

In this work, we propose exploiting a different usage of the PQ idea. As for the PQ, the
data space is first partitioned into disjoint sub-spaces. Unlike PQ, the sub-vectors of several
consecutive sub-spaces are grouped before performing vector quantization. This novel idea
helps exploiting better the correlations of underlying data across the sub-spaces. In this way,
several sub-spaces will share a common quantizer whose the number of centroids is much
higher than those using in PQ. Specifically, the number of centroids or codewords used in
our method is proportional to how many the sub-spaces is grouped. Although the proposed
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method uses a higher number of codewords for each quantizer, the total number of centroids
is still the same as those in PQ method and hence consuming the same amount of bit budget.

In addition, the present work also presents a novel way for dividing the space into smaller
disjoint sub-spaces. Specifically, we take the advantage of prior knowledge of underlying
feature spaces (i.e., SIFT and GIST features in our case) to figure out an optimized space
decomposition scheme. The new splitting trick helps improving the coding quality greatly
although it can not be applied to a general dataset.

The rest of this paper has been structured as follows. Section 2 reviews the-state-of-the-
art techniques for feature indexing with a particular focus on product quantization approach
and hierarchical clustering. Next, Section 3 describes in detail the proposed approach com-
posing of two main contributions: the introduction of product sub-vector quantization and
prior knowledge based space partitioning. Section 4 dedicates to the evaluation of the pro-
posed method in comparison with other techniques. Finally, Section 5 concludes the paper
and discusses several room of improvements for future research.

2. RELATED WORK

As the present work focuses on product quantization techniques, we shall discuss in this
section the state-of-the-art methods that concern clustering tree and product quantization.

Hierarchical clustering. In a nutshell, a hierarchical clustering tree is created by ite-
ratively dividing the underlying dataset into smaller sub-sets or clusters by using a standard
clustering algorithm, typically K-means [15], K-medoids [11], or DBSCAN [4]. Each cluster
is then further divided into sub-clusters until the resulting sub-sets are sufficiently small. To
represent this hierarchical clustering decomposition, a tree structure is employed in which
the root corresponds to the original dataset and each internal node represents a sub-cluster
at the corresponding decomposition level. Each node of the tree also contains come basic
information such as the centroid of the data points assigned to this node. Specially, the leaf
nodes of the tree contains a bit richer information including the centroids and the indexes
of data points.

One of the first hierarchical clustering structures is introduced by the authors in [19],
namely vocabulary K-means tree. Tree building is performed exactly as described previously
in which the K-means algorithm is chosen to cluster the feature vectors into smaller groups.
Once the tree is created, it can be used to perform approximate nearest neighbor search
(ANN) given a query, as follows. The search starts from the root node and goes down the
tree. At each internal node, it selects a child to further explore by choosing the one having
smallest Euclidean distance to the query. When positioning at a leaf node, linear scan is
carried out to find the best candidate. Backtracking is then invoked to further refine the
best answer. Depending on the application, the search may terminate early by posing a
constraint on the maximum number of nodes to be visited.

There have been different progresses on improving the vocabulary K-means tree. No-
ticeably, the authors in [16, 18] equip the vocabulary K-means tree with a priority search
strategy in which the search always selects the node from the top of a priory queue. This
queue contains the list of candidate nodes stored in the increasing order of the distances to
the query. Extensive experiments have showed outstanding results of this tree structure. In
[22], the authors proposed a variant of clustering tree so-called Pair-wisely Optimized Clus-
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tering tree (POC-tree). Each POC-tree is created in the same manner as the vocabulary
K-means tree but differs in that it maximizes the separation space of every pair of clusters
at each decomposition step. Hence, the resulting decomposition corresponds to a compact
representation of the entire data space. Furthermore, multiple POC-trees can be combined
to further improve the search performance, especially for highly dimensional feature space.

Product quantization. Product quantization (PQ) [9] is a powerful approach for
data encoding and representation. In its essence, PQ divides the data space into disjoint
sub-spaces and quantizes them separately. Specifically, for each sub-space, a sub-quantizer is
learned by employing a standard vector quantizer such as K-means. Once the sub-quantizers
have been trained, they are used to map an input vector into short codes, each of which
corresponds to the index of a sub-codeword of a specific sub-quantizer. The short codes
are then concatenated to from the complete code of the feature vector. To support ANN
problem, PQ has been combined with an inverted file structure to achieve non-exhaustive
search [9]. The resulting combination has demonstrates quite interesting results.

Since the first introduction of PQ technique, there has been an increasing interest of
community to improve the PQ idea in different ways. The authors in [2] proposed attaching
a separate inverted file structure to each sub-quantizer, hence resulting in a new technique
so-called inverted multi-index. However, it was shown in their work that using more than
two sub-quantizers is probably not a good choice. Hence, most part of the experiments have
been reported for the case of second-order inverted multi-index only (i.e., using two sub-
quantizers). For highly dimensional data space, this method could be seriously impacted by
the curse-of-dimensionality problem because it is less benefited from using more than two
sub-quantizers.

In the other side, the works in [6, 10, 20], have been presented with special focus on
improving the coding quality of the quantization process. The main objective of those works
here is to train the quantizers so as to adaptively capture the intrinsic distribution of the
underlying data. To this aim, the work in [20] introduces two quantization techniques,
namely ck-means and ok-means, which optimize the training step by making the data being
rotated. As a result, the optimized model helps reducing significantly the quantization
errors. Similarly, another work, so-called optimized product quantization (OPQ) [6], has
been presented at the same time and shares the common idea. Here, OPQ first allows the
data to be aligned by using PCA and then re-orders the dimensions to jointly achieve the
two objectives of independence and balance between the sub-spaces. Those two features
are so important when training the quantizers and they have been assumed to hold true in
the PQ technique. OPQ works very well for single model distribution datasets but is less
effective for the case of multi-model feature spaces. In the later case, locally OPQ (LOPQ)
[10] is a reasonable choice because it applies OPQ locally on each cluster of data points.
Nonetheless, the optimization process is done without taking into consideration the coarse
vector quantization step.

Recently, the authors in [25] proposed combining the strength of PQ and hierarchical
clustering resulting in a new technique, namely Embedding Product Quantization (EPQ).
Similar to PQ, EQP divides the data space into disjoint sub-spaces. However, for each sub-
space, a distinct vocabulary K-means tree is created to capture the distribution of underlying
data. The tree can act as a sub-quantizer and an inverted file structure as well. Search
performance has been proved to be very impressive in comparison with other techniques.
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Another variant of EPQ has been introduced later in [23] by the same authors to further
improve the search speedups.

Full-length quantization techniques. Interestingly, some recent works presented in
[1, 3, 28, 29] make no assumption about the mutual independence as posed in PQ-based
techniques. In [1], the authors present a new technique, namely Additive Quantization
(AQ), which encodes each input vector as the sum of m codewords coming from m codebooks.
Unlike PQ, the codewords are full-length as the original vectors and thus space decomposition
is not done here. Another full-length encoding method has been presented in [3] by the same
authors which encodes each vector by the means of a tree quantization (TQ). Each node
of the tree corresponds to a codebook, while an edge is linked to a dimension. As a result,
each codebook manages the quantization for a few dimensions that have been assigned to it
only. The remaining dimensions are set to zero, resulting a quite sparse quantization vector.
An optimized version of this technique (OTQ) has been also presented, where the data is
globally rotated so as to achieve better fitting model. Experiments reported that those two
techniques are superior to PQ in the means of coding quality but are less time efficient than
the IVFADC [9].

To reduce the computational overhead of the AQ, TQ, and OTQ techniques, the work
in [28] imposes an additional constraint for the quantization model. Particularly, it assumes
that the product of inter-dictionary elements is a constant value. This extra assumption
makes it simple the process of computing the distances between a query and the codewords.
Furthermore, the authors also introduce a variant of this technique which exploits the sparsity
of the codewords when training the codebooks [29]. The obtained model has been showed
to be very effective when comparing to other methods.

3. THE PROPOSED APPROACH

3.1. Vector quantization and product sub-vector quantization

In the literature [6, 7, 9], vector quantization (VQ) refers to a pipeline process of building
a codebook C composed of K codewords {c1, c2, . . . , cK}, and mapping a given input data
point x ∈ RD to the nearest codeword. Formally, the map is denoted q(x) as follows

q(x)← arg min
ck∈C

d(x, ck), (1)

where d(x, ck) denotes the Euclidean distance and q(x) is so-called the quantizer.
To justify the quality of a quantizer, the quantization error is commonly used to measure

the distortion of quantizing a dataset X composed of n data points in RD space

E =
1

n

∑
x∈X
||x− q(x)||2, (2)

where ||q − p|| denotes the Euclidean norm between two points p and q. By conventionally,
people [9] often employ the notation ||.||2 to compute the quantization or construction errors.
We have thus adopted this notation in our manuscript.

The codebook C can be obtained by applying a standard clustering algorithm (e.g., K
means) which partitions a set of data points in the RD space into K clusters, each of which
is represented by a centroid or codeword. By vector quantization, an input vector can be
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represented by a very short code with the bit budget close to log(K). Hence, VQ has been
extensively used to deal with many computer vision applications such as Bag-of-visual-words
[27], fast nearest neighbor search [18].

Product quantization (PQ) [9], on the other hand, extends the idea of VQ in that the
original data space is first divided into m distinct sub-spaces, followed by the VQ technique
which is applied separately to the sub-vectors of each sub-space. Let aj(x) be the jth sub-
vector of an input vector x ∈ RD and Cj be the sub-codebook which is constructed from the
jth sub-space (here j = 1, 2, . . . ,m), a sub-quantizer qj(y) maps an input vector y ∈ RD/m

to the nearest sub-codeword of Cj by

qj(y)← arg min
cj,k∈Cj

d(x, cj,k), (3)

where cj,k is the kth sub-codeword of Cj .

In the PQ approach, each sub-codebook is commonly composed of K sub-codewords.
The higher value of K, the finner the decomposition of underlying data. As a result, the
quantization distortion is lower at the cost of increasing bit budget. Furthermore, as VQ
is applied separately to each sub-space, the correlation of data across the sub-spaces is
not exploited, leading to the redundant representation of sub-centroids. For instance, let
us consider 512D GIST features, many sub-vectors (i.e., square blocks of the descriptor in
Figure 1) in two consecutive sub-spaces are quite similar to each other. Those sub-vectors
correspond to visual description of adjacent background blocks of an image. By building
the sub-codebooks separately, those sub-vectors belong to the sub-centroids of different sub-
spaces. Hence, many similar sub-centroids are created.

Input image 512D GIST descriptor

Figure 1. An input image (left) and its 512D GIST descriptor (right). Many background
parts in image are similar in visual content leading to the similarity of descriptor blocks

To address these issues, we propose to gather the sub-vectors of continuous sub-spaces
into bigger groups before applying vector quantization. Specifically, the proposed method, so-
called product sub-vector quantization (PSVQ), combines the data from h, with 1 < h ≤ m,
continuous sub-spaces, and performs vector quantization to create m∗ = m/h sub-quantizers.
Each one consists K∗ = h ×K sub-centroids. Doing so, several sub-spaces shall share the
same sub-quantizer and hence creating a finner decomposition of the underlying data. It is
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worth noting that PSVQ does not increase the overall number of sub-codewords (i.e., there
are still m∗ × K∗ = m × K sub-codewords in total). Quantizing a sub-vector y = aj(x)
belonging to the jth sub-space (1 ≤ j ≤ m) is now processed by q∗i (y), with i = bj/hc + 1
and hence 1 ≤ i ≤ m∗, as follows

q∗i (y)← arg min
ci,k∈C∗i

d(y, ci,k), (4)

where 1 ≤ k ≤ K∗, and C∗i is the sub-codebook which is trained on a dataset composed of
n× h data points, obtained by grouping the sub-vectors from the (s + 1)th sub-space to the
(s + h)th sub-space with s = (i− 1)× h.

All the process described above can be formulated on Algorithm 1. The algorithm takes
as input a dataset X and several parameters, and then performs training process to create
m∗ sub-codebooks {C∗i }, each of which contains K∗ sub-codewords. In its essence, the main
computation aspect of Algorithm 1 is relied on the standard K-means algorithm. Its time
and memory complexities are thus somewhat equivalent to those of K-means. It is worth
noting that the main loop in Algorithm 1 is bounded by m∗ = m/h which is a small value
(m = 8 in all of our experiments). In addition, as the training process is done in an offline
phase, the time complexity is therefore not a major concern.

Given the sub-codebooks which are trained as aforementioned, the optimal quantization
error (E∗) is now computed as follows

E∗ =
1

n

∑
x∈X

m∑
j=1

||aj(x)− q∗i (aj(x))||2, (5)

where i = bj/hc+ 1 as described previously.

Algorithm 1 TrainPSVQ(m, X, h, K∗)

1: Input: m the number of sub-codebooks, X the dataset for training PSVQ sub-
codebooks, h the number of sub-spaces to be merged, and K∗ the number of sub-centroids
in each sub-codebook.

2: Output: The list of m/h sub-codebooks.
3: m∗ ← m/h
4: L← ∅
5: Split X into m sub-sets: X1, X2, . . . , Xm

6: for i := 1 to m∗ do
7: s← (i− 1)× h
8: Y ← merge h continuous sub-sets {Xs+1, Xs+2, . . . , Xs+h}
9: C∗i ← Kmeans(Y,K∗) {apply K-means on the sub-set Y to create K∗ sub-centers.

Here, C∗i contains K∗ resulting sub-centers}
10: L← Append(L,C∗i ) {append C∗i into L}
11: end for
12: return L {L is an array of m∗ sub-codebooks, each of which contains K∗ sub-centers}

With this novel space decomposition, the data is presented at finer level because the
similar sub-vectors in different sub-spaces are likely represented by a common centroid. In
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doing so, we exploit more the correlation of data over the sub-spaces and make better fitting
to the underlying data which finally results in lower coding distortion. Specifically, we shall
show that the quantization error (E∗) is inversely proportional to the value of h. To this aim,
we have trained the sub-quantizers on the training datasets (for SIFT and GIST features
[9]) and then computed the errors for the database sets (n = 1000000 data points). Three
different values of h (i.e., the number of sub-spaces for quantization or SSQ for short) are
considered in this experiment, including h = 2 (SSQ2), h = 4 (SSQ4), h = 8 (SSQ8) and
finally we set m = 8 as a common choice in the literature [9, 20]. Obviously, the case h = 1
corresponds to the standard PQ technique. As can be seen in Figure 2, the quantization
error is greatly reduced when we go from PQ (i.e., h = 1) to SSQ2, SSQ4, and SSQ8 for
both SIFT and GIST datasets.
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Figure 2. Quantization error for 1M SIFT (a) and 1M GIST (b) datasets

After training the sub-codebooks, they can be used to quantize a given feature database.
Let G be a database composing of n points in Rd space and Gq be the quantization codes
of G. Each quantized code of Gq is obtained by quantizing a data point x ∈ G based on
the sub-codebooks {C∗i }. More specifically, we first split x into m sub-vectors aj(x) with
1 ≤ j ≤ m, and then find a sub-codeword of C∗i (i = bj/hc + 1) which is closest to aj(x)
in terms of the Euclidean distance. The index associated to the obtained sub-codeword is
considered as the sub-quantization of aj(x). As a result, the complete quantization code of x
is an integer vector of size m whose each element has the value in the range of 0, 1, . . . ,K∗−1.
Repeating the above process for every data point in Q, we obtain the quantized database Gq

which has the size of n ×m and consumes much less memory space than the original float
database G. Searching now can be accomplished by choosing an appropriate distance. For
this purpose, asymmetric distance computation (ADC) is commonly used in the literature
[9, 20]. By ADC distance, it means that we approximate the distance between two points
x and r in the Rd space by the distance between x and q∗(r) where q∗(r) is a quantization
mapping that concatenates the sub-quantization codes as follows

q∗(r)← {q∗i (aj(r))}, (6)
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where j = 1, 2, . . . ,m and i = bj/hc+ 1.

With the use of ADC distance, the search procedure is outlined on Algorithm 2. The
algorithm takes as input a query vector x ∈ Rd, a parameter R indicating the number
of candidate answers, and the quantized database Gq. Principally, searching is driven by
a exhaustive search which scans every element of Gq, computes the corresponding ADC
distance, and updates a short-list containing R best answers found so far. The process of
maintaining the short-list can be efficiently implemented by using a Maxheap structure [9]
but it is not detailed here for simplification.

The main goal of Algorithm 2 is to justify the coding quality of our PSVQ quantization
method. To this aim, running time aspect is not optimally addressed here and the algorithm
acts as a brute-force search. The computation complexity is thus linear with the size of the
database Gq. It is worth noting that the most intensively computational step of Algorithm
2 concerns with the ADC distance computation. However, the computational complexity of
this step is bounded by the number of sub-codewords (i.e., m × K∗) which is a relatively
small value. We thus can pre-compute the distances between x and all the sub-codewords,
store them into a 1D look-up table, and access the table for efficient calculation of ADC
distance. The results of Algorithm 2 are compared against other coding methods such as
PQ and ck-means. Detailed performance shall be presented in our subsequent experiments.

Algorithm 2 ADCSearch(x, R, Gq)

1: Input: an input query (x), the number of returned candidate answers (R), and the
quantized database (Gq).

2: Output: A short-list of R elements closest to x using ADC distance.
3: LR ← ∅
4: n← length of Gq

5: for i := 1 to n do
6: d ← d(x, ci) {compute the ADC distance between x and a quantized code, here ci

denotes the sub-codewords associated to the ith quantized code of Gq}
7: LR ← MaxHeap(R, d, i) {update the list containing R best answers found so far}
8: end for
9: return LR

3.2. Prior knowledge space partitioning

When performing space decomposition in the PQ technique, it is assumed that the sub-
spaces are mutually independent. This is, of course, not always true for any dataset except
for the SIFT features [14]. In the SIFT descriptor, the feature vector is computed for each
local region in which the region is divided into 4 × 4 sub-windows, each of which is a 8-
bin histogram of orientations computed for the pixels assigned to it. The histograms are
then packed to form 128D feature vectors. Hence, if we divide the vectors into m sub-
spaces (i.e., m = 8, 16), the resulting sub-spaces are virtually independent due to the natural
order of SIFT dimensions. Similarly, the GIST features have been also computed with the
same principle as illustrated in Figure 1 [21]. Particularly, in corresponding to the GIST1M
dataset1, the GIST features are computed for a given input image, as follows: resizing image

1http://corpus-texmex.irisa.fr/
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to a fixed size, applying a 4×4 grid to each of three color channels, computing a 16-bin Gabor-
based orientation histogram for each of 16 grid cells, and finally concatenating the resulting
histograms to form 960D GIST features (i.e., 3 × 16 × 20). However, the 960D GIST1M
dataset has been reorganized with a slight modification in the order of concatenating the
histograms. Therefore, the natural order of dimensions in GIST1M dataset does not correctly
reflect the way of building GIST features.

      

Figure 3. An input image (left) and SIFT descriptors computed at 4 keypoints (right)

Taking in consideration the aforementioned aspects, we argue that with some advance
of prior knowledge about the feature space, we can employ a suitable space decomposition
strategy. This observation has been also exploited in the PQ technique where the authors
suggested using the “structured order” to split the datasets. By structured order, it means
that all the dimensions having the same index modulo m (m = 8 in their work) are grouped
into one sub-space. Experimental results showed that this idea gives dramatic improvement
in coding quality for GIST features.

In the present work, we propose dividing the feature spaces in the same way as when
we concatenate the histograms of SIFT and GIST features. As described before, for both
the SIFT and GIST features, the input image region is divided into 4 × 4 sub-regions and
then the statistical visual image content is separately collected for each sub-region. As a
result, there is little correlation between the histograms of two sub-regions. In a nutshell,
we divide the feature spaces into m sub-spaces (m = 8 in our experiments) where each sub-
space contains the dimensions that have been assigned to the histograms computed from two
continuous sub-regions for both SIFT and GIST features. Of course, if we set m = 16, the
space decomposition would be very appropriable because each sub-space corresponds to a
sub-region of the input image. However, we have chosen m = 8 to be comparable with the
state-of-the-art PQ techniques.

4. EXPERIMENTS

4.1. Datasets and settings

To validate the performance of the proposed method, we have conducted two different
experimental tests. The first test aims at comparing the coding quality or quantization
performance of the proposed method with other PQ-based techniques that have particular
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interest in optimizing the quantizers. To this aim, we have selected the two representative
methods including the standard PQ and the ck-means method [20].

The second test compares the search efficiency or ANN search performance of the pro-
posed method. Because the main goal here is to investigate the indexing aspect, we have
thus selected the best indexing strategies including: IVFADC (i.e., PQ combined with an
inverted file structure using the ADC distance [9]), K-means tree [16] (i.e., the most efficient
technique for ANN search of FLANN library2), POC-tree [22], EPQ [25], and optimized
EPQ (OEPQ) [23]. The source codes are in C/C++ environment and the test is carried out
on a standard computer with following configuration: Windows 7, 16Gb RAM, Intel Core
(Dual-Core) i7 2.1 GHz.

As for the evaluation metrics, the first test employs Recall@R protocol, while the second
test uses speedup/precision curves. Those criteria are commonly used in the literature for the
same tasks [9, 17, 18, 20]. Specifically, Recall@R measures the faction of corrected answers
from a shortlist of R elements. The speedups are relatively computed over linear scan search
for avoiding the impact of computer configuration. To have a stable report, we have run
thousands of queries and then computed the mean results as the final output.

Two public datasets are used for all of our experiments. They include ANN SIFT1M and
ANN GIST1M [9]. Some basic information is reported in Table 1 for both the datasets. For
training the quantizers, PQ, ck-means, and the proposed method use the training set which
is different from the database and test sets. In addition, all these methods also use the same
parameter settings as follows: m = 8 and K = 256. Differently, the remaining methods
(i.e., K-means tree, POC-tree, EPQ and OEPQ) use directly the database for training the
quantizers (if any) and the clustering trees as well because they have been specifically targeted
to the indexing aspect.

Table 1. The datasets used in our experiments

Dataset #Training set #Database #Queries #Dimension

ANN SIFT1M 100,000 1,000,000 10,000 128

ANN GIST1M 500,000 1,000,000 1000 960

4.2. Evaluation of coding quality

We compare the proposed method against PQ and ck-means in terms of coding quality
for different sceneries of h as mentioned before, including SSQ2, SSQ4, and SSQ8 which
correspond to 4, 2, and 1 sub-quantizers, respectively. For instances, using h = 2 (SSQ2)
means that we group the data of two successive sub-spaces before applying the vector quan-
tization process and thus resulting in 4 sub-quantizers in total. To this aim, Algorithm 2 is
employed to compute the Recall@R scores of our algorithm. Figure 4 presents the results of
all the methods for both SIFT and GIST datasets. One can observe that SSQ2, SSQ4, and
SSQ8 perform consistently better than both PQ and ck-means for SIFT features. For GIST
dataset, ck-means is only outperformed by our SSQ8 variant probably due to the impact of

2http://www.cs.ubc.ca/research/flann/
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highly dimensional effect. These results are quite impressive when considering that ck-means
has been fully optimized for capturing the intrinsic distribution of underlying data.

On the other hand, Figure 4 also shows that PQ when combined with the structured
order strategy for space decomposition is still not superior to our simplest model SSQ2.
Obviously, the SSQ8 variant performs best because the correlation of data is exploited at
maximum over all the sub-spaces, resulting in the lowest coding distortion as empirically
presented in Figure 2. However, this superior coding quality does not necessarily imply the
improvement in search efficiencies because of the computational overhead when computing
the distances. As a result, one has to make a trade-off between both these aspects depending
on specific application context.
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Figure 4. Coding quality for SIFT (a) and GIST (b) features

4.3. Evaluation of approximate nearest neighbor search

In this part, we investigate the efficiency of the proposed sub-quantizers for the task of
ANN search. To this aim, we employ the indexing strategy as presented by the authors
in [23]. This protocol is a standard pipeline composed of a clustering tree for hierarchical
representation of the whole database, and a heuristic engine for driving the search for a
given query. This indexing structure was coupled with the PQ-based quantizers and have
employed ADC distances to return an ordered list of candidate answers. To the best of our
understanding, this method currently yields the state-the-art results for ANN search on the
studied datasets. However, these results have been obtained with a constraint that the data
space for GIST features is divided into many small sub-spaces to avoid the problem of highly
dimensional effect.

Differing from the aforementioned work, the main goal of this study is to evaluate the
search efficiency when using even much simple settings (i.e., the data space is divided into 8
sub-spaces for both SIFT ad GIST features). As mentioned before, ANN search performance
is measured by the means of speedup/precision curves. Here, the search precision can be
considered as a special case of Recall@R where R = 1. That means the fraction of true
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answers when considering the short-list containing only one candidate. To obtain a wide
range of speedup/precision points, several parameters are varied when performing the query.
More detail is referred to original work [23].

Figure 5 compares the ANN search efficiencies of our method against recent works in-
cluding EPQ, OEPQ, POC-tree, and Kmeans-tree. As shown from Figure 5, the proposed
method performs on par with the state-of-the-art indexing techniques (i.e., OEPQ and EPQ)
for the SIFT features, and especially outperforms all other methods for GIST dataset. On
average, the proposed method is about 2.5× to 3.0× faster than the best algorithm of FLANN
library (i.e., Kmeans-tree). The gain in speedups is even higher for GIST features. Taking
a particular snapshot at the search precision of 85%, our algorithm is 500× and 365× fas-
ter than sequence search for GIST and SIFT, respectively. Obviously, one can even obtain
further interesting results by dividing the data space into more than 8 sub-spaces (m = 16
for example). However, we have not conducted this option in the present work.
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Figure 5. ANN search performance for SIFT (a) and GIST (b) features

Lastly, we also provide a short evaluation of our method with the IVFADC technique [9]
by comparing the search speedups relatively to the best algorithm of FLANN as suggested in
[23]. One advantage of this way is that one can avoid the barrier and subjective evaluation
caused by re-implementing the algorithm and parameter tuning. As reported by the authors
in [9] and [23], the speedup of IVFADC is about 1.5× to 2.0× higher than the best algorithm
of FLANN for the same precisions on SIFT dataset, while the proposed method, as noticed
before, is roughly 2.5× to 3.0× more efficient. The obtained results are quite impressive
which demonstrates the efficiency and effectiveness of the proposed quantizers although the
idea is conceptually simple.

5. CONCLUSIONS

The proposed method has been designed to exploit the correlation of underlying data by
allowing a centroid to be associated to more than one sub-space. Hence, the density of each
cluster is higher when comparing to individual quantizer created separately in each sub-space.
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In addition, the proposed method also takes into consideration the prior knowledge of data
distribution to decide the appropriate space splitting action. The resulting quantizers have
nice properties in that they yield lower coding errors, create finer data representation, and
consume same bit budget for storing the sub-codewords as standard PQ methods do. Various
experiments have been conducted which showed the superior performance of the proposed
method in comparison with other techniques. For extension of this work, we intend to study
the incorporation of deep learning approach for boosting the search performance.
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