
Journal of Computer Science and Cybernetics, V.35, N.3 (2019), 217–232

DOI 10.15625/1813-9663/35/3/13277

FUZZY COMMON SEQUENTIAL RULES MINING IN
QUANTITATIVE SEQUENCE DATABASES

DO VAN THANH1,∗, TRUONG DUC PHUONG2

Department of Information Technology, Nguyen Tat Thanh University, Vietnam

Department of Information Technology, Hanoi Metropolitan University, Vietnam
∗dvthanh@ntt.edu.vn

�

Abstract. Common sequential rules present a relationship between unordered itemsets in which

the items in antecedents have to appear before ones in consequents. The algorithms proposed to find

such rules so far are only applied for transactional sequence databases, not applied for quantitative

sequence databases. The goal of this paper is to propose a new algorithm for finding the fuzzy com-

mon sequential (FCS for short) rules in quantitative sequence databases. The proposed algorithm

is based on the ERMiner algorithm. It is considered to be the most effective today compared to

other algorithms for finding common sequential rules in transactional sequence databases. FCS rules

are more general than classical fuzzy sequential rules and are useful in marketing, market analysis,

medical diagnosis and treatment.

Keywords. Quantitative Sequence Database; Fuzzy Sequence Database; Fuzzy Common Sequential

Rule; Equivalence Class; Left Merger; Right Merger.

1. INTRODUCTION

Mining sequential rules is one of the most important domains in data mining. There are

two kinds of sequential rules [7, 9]. The first kind of sequential rules expresses a relationship

between two series of events happening one after another. In these rules, both of the ante-

cedent and consequent parts belong in a same sequential pattern and to discover such rules,

one often focuses on the mining of sequential patterns [2, 3, 4, 6, 11, 12, 13, 14, 15, 16, 18].

In the second kind of sequential rules, items in the antecedent or consequent parts do not

always appear in the same order in sequences as long as items in the antecedent part need

to appear before items in the consequent part [8, 9, 10].

Like the process of mining association rules [1], in general the process of mining of

sequential rules of the first kind consists of two phases, in which the first phase is to discover

frequent sequences(sequential patterns), and the second phase is to generate sequential rules

from the discovered sequential patterns. The first phase is the most complex, most time

and cost consuming. At present, there are many works for finding out sequential patterns of

the first kind in transactional sequence databases as well as quantitative sequence databases

[2, 3, 4, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Sequential rule of the second kind has just been mentioned in recent years [7, 8, 9, 10].

It is more general than the sequential rule of the first kind. It is actually useful and has
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been applied in practice [5]. Sequential rule of the second kind is called common sequential

rule [7, 8, 9, 10]. Unlike the approach to mine sequential rules of the first kind, the proposed

algorithms to mine sequential rules of the second kind so far do not discover sequential

patterns, and since then generate valid sequential rules, they find rules that are common to

several sequences [7, 8, 9, 10].

Details of the algorithms mining the common sequential rules in transactional sequence

databases are presented in the papers [8, 9, 10]. In [9], the authors introduced an algorithm

for mining common sequential rules in transactional sequence databases. It is built based

on equivalence classes and is called ERMiner. This algorithm has overcome some of the

disadvantages of previous algorithms [8, 10]. The experiment of the algorithms mining the

common sequential rules in some transactional sequence databases having different properties

showed that the ERMiner algorithm ran the fastest but in general it uses more memory than

other algorithms [9].

It can be seen that the common sequential rules found so far have only been discovered in

transactional sequence databases, there has been no studies on the mining of these rules in

quantitative sequence databases, where attributes receive numeric and/or categorical values.

The purpose of this paper is to address the aforementioned shortcoming. Specifically,

this paper proposes an algorithm to mine common sequential rules in quantitative sequence

databases. In such context, the found rules are called fuzzy common sequential (FCS for

short) rules and the proposed algorithm is named FERMiner. The FERMiner algorithm

differs from the ERMiner algorithm mainly in that it has to convert quantitative sequence

databases into fuzzy sequence databases and proposes formulas to calculate the support and

the confidence of FCS rules.

The rest of the paper is organized as follows: Section 2 defines the problem of mining

FCS rules. Section 3 presents the FERMiner algorithm to find out FCS rules. Section 4

experiments the proposed algorithm. Conclusions and orientations for further research are

presented in Section 5.

2. PROBLEM DEFINITION

Definition 2.1. Let E = {e1, e2,..., eu} be a set of attributes, <lex be a total order relation

of attributes in E and e1 <lex e2 <lex,. . . , <lex eu, s = 〈(et1, q1), et2, q2), (et3, q3),. . . , (etn,

qn)〉 is a quantitative sequence, where etk ∈ E (1≤ k ≤ n), qk is value of etk (qk is numeric

or categorical).

A quantitative sequence database denoted by QSD is the set of all quantitative sequences.

So, QSD = {s1, s2, ..., sv} where si (1≤ i ≤ v) is a quantitative sequence, v is the total

number of quantitative sequences. In a sequence, elements occurring in a same time are

sorted by the <lex relation of the attributes. A quantitative sequence s can be presented

in an alternate form s=〈E1, E2, ...,Ek〉, where ∪kh=1Eh = {(et1, q1), (et2, q2), (et3, q3),. . . ,

(etn, qn)} and all attributes eti in Eh occur in a same time. Eh is called a transaction, the

sequence s=〈E1, E2,,..,Ek〉 is called a transaction sequence.

Example 2.2. Table 1 presents a quantitative sequence database. In this case, set of attri-

butes is E = {a, b, c, d, e, f, g, h, i}. The second quantitative sequence is 〈(d, 2), (a, 5), (d, 4)〉
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in which the attribute d receives a value of 2 and does not occur at the same time with the at-

tribute a having a value of 5. Furthermore, the quantitative sequence 〈(d,2), (a, 5), (d, 4)〉 also

can be presented in form 〈{(d, 2)}, {(a, 5), (d, 4)}〉 or 〈{(d, 2)}, {(a, 5)}, {(d, 4)〉 depending on

the time points of occurrence of the attributes a and d to be the same or not. The sequence

〈{(d, 2)}, {(a, 5), (d, 4)}〉 consists of 2 transactions such as {(d, 2)} and {(a, 5), (d, 4)} whereas

the sequence 〈{(d, 2)}, {(a, 5)}, {(d, 4)}〉 consists of 3 transactions such as {(d, 2)}, {(a, 5)}
and {(d, 4)}.

Table 1. Quantitative sequence database, D

Cid Sequences

1 〈(a, 2), (b, 2), (e, 5)〉
2 〈(d, 2), (a, 5), (d, 4)〉
3 〈(b, 1), (d, 2), (e, 5)〉
4 〈(f, 6), (b, 6), (c, 1), (c, 2)〉
5 〈(a, 1), (b, 1), (d, 2), (e, 5)〉
6 〈(a, 2), (b, 1), (e, 1)〉
7 〈(i, 5), (a, 3), (h, 2)〉
8 〈(c, 6), (i, 5), (f, 3)〉
9 〈(h, 3), (a, 1), (b, 6)〉
10 〈(a, 2), (g, 5), (b, 2), (e, 1)〉

Definition 2.3. Let FE = {F e1 , F e2 , ..., F eu} be a set of fuzzy sets of attributes in E,

F ek =
{
fekhk,1

, fekhk,2
, ..., fekhk,hk

}
be a set of fuzzy sets of the ek attribute (k = 1, 2..., u),

where fekhk,j
is the jth fuzzy set (1≤ j ≤ hk), hk is the number of fuzzy sets of ek. Each

fuzzy set has its membership function µ: X → [0, 1]. Sequence fs = 〈(fe1, fq1), (fe2, fq2),

(fe3, fq3), . . . , (fen, fqn)〉 is called a fuzzy sequence, where fei ∈ FE (1 ≤ i ≤ n) is a fuzzy

set and is also called a fuzzy attribute, fqi is the value of the membership function µfei of

fei at qi (fqi = µfei(qi)). A fuzzy sequence database (FSD for short) is a set of all fuzzy

sequences.

Similar to quantitative sequences, fuzzy sequences can also be presented like fs = 〈E1,

E2, ..., Ek〉, where ∪kh=1Eh = 〈(fe1, fq1), (fe2, fq2), (fe3, fq3),. . . , (fen, fqn)〉 and all

attributes in Eh occur at a same time. Eh is called a fuzzy transaction, fs = 〈E1, E2, ...,Ek〉
is called a fuzzy transaction sequence. Denote Ih = {fei/(fei, fqi) ∈ Eh}, it is called a short

form of Eh.

Example 2.4. Assume each attribute xm in a quantitative sequence database is associated

with K fuzzy sets defined as follows: Let fxm
K, im

be ithm fuzzy set (1≤ im ≤ K) of the

attribute xm (xm ∈ E), mi and ma are respectively the minimum and maximum values of

the attribute xm, K is the number of partitions of xm; µxm
K, im

is the membership function of

fxm
K, im

and is determined as in [16], i.e.

µxm
K, im

(v) = max{1− |v − aKim |/b
K , 0} (2.1)
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where aKim= mi+ (ma−mi)(im − 1)/(K − 1); bK = (ma−mi)/(K − 1).

Suppose K = 3 for all attributes in the quantitative sequence database D in Example

2.2. The quantitative attribute a will be converted to 3 fuzzy attributes fa3,1 (im=1), fa3,2
(im=2), fa3,3 (im=3) with their corresponding membership functions to be µa3,1, µa3,2, µ

a
3,3

as follows.

Due to the minimum and maximum values of the attribute a in D are mi = 1, ma = 5,

according to the formula (2.1)

a31 = 1 + (5− 1)(1− 1)/(3− 1) = 1;

a32 = 1 + (5− 1)(2− 1)/(3− 1) = 3;

a33 = 1 + (5− 1)(3− 1)/(3− 1) = 5

and b3 = (5− 1)/(3− 1) = 2, so

µa3,1 (v) = max
{

1−
∣∣v − a31∣∣ /b3, 0

}
= max {1− |v − 1| /2, 0},

µa3,2 (v) = max
{

1−
∣∣v − a32∣∣ /b3, 0} = max {1− |v − 3| /2, 0},

and

µa3,3 (v) = max
{

1−
∣∣v − a33∣∣ /b3, 0} = max {1− |v − 5| /2, 0}.

The graph of membership functions of the 3 fuzzy attributes fa3,1, f
a
3,2, f

a
3,3 is illustrated

in Figure 1 below

Figure 1. The graph of membership functions µa
3,1, µ

a
3,2, µ

a
3,3

Calculating the value of membership functions:

In Cid = 1 in the quantitative sequence database D, the attribute a =2, so accor-

ding to the formula (2.1), µa3,1 (2)=max{1-|2-1|/2, 0}= 0.5; µa3,2 (2)=max{1-|2-3|/2, 0}= 0.5

and µa3,3 (2)=max{1-|2-5|/2, 0}= max{1-1.5, 0}= 0.

In Cid = 2, the attribute a=5, by calculating under the similar way as mentioned above,

we have µa3,1 (5) = max{1 − |5 − 1|/2, 0} = 0; µa3,2 (5) = max{1 − |5 − 3|/2, 0} = 0 and

µa3,3 (5) = max{1− |5− 5|/2, 0} = max{1, 0} = 1. The value of membership functions of the

3 fuzzy attributes associated with the quantitative attribute a in another Cids in D is also

calculated under the such a similar way.

Determining fuzzy attributes associated with each quantitative attribute in D as well

as calculating the value of their membership functions are implemented similarly as for the

attribute a, and finally we get the fuzzy sequence database D∗ from the quantitative sequence

database D as described in Table 2.
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Table 2. Fuzzy sequence database, D∗

Cid Fuzzy Sequence

1 〈(fa3,1, 0.5),
(
fa3,2, 0.5

)
,
(
f b3,1, 0.6

)
,
(
f b3,2, 0.4

)
,
(
fe3,3, 1

)
〉

2 〈
(
fd3,1, 1

)
,
(
fa3,3, 1

)
,
(
fd3,1, 1

)
〉

3 〈
(
f b3,1, 1

)
,
(
fd3,1, 1

)
,
(
fe3,3, 1

)
〉

4 〈
(
ff3,3, 1

)
,
(
f b3,3, 1

)
,
(
f c3,1, 1

)
,
(
f c3,1, 0.6

)
,
(
f c3,2, 0.4

)
〉

5 〈
(
fa3,1, 1

)
,
(
f b3,1, 1

)
,
(
fd3,1, 1

)
,
(
fe3,3, 1

)
〉

6 〈
(
fa3,1, 0.5

)
,
(
fa3,2, 0.5

)
,
(
f b3,1, 1

)
, (fe3,1, 1)〉

7 〈
(
f i3,1, 1

)
,
(
fa3,2, 1

)
,
(
fh3,1, 1

)
〉

8 〈
(
f c3,3, 1

)
,
(
f i3,1, 1

)
,
(
ff3,1, 1

)
〉

9 〈
(
fh3,3, 1

)
,
(
fa3,1, 1

)
,
(
f b3,3, 1

)
〉

10 〈
(
fa3,1, 0.5

)
,
(
fa3,2, 0.5

)
,
(
fg3,1, 1

)
,
(
f b3,1, 0.6

)
,
(
f b3,2, 0.4

)
, (fe3,1, 1)〉

In this table a tuple (fxm
K,im

, fq) means that fxm
K,im

is a fuzzy set of the attribute xm,

fq ∈ [0, 1] is the value of the membership function µxm
K,im

at the value q. For instance, in case

of (fa3,2, 0.5), fa3,2 is the second fuzzy set of three fuzzy sets for the attribute a, 0.5 is value

of the membership function µa3,2 of the fuzzy set fa3,2 at q = 2.

Definitions 2.5, 2.6, 2.8 below are developed from the related definitions in the works

[8, 9, 10].

Definition 2.5. A FCS rule X ⇒ Y expresses a relationship between two sets of fuzzy

attributes X and Y so that X ∩ Y = ∅;X 6= ∅ and Y 6= ∅, and Y appears after X in a

fuzzy transaction sequence fs.

Definition 2.6. Let fs = 〈E1, E2, ...,, Ek〉 be a fuzzy transaction sequence; I1, I2, ...,,

Ik be the short forms of E1, E2, ...,, Ek, respectively; a fuzzy attribute set X appears (or

is contained) in fs if there exists an interger m, m ≤ k so that X ⊆ ∪mh=1Ih; a FCS

rule r = X ⇒ Y appears (or is contained) in fs if there exists an integer n < k so that

X ⊆ ∪nh=1Ih and Y ⊆ ∪kh=n+1Ih. A fuzzy sequence is said to contain a FCS rule r if its

corresponding fuzzy transaction sequence contains r.

A fuzzy sequence α = 〈(fa1, faq1), (fa2, faq2), (fa3, faq3),. . . , (fan, faqn)〉 is a

subsequence of a fuzzy sequence β= 〈(fb1, fbq1), (fb2, fbq2), (fb3, fbq3),. . . , (fbr, fbqr)〉
if there are integers 1 ≤ w1 < w2 < . . . < wn ≤ r so that fai = fbwi and faqi = fbqwi with

∀i|1 ≤ i ≤ n.

Example 2.7. A fuzzy attribute set {fa3,2, f b3,1} is contained in the fuzzy sequence

〈{(fa3,1, 0.5),
(
fa3,2, 0.5

)
}, {(f b3,1, 0.6), (f b3,2, 0.4)}, {(fe3,3, 1)}〉.

A FCS rule {fa3,1, f
g
3,1} ⇒ {f b3,2, fe3,1} is contained in the fuzzy sequence

〈
{(
fa3,1, 0.5

)
,
(
fa3,2, 0.5

)}
, {(fg3,1, 1)}, {

(
f b3,1, 0.6

)
,
(
f b3,2, 0.4

)
}, {(fe3,1, 1)}〉.
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There does not exist the FCS rule {fa3,1, f b3,1} ⇒ {fg3,1} because {fg3,1} is not contained

in the short form of a fuzzy transaction occured after the fuzzy transaction with its short

form containing the fuzzy attribute f b3,1.

Definition 2.8. A FCS rule r = X ⇒ Y has the size of k ∗m if |X| = k and |Y | = m.

A FCS rule with the size of f ∗ g is greater than an other FCS rule with the size of h ∗ i if

either f > h ∧ g ≥ i or f ≥ h ∧ g > i.

Definition 2.9. Let fs = 〈(fe1, fq1), (fe2, fq2), (fe3, fq3), . . . , (fen, fqn)〉 be a fuzzy

sequence, fuzzy attribute set X be contained in fs the support for X of fs is computed by

γ (fs) =
n∏

i=1

fqi. (2.2)

The support of the fuzzy attribute setX in the fuzzy sequence database FSD is computed

as follows

supp (X) =
1

|FSD|
∑

γ(fs), fs ∈ FSD and X ⊆ fs. (2.3)

Let r = X ⇒ Y be a FCS rule, the support of the rule r in the fuzzy sequence database

FSD is defined by

supp(r) = supp(X ∪ Y ). (2.4)

In other words, supp(r) is the percentage of the total of the support for the set X ∪Y of

fuzzy sequences in which the fuzzy attributes in X must appear before the attributes in Y ,

divided by the total number of fuzzy sequences in FSD.

The confidence of the FCS rule r = X ⇒ Y is defined by

conf (r) =
supp(r)

supp(X)
(2.5)

Remark 1. If all attributes in a quantitative sequence database have the value of 0 or 1 then

the support of a rule r computed according to Definition 2.9 is equal to the support of this

rule computed as in the case of transactional sequence databases [9]. Based on the formulas

(2.2) and (2.3), it can be deduced that the support of fuzzy attribute sets has the Apriori

property [1].

Definition 2.10. Let minSup, minConf ∈ [0, 1] be two user-defined thresholds. FCS rule r

is frequent if supp(r) ≥ minSup. The rule r is confident if conf(r) ≥ minConf. FCS rule

r is called a valid if it is frequent and confident rule.

3. THE FERMiner ALGORITHM

Given a quantitative sequence database QSD, two user-defined thresholds minSup and

minConf, a set of fuzzy sets FE of the quantitative attributes in QSD, each fuzzy set f ∈ FE
has its membership function.
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The arised problem: find out all valid FCS rules in QSD.

The algorithm for finding all valid FCS rules is developed based on the ERMiner algorithm

using equivalence classes. The following concepts are developed from the related concepts

in [9].

Definition 3.1. (A left/right fuzzy equivalence class and left/right mergers) Given a fuzzy

sequence database, let R be a set of all frequent FCS rules, ε be a set of all fuzzy attributes

of E. A left fuzzy equivalence class LεW,i is the set of frequent FCS rules LεW,i = {W ⇒
Y |W, Y ⊆ ε ∧ |Y | = i, i is an integer}. Similarly, a right fuzzy equivalence class RεW,i is

the set of frequent FCS rules RεW,i = {X ⇒W |X, W ⊆ ε ∧ |X| = i}.
Assume two FCS rules r1, r2 ∈ LεW,i, r1 = W ⇒ X, r2 = W ⇒ Y and |X ∩ Y | =

|X − 1| = i− 1, i.e. X and Y are identical except for a single fuzzy attribute; a left merger

of r1, r2 is the process of merging r1 and r2 to obtain r = W ⇒ X ∪ Y . Similary, assume

two FCS rules r1, r2 ∈ RεW,i, r1 = X ⇒W, r2 = Y ⇒W and |X ∩ Y | = |X − 1| = i− 1,

a right merger of r1, r2 is the process of merging r1 and r2 to obtain r = X ∪ Y ⇒W.

Property 1. Let W ⇒ Y be a frequent FCS rule, if X ⊆ Y then W ⇒ X is also frequent

FCS rule. Similarly, let Y ⇒ W be a frequent FCS rule, if X ⊆ Y then X ⇒ W is also

frequent FCS rule.

Property 2. All frequent FCS rules r = W ⇒ Y, |Y | = i + 1 are results of a left merger

of two FCS rules r1, r2 belonging to the left fuzzy equivalence class LεW,i. Similarly, all

frequent FCS rules r = Y ⇒ W, |Y | = i + 1 are results of a right merger of two FCS rules

r1, r2 belonging to the right fuzzy equivalence class RεW,i.

In essence, the proof of the Properties 1, 2 is based on the Apriori property of candidate

itemsets and the way of generating a candidate k-itemsets from two frequent (k−1)-itemsets

in the Apriori algorithm [1]. The proof of these properties is similar to the proof of related

properties in [9] and is simple, so it is omitted here. From the two properties, we have a

following remark.

Remark 2 :

- FCS rule r generated by merging two FCS rules r1, r2 always has the support less than

or equal to the support of these two FCS rules.

- If the support of a FCS rule r less than minSup then this rule is not merged with any

FCS rule to generate a new frequent FCS rule.

This remark is used to prune the search space of frequent FCS rules. On the other hand,

due to a FCS rule may be created under different combination ways of left and right mergers,

so it can generate redundant FCS rules. In order to overcome this drawback, this paper uses

the solution proposed in [9]. Namely, this solution only allows to perform a right merger

after a left merger and does not allow to perform a left merger after a right merger.

Similarly to the paper [9], because there is not a pruning for the confidence, so in order

to find valid FCS rules, the computation of the confidence of FCS rules done in the space of

frequent FCS rules is a way to reduce the search space of valid FCS rules.

The FERMiner algorithm for finding valid FCS rules in quantitative sequence databases

is developed based on the ERMiner algorithm [9] and is as follows: In this algorithm, the

fleftSore variable stores all left fuzzy equivalence classes and the frules variable stores all valid

FCS rules. The fleftSearch procedure performs merging of all left fuzzy equivalence classes.
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Algorithm 1 (The FERMiner algorithm)
Input: Let QSD be a quantitative sequence database; minSup, minConf be user’s thresholds; FE be fuzzy

sets of the quantitative attributes in QSD;
Output: Valid FCS rules;
1: fleftStore ← ∅;
2: frules ← ∅;
3: Scanning QSD once to create fuzzy sequence database FSD.
4: Calculating EQ that is the equivalence class with size of 1*1;
5: Foreach left equivalence class H ∈ EQ do
6: fleftSearch(H, frules)
7: end
8: Foreach right equivalence class J ∈ EQ do
9: frightSearch(J, frules, fleftStore)

10: end
11: Foreach left equivalence class K ∈ fleftStore do
12: fleftSearch(K, rules)
13: end
14: Return frules

The frightSearch procedure performs merging of all right fuzzy equivalence classes, and this

procedure also allows a left merger to be made after a right merger, so it can generate new

left fuzzy equivalence classes. Because of this, after finishing the frightSearch procedure,

the fleftSearch procedure must be performed again to find out all valid FCS rules.

The FERMiner algorithm is similar to the ERMiner algorithm [9]. The main differences

between these two algorithms are that after scaning the quantitative sequence database

QSD, the FERMiner algorithm will transform this database into a fuzzy sequence database

FSD and the support of FCS rules in the FERMiner algorithm is computed according to

the formulas (2.3), (2.4), (2.5) above. The computation is implemented in the fleftSearch

and frightSearch procedures.

Algorithm 2 (fleftSearch procedure)
Input: LE is the left fuzzy equivalence class; frules: set of valid FCS rules found up to this time;
1: fleftStore ← ∅;
2: foreach r ∈ LE do
3: LE′ ← ∅;
4: foreach rule s ∈ LE so that r 6= s & pair (r, s) has not been processed do
5: If (MergingCondition) = true then
6: t ← RightMerge(r, s);
7: ComputeSupport(t, r.s);
8: If Supp(t) ≥ minSup then
9: LE′ ← LE′ ∪ {t};

10: ComputeConfidence (t, r, s);
11: If Conf(t) ≥ minConf then
12: frules ← frules ∪ {t};
13: end
14: end
15: end
16: end do
17: f leftSearch(LE′, frules);
18: end do
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Here MergingCondition = true means |X ∩ Y | = |X − 1| , where X and Y are conse-

quent parts of the rules r and s, respectively.

Unlike the ERMiner algorithm, the fleftSearch procedure in the FERMiner algorithm

does not use the sparse matrix structure to prune the search space when checking the

left/right merging conditions of the two rules in a same equivalence class [8, 9]. The main

reason is that the computation of the support of a fuzzy attribute is rather complex due to

it must be implemented according to the formulas (2.3) and (2.4). Except this, the fleftSe-

arch procedure in the FERMiner algorithm is quite similar to the leftSearch procedure in

the ERMiner algorithm [9]. The same remark is also true for the frightSearch procedure

in the FERMiner algorithm, so this procedure is ignored and is not introduced in the paper.

4. EXPERIMENT

The algorithm is executed in the Java programming language and run on Chip Intel Core

i5 2.5 GHz, RAM 4 GB, Windows 7 OS.

4.1. Data sets

The Online Retail and the QtyT40I10D100K are very large datasets [20]. The Online

Retail is the retail dataset of 37 countries with 541.909 instances and 3.684 items (Stockcode)

while the QtyT40I10D100K is the dataset of 100 customers with 3.960.456 instances in

which the Time attribute receives 99.999 values and the Trans attribute receives 942 values

(items). Two datasets for experiment include the Online Retail France dataset extracted

from the Online Retail [20] from December 1, 2010 to December 9, 2011 with the value of

the Country attribute to be ’France’ and the QtyT40I10D100K 10K dataset extracted from

the QtyT40I10D100K [20] with the first 10.000 transactions (value of the Time attribute

from 1 to 10.000) and with the first 100 items (value of the Trans attribute from 1 to 100).

The Online Retail France includes the information as follows:

• Customer ID – the identify of the customer;

• Invoice Date – the date of the invoice;

• Stock Code – the code of the Stock;

• Quantity – the quantity of the bought StockCode.

The QtyT40I10D100K 10K has the information as follows:

• CustomerID – the identify of the customer;

• Time – the time of the transaction;

• Trans – the value of an item;

• Quantity – the quantity of the item.

The characteristics of the two experimental data sets are described in Table 3.
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Table 3. Experimental datasets

Datasets

Number of
attributes

(I)

Number of
transactions

(D)

Number of
sequences

(S)

Average of
the length of
transactions

(T)

Average of
the length of
sequences

Online Retail France 1523 365 87 21.38 95.88

QtyT40I10D100K 10K 100 10000 100 4.26 420

Figure 2. For the sequence database Online Retail France

To match the input data of the algorithm, the Online Retail France dataset is converted

to the corresponding quantitative sequence database as follows:

• CusId: the ID of the customer

• Time: an integer represents the number of days of the Invoice Date differed from the

first date of the data (01/02/2010). If it is the first day, Invoice Date will be the value 1;

• StockCode: the code of Stock

• Quantity : the number of StockCode in a transaction.

Each item in the datasets is partitioned into fuzzy sets and their membership functions de-

fined by the formula (2.1) in Example 2.4 with K = 3 and Axm
3,1 = xm Small,

Axm
3,2 = xm Average, A

xm
3,3 = xm Large. The ma, mi values correspond to the largest, smal-

lest values purchased of the stockcode xm. The Quantity attribute is used to calculate the

fuzzy values of the purchased stockcodes.
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Figure 3. For the sequence database QtyT40I10D100K 10K

Figure 4. For the sequence database Online Retail France

4.2. The results

4.2.1. Relationship between the number of valid FCS rules with minSup and
minConf

The relationships between the number of valid FCS rules found out in the two Online

Retail France and QtyT40I10D100K 10K quantitative databases with minSup and minConf
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Figure 5. For the sequence database QtyT40I10D100K 10K

are shown in Figures 2, 3 above. These figures reveal that the number of valid FCS rules will

decrease sharply if minSup and/or minConf is increased and the number of these rules will

increase if at least one of the two minimum thresholds is decreased and in particular, the

number of valid FCS rules will increase very rapidly if the minSup is lower than a certain

level depending on a specific quantitative sequence database used to discover FCS rules.

4.2.2. Relationship between algorithm executing time with minSup and
minConf

The algorithm executing time for mining valid FCS rules in the two quantitative sequence

databases aforementioned depends on minSup and minConf as shown in Figures 4, 5. It can

be seen that the relationship between algorithm executing time with minSup and minConf

is quite similar to the relationship between the number of valid FCS rules with the minSup

and minConf as mentioned above.

4.2.3. Analyzing the valid FCS rules

With minSup of 8% and minConf of 90%, using the FERMiner algorithm on the Online

Retail France data set, we obtained valid FCS rules described in Table 4.
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Table 4. Valid FCS rules found out with minSup of 8% and minConf of 90%

Valid FCS rules

The
sup-
port

The
confi-
dence

The means of the rules

702 Average, 1116 Average

==> 1545 Small
8.85% 96.25%

If a customer buys the stockcode
702 with an Average number and
the stockcode 1116 with an Average
number, then he will also buy later the
stockcode 1545 with a Small number
with the support and the confidence of
8.85% and 96.25%, respectively

1545 Small, 110 Large ==>
1545 Small

8.74% 96.20%

If a customer buys the stockcode 1545
with a Small number and the stock-
code 110 with a Large number, then
he will also buy later the stockcode
1545 with a Small number with the
support and the confidence of 8.74%
and 96.20%, respectively

1194 Large ==> 1545 Small 8.51% 92.50%

If a customer buys the stockcode 1194
with a Large number, then he will also
buy later the stockcode 1545 with a
Small number with the support and
the confidence of 8.51% and 92.50%,
respectively.

1545 Small, 1116 Average

==> 1545 Small
10.00% 91.58%

If a customer buys the stockcode 1545
with a Small number and the stock-
code 1116 with an Average num-
ber, then he will also buy later the
stockcode 1545 with a Small number
with the support and the confidence of
10.00% and 91.58%, respectively

1545 Small, 1269 Large ==>
1545 Small

9.43% 91.11%

If a customer buys the stockcode 1545
with a Small number and the stock-
code 1269 with a Large number, then
he will also buy later the stockcode
1545 with a Small number with the
support and the confidence of 9.43%
and 91.11%, respectively

110 Large ==> 1545 Small 9.43% 91.11%

If a customer buys the stockcode 110
with a Large number, then he will also
buy later the stockcode 1545 with a
Small number with the support and
the confidence of 9.43% and 91.11%,
respectively
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5. CONCLUSION AND RESEARCH IN FUTURE

The main contribution of this paper is to propose and solve the problem of mining FCS

rules in quantitative sequence databases. By proposing some new concepts and developing

relevant concepts in [9] for the case of fuzzy sequence databases, the algorithm FERMiner

was developed based on the ERMiner algorithm in [9]. Experimental results of the FERMiner

algorithm show that the number of valid FCS rules and the executing time of the algorithm

depend strongly on the minimum support (minSup) and confidence (minConf ) thresholds.

This dependence is perfectly suited with theory and reality.

It can be seen that common sequential rules found out until now provide only information

about an itemset occuring after an other itemset in a same order in transaction sequences,

but in reality, people not only consider the information regarding the order of occurrences of

two itemsets but also consider temporal range of their occurrences to use for forecasting goal.

The algorithms mining the common sequential rules so far and in this paper are not able

to find out rules providing such information. On the other hand at present, the algorithms

mining common sequential rules so far as well as in this paper also only find out rules in

which the antecedent and consequent parts are contained in a same transaction sequences

performed by an object. The algorithms are not able to find common sequential rules in

which the antecedent and consequent parts can be contained in sequences performed by

different objects, as long as the time point of occurrence of the consequent part must be

after the time point of occurrence of the antecedent part. Proposing some other algorithms

to solve the two problems aforementioned is our research work in the future.
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