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Abstract. The problem of high utility sequence mining (HUSM) in quantitative sequence databases

(QSDBs) is more general than that of mining frequent sequences in sequence databases. An important

limitation of HUSM is that a user-predefined minimum utility threshold is used to decide if a sequence

is high utility. However, this is not suitable for many real-life applications as sequences may differ

in importance. Another limitation of HUSM is that data in QSDBs are assumed to be precise. But

in the real world, data collected by sensors, or other means, may be uncertain. Thus, this paper

proposes a framework for mining high utility-probability sequences (HUPSs) in uncertain QSDBs

(UQSDBs) with multiple minimum utility thresholds using a minimum utility. Two new width and

depth pruning strategies are also introduced to eliminate low utility or low probability sequences as

well as their extensions early, and to reduce the sets of candidate items for extensions during the

mining process. Based on these strategies, a novel efficient algorithm named HUPSMT is designed

for discovering HUPSs. Finally, an experimental study conducted with both real-life and synthetic

UQSDBs shows the performance of HUPSMT in terms of time and memory consumption.

Keywords. High utility-probability sequence; Uncertain quantitative sequence database; Upper

and lower-bounds; Width and depth pruning strategies.

1. INTRODUCTION

Discovering frequent itemsets in transaction databases and frequent sequences in sequence
databases (SDBs) are important problems in knowledge discovery in databases (DBs), where
the support (occurrence frequency) of patterns is used as measure of interest. However, in
real-life (e.g. in business), other criteria, such as the utility (e.g. profit yield by a pattern),
are more important than the frequency. Hence, traditional algorithms for mining frequent
patterns may miss many important patterns that are infrequent but have a high utility. To
overcome this limitation of the frequent pattern mining model, it was proposed to discover
high utility patterns in quantitative DB, where each item is associated with a quantity,
(internal utility, e.g. indicating the number of items purchased by customer or the time spent
on a webpage), and each item has an external utility (e.g. unit profit). Then, based on these
two basic utilities, the utility of an item, itemset and sequence can be defined using different
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utility functions. The utility measure is more general than the support [20]. A pattern is
called high utility (HU) if its utility is no less than a user-specified minimum utility threshold
mu. In quantitative transaction databases (QTDBs), the utility can be defined using the
summation [13, 21] or average form [9, 16]. During the last decade, the problem of high
utility sequence mining (HUSM) in quantitative sequence databases (QSDBs) attracted the
interest of many researchers and has numerous real-life applications, such as analyzing web
logs [1], mobile commerce data [15], gene regulation data [22], and healthcare activity-cost
event log data [6]. In the problem of high utility itemset mining (HUIM) in QTDBs, each
itemset has a unique utility value, because an itemset can appear at most once in each input
transaction. This is different from QSDBs, where itemsets are sequentially ordered (e.g. by
time), and a sequence may appear multiple times in each input quantitative sequence. Thus,
the utility of a sequence may be calculated in many different ways, and utility calculations
in HUSM are more time-consuming than in HUIM and frequent itemset/sequence mining
(FIM/FSM).

In FIM/FSM, the support measure satisfies the anti-monotonic (AM, or downward-
closure) property, a very effective property to reduce the search space. This property states
that the support of a pattern α is no less than that of any of its super-patterns β, i.e.
supp(α) ≥ supp(β). Consequently, for a minimum support threshold ms, if α is infrequent,
i.e. supp(α) < ms, then β is also infrequent, and all its super-sequences can be immediately
pruned.

A key challenge in HUSM is that, in general, the nice AM property does not hold for a
utility measure u such as the sum, maximum or minimum of utilities in HUSM [2, 10, 15, 17].
To deal with this problem, a well-known upper-bound (UB) on u that satisfies AM, named the
SWU (Sequence-Weighted Utility) [20], has been proposed to prune unpromising patterns.
However, for low minimum utility thresholds, that UB is often too large and its pruning effect
is thus weak. To overcome this limitation, many tighter UBs satisfying anti-monotone-like
properties that can be weaker than AM have been proposed to prune low utility candidates
at an early stage. These include SPU and SRU [19], CRoM [4], PEU and RSU [18], and
MEU [12] for the maximum utility umax function, and RBU and LRU for the minimum
utility umin function [17].

However, HUSM has the two following important limitations: First, high utility sequences
(HUSs) in HUSM are only considered w.r.t. a single minimum utility mu threshold. This
is not reasonable in many real-life applications where patterns can differ in importance.
Second, HUSM assumes that data in QSDBs are precise, so it cannot be used in uncertain
QSDBs (UQSDBs) based on the expected support model [5]. Each input sequence collected
by sensors in a wireless network, for example, is associated with a probability, because data
collected by sensors can be affected by environmental noise (e.g. temperature and humidity)
and is therefore more or less accurate. For more details on the motivation and signification of
the problem, see [3, 11, 23]. To address these issues, the problem of discovering high utility
sequences in QSDBs with multiple minimum utility thresholds has been proposed in [12],
where items appearing in QSDBs are associated with different minimum utility thresholds.
The problem of mining all high utility-probability sequences (HUPSs) in UQSDBs has been
considered in [6]. The maximum umax utility is used in these two problems. This paper
considers the more general problem of mining all high utility-probability sequences (w.r.t.
umin) in UQSDBs with multiple mu thresholds (HUPSM).
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The rest of this paper is organized as follows. Section 2 defines the HUPSM problem. In
Section 3, we propose two depth and width pruning strategies to reduce the search space, and
a novel algorithm named HUPSMT (High Utility-Probability Sequence mining with Multiple
minimum utility Thresholds) for efficiently mining all HUPSs. An experimental study with
both real-life and synthetic UQSDBs is conducted in Section 4 to show the performance of
the proposed algorithm. Finally, Section 5 draws conclusions and discusses future work.

2. PROBLEM DEFINITION

This section presents the problem of HUPSM, high utility-probability sequence mining
in uncertain quantitative sequence databases with multiple mu thresholds.

Let A = {a1, a2, , aM} be a set of distinct items. A subset E of these items, E ⊆ A, is
called an itemset. Without loss of generality, we assume that items in itemsets are sorted
according to a total order relation ≺ such as the lexicographical order. A sequence α is a
list of itemsets Ek, k = 1, 2, .., p, denoted as α = E1 → E2 → ... → Ep. In a quantitative
database, each item a is associated with an external utility p(a), such as its unit profit, that
is a positive real number (p(a) ∈ R+). A quantitative-item (or briefly q−item) is a pair (a, q)
of an item a and a positive quantity q (internal utility, e.g. purchase quantity). A q−itemset
E′, according to an itemset E, is a set of q − items, E′ def= {(ai, qi)|ai ∈ E, qi ∈ R+}, where
E is called a projected itemset of E′ and denoted as E = proj(E′). A q − sequence α′

is a list of q − itemsets E′k, k = 1, ..., p, denoted as α′ = E′1 → E′2 → ... → E′p. Let

length(α′)
def
=
∑

k=1..p |E′k|, size(α′)
def
= p, where |E′k| is the number of items in E′k. If

size(α′) = 0, we obtain the null q-sequence, denoted as 〈〉. An uncertain quantitative
sequence database (UQSDB) D′ is a finite set of input q-sequences, D′ = {ψ′i, i = 1, ..., N},
where each q-sequence ψ′i is associated with a probability P (ψ′i) and a unique sequence
identifier, P (ψ′i) ∈ (0; 1] and SID = i. The projected sequence α of a q-sequence α′ is

defined and denoted as α = proj(α′)
def
= proj(E′1) → proj(E′2) → ... → proj(E′p). For

brevity, we define α′[k]
def
= E′k, α[k]

def
= proj(E′k). The projected sequence database (SDB)

D of D′ is defined as D = proj(D′) def
= {proj(ψ′i)|ψ′i ∈ D′}. For the convenience of readers,

Table 1 summarizes the notation used in the rest of this paper to denote (q−) items, (q−)
itemsets, (q−) sequences and input q-sequences.

Definition 1 (Utility of q-elements). The utilities of a q − item (a, q), q-itemset E′ =

{(ai1 , qi1), ..., (aim , qim)}, q-sequence α′ and D′ are defined and denoted as u((a, q))
def
= p(a)∗q,

u(E′)
def
=
∑

j=1..m u((aij , qij )), u(α′)
def
=
∑

i=1..p u(E′i) and u(D′) def
=
∑

ψ′∈D′ u(ψ′), respecti-
vely.

To avoid repeatedly calculating the utility u of each q − item (a, q) in all q-sequences ψ′

of D′, we calculate all utility values once, and replace q in ψ′ by u((a, q)) = p(a) ∗ q. This
leads to an equivalent database representation of the UQSDB D′ that is called the integrated
UQSDB of D′. For brevity, it is also denoted as D′. Due to space limitations, only integrated
UQSDBs are considered in this paper. An integrated UQSDB is depicted in Table 2, which
will be used as the running example. The utility of α′ = (d, 50) → (a, 4)(c, 10)(f, 36) is
u(α′) = 50 + 4 + 10 + 36 = 100.
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Table 1. Notation

Type Representation Example

Item
q-item

Roman letter
(Roman letter, number)

a, b, c
(a, 2), (b, 5), (c, 3)

Itemset
q-Itemset

Capitalized roman letter
Capitalized roman letter followed by ′

A, B, C
A′, B′, C ′

Sequence
q-sequence

Greek letter
Greek letter followed by ′

α, β, γ
α′, β′, γ′

Input sequence
Input q-sequence

Captialized Greek letter
Captialized Greek letter followed by ′

ψ, ψindex
ψ′, ψ′index

Table 2. Integrated UQSDB D′

SID Input q-sequence Probability

ψ′1 (c, 5)(e, 6)→ (a, 3)→ (d, 50)→ (a, 5)(c, 40)→ (a, 4)(c, 10)(f, 36) 0.5

ψ′2 (b, 12)→ (c, 20)(e, 6)→ (d, 20)→ (a, 1)(f, 9) 0.2

ψ′3 (d, 8)→ (a, 7)(c, 35)(e, 15)→ (g, 50)→ (a, 9)(f, 72) 0.9

Let α′ = E′1 → E′2 → ... → E′p, β
′ = F ′1 → F ′2 → ... → F ′q be two arbitrary q-sequences,

and α = E1 → E2 → ... → Ep, β = F1 → F2 → ... → Fq be their respective projected
sequences.

Definition 2 (Extensions of a sequence). The i−extension (or s−extension) of α and β is

defined and denoted as α �i β
def
= E1 → E2 → ... → (Ep ∪ F1) → F2 → ... → Fq, where

a ≺ b,∀a ∈ Ep, ∀b ∈ F1 (or α �s β
def
= E1 → E2 → ... → Ep → F1 → F2 → ... → Fq,

respectively). A forward extension (or briefly extension) of α with β, denoted as γ = α � β,
can be either α �i β or α �s β. Moreover, any sequence β = α � y where α is a non-null prefix
can be extended in a backward manner using a sequence ε. The sequence γ = α � ε � y such
that γ w β is called a backward extension of β (by ε w.r.t. the last item y = lastItem(β)).
Note that if γ = α �i ε �i y and size(ε) = 1, then γ w α �i y, otherwise, γ w α �s y.

For instance, d → af and d → a → c are respectively i− and s−extensions of d → a;
d→ acf , d→ a→ acf and d→ ac→ g → af are backward extensions of d→ af .

Definition 3 (Partial order relations over q-sequences and sequences). Consider any two q-
itemsets E′ = {(ai1 , qi1), ..., (aim , qim)}, F ′ = {(aj1 , qj1), ..., (ajn , qjn)}, m ≤ n. The q-itemset
E′ is said to be contained in F ′ and denoted as E′ v F ′, if there exist natural numbers
1 ≤ k1 < k2 < ... < km ≤ n such that ail = ajkl and qil = qjkl ,∀l = 1, ...,m. Then, α′ is
said to be contained in β′ and denoted as α′ v β′ (or β′ is called a super-q-sequence of α′) if
p ≤ q and there exist p positive integers, 1 ≤ j1 < j2 < ... < jp ≤ q : E′k v F ′jk , ∀k = 1, ..., p;
and α′ < β′ ⇔ (α′ v β′ ∧ α′ 6= β′). Similarly, for simplicity, we also use v to define
the containment relation over all sequences as follows: α v β or β w α (β is called a
super-sequence of α) if there exist p positive integers, 1 ≤ j1 < j2 < ... < jp ≤ q : Ek v
Fjk ,∀k = 1, ..., p, and α < β ⇔ (α v β ∧ α 6= β). The q-sequence β′ contains the sequence
α (or α is a sub-sequence of β′), denoted as α v β′ or β′ w α, if proj(β′) w α. Let
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ρ(α)
def
= {ψ′ ∈ D′|ψ′ w α} denote the set of all input q-sequences containing α. The support

of α is defined as the number of super-q-sequences of α, that is supp(α) = |ρ(α)|.

For example, for β = d → ac → af and ψ3 = proj(ψ′3) = d → ace → g → af , then
ψ′3 w β. Similarly, ψ′1 w β and ρ(β) = {ψ′1, ψ′3}, so supp(β) = 2. Note that a sequence may
have multiple occurrences in an input q-sequence. For instance, α = d → ac appears twice
in ψ′1, because (d, 50) → (a, 5)(c, 40) w α and (d, 50) → (a, 4)(c, 10) w α with two different
utility values (95 and 64).

Let U(α,ψ′i)
def
= {α′|α′ v ψ′i ∧ proj(α′) = α} be the set of all occurrences α′ of α in ψ′i.

Because this set may contain more than one occurrence, the utility of α in ψ′i can be defined
in many different ways. For example, it can be calculated as the maximum or minimum of
the utilities of α in ψ′i, as in many studies [4, 12, 17, 18, 19]. Formally, they are defined as
follows.

Definition 4 (Minimum utility of sequences [17]). The minimum utility of a sequence α in

an input q-sequence ψ′i (or in D′) is defined and denoted as umin(α,ψ′i)
def
= min{u(α′)|α′ ∈

U(α,ψ′i)} (or umin(α,D′) or more briefly umin(α)
def
=
∑

ψ′i∈ρ(α)
umin(α,ψ′i)). As a convention,

we define umin(〈〉, ψ′i)
def
= u(ψ′i), ∀ψ′i ∈ D′.

Similarly, we also have the definition of the maximum utility of α in ψ′i (or in D′) [20],

umax(α,ψ′i)
def
= max{u(α′)|α′ ∈ U(α,ψ′i)} (or umax(α)

def
=
∑

ψ′i∈ρ(α)
umax(α,ψ′i)). In this

paper, we consider the minimum umin utility. The reason for using umin and its advantages
compared to umax were discussed in [17].

For example, for α = d → ac, we have ρ(α) = {ψ′1, ψ′3} and U(α,ψ′1) = {(d, 50) →
(a, 5)(c, 40), (d, 50) → (a, 4)(c, 10)}, so umin(α,ψ′1) = min{95, 64} = 64. Similarly, umin(α,
ψ′3) = 50. Hence, umin(α) = 114. Besides, for another α = ce → f , β = ce → af and
δ = ce → a → f , then δ = α < β and umin(β) = 218 > umin(α) = 204 > umin(δ) = 50.
In other words, umin is neither anti-monotonic nor monotonic. In this context, a measure u
of sequences is said to be anti-monotonic or briefly AM (or monotonic) if u(β) ≤ u(α) (or
u(β) ≥ u(α), respectively), for any sequences α and β such that β w α.

Unlike the support measure, the maximum and minimum utility functions are not anti−
monotonic. Thus, it is necessary to devise UBs satisfying AM or weaker properties to
efficiently reduce the search space. For example, USpan [19, 20] is a popular and well-
known, but unfortunately incomplete, algorithm for mining high utility sequences (w.r.t.
umax). The reason is that USpan utilizes a measure named SPU to deeply prune candidate
sequences, but the SPU is not an UB on umax (see more details in [17]). Other UBs on umax

(or umin) are REU and LAS [12] (or RBU and LRU [17], respectively).

Definition 5 (Minimum utility threshold of sequences). Let Mu
def
= {mu(x), x ∈ A} be the

set of minimum utility thresholds of all items in A. Then, the minimum utility threshold of

a sequence α is defined and denoted as mu(α)
def
= min {mu(x), x ∈ α}.

For instance, consider minimum utility thresholds of all items in A as shown in Table 3
and β = d→ ac→ af . Then, mu(β) = min{320, 260, 270, 350} = 260.

Definition 6 (Probability of sequences). The probability of a sequence α in D′ is defined
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Table 3. Minimum utility thresholds of items

Item a b c d e f g

mu(it) 260 5 270 320 50 350 31

and denoted as P (α)
def
=
∑

ψ′i∈ρ(α)
P (ψ′i)/PS, where PS

def
=
∑

ψ′i∈D′
P (ψ′i) is a standardized

coefficient. Then, P (α) ∈ [0, 1].

For example, for β = d → ac → af , then ρ(β) = {ψ′1, ψ′3} and PS = 1.6, so P (β) =
1.4/1.6 = 0.875.

Problem Definition. For a user-predefined minimum probability threshold mp and mi-
nimum utility thresholds Mu, a sequence α is said to be a high utility-probability (HUP)
sequence if umin(α) ≥ mu(α) and P (α) ≥ mp. The problem of high utility-probability se-
quence mining (HUPSM) in a UQSDB D′ with multiple minimum utility thresholds is to

discover the set HUPS def
= {α|umin(α) ≥ mu(α) ∧ P (α) ≥ mp}.

For example, for mp = 0.875, Mu of Table 2 and β = d → ac → af , then ρ(β) =
{ψ′1, ψ′3}, umin(β) = umin(β, ψ′1) + umin(β, ψ′3) = 135 + 131 = 266, so umin(β) ≥ mu(β) and
P (β) ≥ mp. Hence, β is a HUP sequence.

3. PRUNING STRATEGIES AND PROPOSED ALGORITHM

3.1. Prunning strategies

Since umin is not anti-monotonic (AM), devising upper-bounds satisfying anti-monotone-
like properties that can be weaker than AM is necessary and useful to efficiently reduce the
search space.

Firstly, we introduce the concepts of ending and remaining q-sequence of a sub-sequence
in a q-sequence. Assume that α = E1 → E2 → ... → Ep v β′ = F ′1 → F ′2 → ... → F ′q, i.e.
there exist p positive integers, 1 ≤ i1 < i2 < ... < ip ≤ q : Ek v proj(F ′ik), ∀k = 1, ..., p.
Then, the index ip is said to be an ending of α in β′, denoted as end(α, β′) and the last item
of α in F ′ip is called an ending item and denoted as eip . The remaining q-sequence of α in

β′ w.r.t. the ending ip is the rest of β′ after α (or after the ending item eip) and denoted as

rem(α, β′, ip). Let i∗p
def
= FEnd(α, β′) denote the first ending of α in β′, ei∗p

def
= FEItem(α, β′)

- the first ending item of α in β′, and ubmin(α, β′)
def
= u(α, β′, i∗p) + u(rem(α, β′, i∗p)) as

an upper-bound on umin(α, β′) for α 6= 〈〉, and ubmin(〈〉, β′) def
= u(β′) if α = 〈〉, where

u(α, β′, i∗p)
def
= min

{
u(α′)|α′ ∈ U(α, β′) ∧ end(α, β′) = i∗p

}
. If α = 〈〉, then as a convention,

i∗p = (〈〉, β′) def
= 0 and rem(〈〉, β′, ip) = β′.

For instance, the sequence γ = a → ac has two endings of 4 and 5 in ψ′1, so its
first ending i∗p = FEnd(γ, ψ′1) is 4, rem(γ, ψ′1, i

∗
p) = (a, 4)(c, 10)(f, 36), rem(γ, ψ′1, 5) =

(f, 36), u(γ, ψ′1, i
∗
p) = u((a, 3) → (a, 5)(c, 40)) = 48 and u(α,ψ′1, 5) = min{u((a, 3) →

(a, 4)(c, 10)), u((a, 5)→ (a, 4)(c, 10))} = 17.
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3.1.1. Designing upper-bounds on uminuminumin

Definition 7 (Upper-bounds on umin).

a. A measure ub (of sequences) is said to be an upper-bound (UB) on umin, denoted as
umin � ub, if umin(α) ≤ ub(α), ∀α.

b. For two measures ub1 and ub2, ub1 is said to be tighter than ub2, denoted as ub1 � ub2,
if ub1(α) ≤ ub2(α), ∀α. Given two UBs on umin, ub1 and ub2, ub1 is called tighter than
ub2 if umin � ub1 � ub2.

c. (UBs on umin [17]) For any sequence α and its extension sequence β = α � y, we define
and denote three UBs on umin, SWU (Sequence-Weighted Utility), RBU (Remaining-

Based Utility) and LRU (Looser Remaining Utility), as SWU(α)
def
=
∑

ψ′i∈ρ(α)
u(ψ′i),

RBU(α)
def
=
∑

ψ′i∈ρ(α)
ubmin(α,ψ′i) and LRU(β)

def
=
∑

ψ′i∈ρ(β)
ubmin(α,ψ′i). Obviously, if

α = 〈〉, LRU(y) = SWU(y), ∀y ∈ A.

The SWU UB was proposed in [20], and two new tighter LRU and RBU UBs on umin

were presented in [17]. As shown in the following theorem, the two LRU, RBU UBs are
tighter than SWU, but their pruning ability is weaker compared to the largest SWU
UB.

Theorem 1 (Anti-monotone-like (AML) properties of RBU, LRU and SWU UBs on umin

[17]).

a. umin � RBU � LRU � SWU , i.e. SWU , LRU and RBU are gradually tighter UBs
on umin.

b. (i) AM(SWU) or SWU is anti-monotonic, i.e. SWU(β) ≤ SWU(α) for any super-
sequence β of α, β w α.

(ii) AMF(RBU) or RBU is anti-monotonic w.r.t. forward extension, i.e. RBU(β) ≤
RBU(α) for any forward extension β = α � δ of α (with δ).

(iii) AMBi(LRU) or LRU is anti-monotonic w.r.t. bi-direction extension, i.e. AMF
(LRU) and for any backward extension γ = α � ε � y of δ = α � y, if γ = α �i ε �i y
and size(ε) = 1, then LRU(γ) ≤ LRU(α �i y), otherwise,
LRU(γ) ≤ LRU(α �s y).

It is observed that, for any UB ub on umin,AM(ub)⇒ AMBi(ub)⇒ AMF(ub), i.e. the
three anti-monotone-like properties AM, AMBi and AMF are gradually weaker.

For example, for an i -extension β = c → ac = α �i c of α = c → a with c, since ρ(β) =
{ψ′1}, umin(β) = umin(β, ψ′1) = min{u((c, 5)→ (a, 5)(c, 40)), u((c, 5)→ (a, 4)(c, 10)), u((c, 40)
→ (a, 4)(c, 10))} = 19. Besides, i∗p = FEnd(β, ψ′1) = 2, u(β, ψ′1, i

∗
p) = u((c, 5)→ (a, 5)(c, 40))

= 50 and u(rem(β, ψ′1, i
∗
p)) = u((a, 4)(c, 10)(f, 36)) = 50, so RBU(β) = ubmin(β, ψ′1) =

50 + 50 = 100 and similarly, LRU(β) = ubmin(α,ψ′1) = u((c, 5) → (a, 3)) + u((d, 50) →
(a, 5)(c, 40) → (a, 4)(c, 10)(f, 36)) = 8 + 145 = 153, SWU(β) = u(ψ′1) = 159. Thus,
umin(β) < RBU(β) < LRU(β) < SWU(β). Moreover, in the same way, since ρ(α) =
{ψ′i, i = 1, 2, 3}, SWU(α) =

∑
i=1,2,3 u(ψ′i) = 159 + 68 + 196 = 423 > SWU(β), LRU(α) =
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159 + 56 + 181 = 396 > LRU(β) and RBU(α) =
∑

i=1,2,3 ubmin(α,ψ′i) = 153 + 30 + 116 =
299 > RBU(β).

Similarly, since the mu measure of sequences in Definition 5 is not monotonic, devising
its lower-bounds (LBs) to satisfy monotone− like (ML) properties that can be weaker than
the monotonic property is also useful to efficiently reduce the search space. As shown in the
Remarks and Discussion section below, designing such LBs is important. That is, missing
some lower-bounds or using them incorrectly may result in false results.

3.1.2. Designing lower-bounds on uminuminumin

For any two items x and z in ψ′, we write x / z if z follows x, and x E z if either
z is x or x / z. For example, since a appears firstly in the 2nd itemset of ψ′3, we have
FEItem(a, ψ′3) = a2, where xi indicates that item x appears in the ith itemset of ψ′3. In
ψ′3, the set {x|a2 / x E f4} of all items which follow a2 and do not follow f4 are c2, e2, g3,
a4 and f4. Then, three lower-bounds (LBs) on minMes, lbF (LB monotone w.r.t. forward
extension), lbBi (looser LB monotone w.r.t. bi-direction extension) and lbM (LB monotone),
can be defined as follows.

Definition 8 (Lower-bounds on mu).

a. A measure lb (of sequences) is said to be a lower-bound (LB) on mu, denoted as
lb� mu, if mu(α) ≥ lb(α), ∀α. Given two LBs on mu, lb1 and lb2, lb1 is called tighter
than lb2 if lb2 � lb1 � mu.

b. (LBs on mu) For any sequence α and its extension sequence β = α � y, we define and

denote three LBs on mu as lbF (α)
def
= min{mu(x)|x ∈ α∨(x ∈ ψ′∧ψ′ ∈ ρ(α)∧ei∗p /x)},

lbM(α)
def
= min{mu(x)|x ∈ ψ′ ∧ ψ′ ∈ ρ(α)}, lbBi(β)

def
= {mu(x)|x ∈ α ∨ (x ∈ ψ′ ∧ ψ′ ∈

ρ(β)∧ ei∗p / x)} if α 6= 〈〉 and lbBi(y)
def
= lbM(y) if α = 〈〉, where ei∗p

def
= FEItem(α,ψ′).

The following theorem states that lbM , lbBi and lbF are gradually tighter LBs on mu
that satisfy gradually weaker monotone-like properties (M, MBi and MF).

Theorem 2 (Monotone-like properties (ML) of LBs on mu).

a. lbM � lbBi� lbF � mu , i.e. lbM , lbBi and lbF are gradually tighter LBs on mu.

b. AM(mu) or mu is anti-monotonic, i.e. mu(β) ≤ mu(α), for any super-sequence β of
α, β w α.

c. (i) M(lbM) or lbM is monotonic, i.e. lbM(β) ≥ lbM(α), for any super-sequence β
of α, β w α.

(ii) MF(lbF ) or lbF is monotonic w.r.t. forward extension, i.e. lbF (β) ≥ lbF (α),
for any forward extension β = α � δ of α.

(iii) MBi(lbBi) or lbBi is monotonic w.r.t. bi-direction extension, i.e. MF(lbBi)
and for any backward extension γ = α � ε � y of δ = α � y, if γ = α �i ε �i y and
size(ε) = 1, then lbBi(γ) ≥ lbBi(α �i y), otherwise, lbBi(γ) ≥ lbBi(α �s y).
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Obviously, for any LB lb on mu, M(lb) ⇒ MBi(lb) ⇒ MF(lb), i.e. the three
monotone-like properties M, MBi and MF are gradually weaker.

Proof. For any super-sequence β of α, β w α, since {x ∈ α} ⊆ {x ∈ β}, ρ(β) ⊆ ρ(α), we
have mu(β) ≤ mu(α) and lbM(β) ≥ lbM(α), i.e. AM(mu) and M(lbM). The assertions b
and c.(i) are proven.

Now we will prove two assertions a and c.(ii)-(iii). For any forward extension β of α,

β = α � δ w α and ψ′ ∈ ρ(β) ⊆ ρ(α), ip
def
= FEnd(α,ψ′) ≤ iq

def
= FEnd(β, ψ′), so {x ∈

β ∨ (x ∈ rem(β, ψ′, iq)∧ψ′ ∈ ρ(β))} ⊆ {x ∈ α∨ (x ∈ rem(α,ψ′, ip)∧ψ′ ∈ ρ(α))} ⊇ {x ∈ α}.
Thus, lbF (α) ≤ lbF (β) and lbF (α) ≤ mu(α), i.e. MF(lbF ) and lbF � mu.

Similarly, to prove MF(lbBi), without loss of generality, we only need to consider any
forward extension β = δ � z of δ = α � y with an item z. Then, β w δ and ∀ψ′ ∈ ρ(β) ⊆
ρ(δ), FEnd(α,ψ′) ≤ FEnd(δ, ψ′). For ei∗p

def
= FEItem(α,ψ′), ei∗q

def
= FEItem(δ, ψ′), we have

ei∗p / ei∗q , so Sβ ⊆ Tδ ⊆ Uδ and Tδ ⊇ Rδ, where Sβ
def
= {x ∈ δ ∨ (x ∈ ψ′ ∧ ψ′ ∈ ρ(β) ∧ ei∗q / x)},

Tδ
def
= {x ∈ α ∨ (x ∈ ψ′ ∧ ψ′ ∈ ρ(δ) ∧ ei∗p / x)}, Rδ

def
= {x ∈ δ ∨ (x ∈ ψ′ ∧ ψ′ ∈ ρ(δ) ∧ ei∗q / x)},

Uδ
def
= {x ∈ ψ′ ∧ ψ′ ∈ ρ(δ)}. Thus, lbBi(δ) ≤ lbBi(β) and lbM(δ) ≤ lbBi(δ) ≤ lbF (δ), i.e.

MF(lbBi) and lbM � lbBi� lbF .
To proveMBi(lbBi), consider any backward extension γ = α�ε�y of δ = α�y such that

γ = δ. Then, FEnd(α,ψ′) ≤ FEnd(α � ε, ψ′),∀ψ′ ∈ ρ(γ) ⊆ ρ(δ). For ei∗p
def
= FEItem(α,ψ′),

ei∗q
def
= FEItem(α � ε, ψ′), we have ei∗p E ei∗q , so {x ∈ α � ε ∨ (x ∈ ψ′ ∧ ψ′ ∈ ρ(γ) ∧ ei∗q / x)} ⊆

{x ∈ α ∨ (x ∈ ψ′ ∧ ψ′ ∈ ρ(δ) ∧ ei∗p / x)}, and lbBi(δ) ≤ lbBi(γ). Hence, if γ = α �i ε �i y
and size(ε) = 1, then γ w α �i y and lbBi(γ) ≥ lbBi(α �i y); otherwise, γ w α �s y and
lbBi(γ) ≥ lbBi(α �s y). Thus, MBi(lbBi). �

For example, for γ = af = δ = a, we have mu(γ) = min{mu(a),mu(f)} = min{260; 320}
= 260. Since ρ(γ) = ρ(δ) = D′, lbM(γ) = min{mu(x), x ∈ ψ′i, i ∈ {1, 2, 3}} = 5, lbF (γ) =
min{mu(a),mu(f)} = 260 and similarly, lbBi(γ) = 31. Hence, mu(γ) ≥ lbF (γ) > lbBi(γ) >
lbM(γ). In the same way, we also have lbF (δ) = 31 < lbF (γ) and lbBi(δ) = lbM(δ) = 5 ≤
lbM(γ) < lbBi(γ).

3.1.3. Designing pruning strategies

In the process of mining HUPS, all candidate sequences are stored in a prefix tree that
contains the null sequence as its root, where each node represents a candidate sequence, and
each child node of a node nod is an extension of nod. In the following, branch(α) denotes
the set consisting of α and all its extensions.

The process of extending a sequence with single items may generate many sequences
that do not appear in any input q-sequence. Considering these sequences is a waste of
time. To deal with this issue, projected databases (PDBs) [14] of sequences are often used.
However, creating and scanning multiple PDBs is very costly. To overcome this challenge,
it is observed that if α �i y is a HUP sequence, then lbBi(α �i y) ≤ mu(α �i y) ≤ umin(α �i
y) ≤ LRU(α �i y) and P (α �i y) ≥ mp, i.e. y belongs to the set ILRU,lbBi,P (α) or briefly

I(α)
def
= {y ∈ A|y � lastItem(α) ∧ LRU(α �i y) ≥ lbBi(α �i y) ∧ P (α �i y) ≥ mp}. Similarly,

we define SLRU,lbBi,P (α) = S(α)
def
= {y ∈ A|LRU(α �s y) ≥ lbBi(α �s y) ∧ P (α �s y) ≥ mp}.

Then, I(α) and S(α) are two sets of candidate items for i− and s− extensions of α.
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Note that the P probability is also anti-monotonic and denoted as AM(P ), i.e. P (β) ≤
P (α), ∀β w α. Based on AM(P ), two AML and ML properties of pairs (RBU, lbF ) and
(LRU, lbBi), we can design two depth and width pruning strategies and a tightening strategy

as shown in Theorem 3 below. For brevity, denote DepthPCRBU,lbF (α)
def
= (RBU(α) <

lbF (α)) and WidthPCLRU,lbBi,P (α)
def
= (LRU(α) < lbBi(α) ∨ P (α) < mp) as depth and

width pruning conditions, respectively.

Theorem 3 (Depth, width pruning strategies).

a. Depth pruning strategy based on RBU and lbF DPS(RBU, lbF ) (or briefly DPS). If
DepthPCRBU,lbF (α), then umin(β) < mu(β), for all (forward) extensions β of α, i.e.
the branch(α) can be deeply pruned.

b. Width pruning strategy based on LRU , lbBi and P WPS(LRU, lbBi, P ) (or briefly
WPS). If WidthPCLRU,lbBi,P (β) then (umin(γ) < mu(γ) ∨ P (γ) < mp), for all (for-
ward) extensions γ of β, i.e. the branch(β) is deeply pruned. Moreover, we can apply
additionally the following Tightening strategy - T S(LRU, lbBi, P ): I(α�ix) ⊆ I(α) and
I(α �s x) ∪ S(α �i x) ∪ S(α �s x) ⊆ S(α), i.e. the two I and S sets of candidate items
for extensions of sequences are gradually tightened during the mining process.

Similarly, we also have WPS(SWU, lbM,P ), WPS(SWU, lbM) and WPS(P ) ac-

cording to the width pruning conditions: WidthPCSWU,lbM,P (α)
def
= (SWU(α) < lbM(α) ∨

P (α) < mp), WidthPCSWU,lbM (α)
def
= (SWU(α) < lbM(α)) and WidthPCP (α)

def
=

(P (α) < mp), respectively.

Proof.

a. If RBU(α) < lbF (α), then ∀β = α � ε w α, by Theorem 1 and Theorem 2, umin(β) ≤
RBU(β) ≤ RBU(α) < lbF (α) ≤ lbF (β) < mu(β).

b. If (LRU(β) < lbBi(β) ∨ P (β) < mp), then ∀γ = β � ε w β, ρ(γ) ⊆ ρ(β), umin(γ) ≤
LRU(γ) ≤ LRU(β) < lbBi(β) ≤ lbBi(γ) < mu(γ) or P (γ) ≤ P (β) < mp. Since
AMBi(LRU) andMBi(lbBi), the remaining assertions also hold. Indeed, for example,
for any y ∈ I(α �i x), then y � x, P (α �i x �i y) ≥ mp and LRU(α �i x �i y) ≥
lbBi(α�ix�i y). Hence, P (α�ix) ≥ P (α�ix�i y) ≥ mp and size(x) = 1, LRU(α�i y) ≥
LRU(α �i x �i y) ≥ lbBi(α �i x �i y) ≥ lbBi(α �i x), so y ∈ I(α), i.e. I(α �i x) ⊆ I(α).
The remaining assertions are similarly proven. �

For example, for the above sequence β = c→ ac, we have RBU(β) = 100 and LRU(β) =
153. On other hand, lbF (β) = lbBi(β) = 260. Since RBU(β) < LRU(β) < lbBi(β) ≤
lbF (β), the whole branch(β) is pruned and we can apply the T S(LRU, lbBi, P ) strategy for
the sequence β.

Remarks and Discussion

a. The Reducing UQSDB Strategy - RedS(SWU, lbM,P ) (or briefly RedS, used ad-
ditionally in WPS). For any item x of A such that the width pruning condition
WidthPCSWU,lbM,P (x) holds, we can apply the following reducing strategy, denoted



HUPSMT: AN EFFICIENT ALGORITHM FOR MINING... 11

as Red(SWU, lbM,P ): not only the original UQSDB D′ can be reduced by remo-
ving all such irrelevant items x from D′, but also values of all bounds of remaining
items are updated and can also be tightened. Indeed, since AM(P ), AM(SWU) and
M(lbM) properties are true, for any sequence α containing x, α = ε � x � δ, we have
P (α) ≤ P (x) < mp or umin(α) ≤ SWU(α) ≤ SWU(x) < lbM(x) ≤ lbM(α) ≤ mu(α),
i.e. α cannot be a HUP sequence. For example, since P (b) = 0.125, P (g) = 0.5625 <
mp = 0.875, we can remove b and g from D′. For the sequence α = e, before removing
b and g, its (lbM , lbF , RBU , LRU , SWU) values are respectively (5, 31, 346, 423,
423), and after removing, the corresponding updated values are (50, 50, 296, 361, 361),
i.e. the updated lbM , lbF LB values increase and the RBU , LRU , SWU UB values
decrease. In other words, these updated values really are more tightened.

b. The tightening strategy - CMAPS(SWU, lbM,P ) (or briefly CMAPS) for speeding
up the mining process. Note that the AM(P ), AM(SWU) and M(lbM) proper-
ties are true. Inspired by the CMAP technique using the co-occurrence informa-
tion of two items based on the support measure [7], for each item x of A, let us

define iCMAP (x)
def
= {y ∈ A|y � x ∧ P (xy) ≥ mp ∧ SWU(xy) ≥ lbM(xy)} and

sCMAP (x)
def
= {y ∈ A|P (x → y) ≥ mp ∧ SWU(x → y) ≥ lbM(x → y)}. Then, the

two iCMAP (x) and sCMAP (x) sets contain candidate items for extensions of any se-
quence α such that lastItem(α) = x, i.e. I(α) ⊆ iCMAP (x) and S(α) ⊆ sCMAP (x).
For example, to prove I(α) ⊆ iCMAP (x) for any α such that lastItem(α) = x, con-
sider any item y ∈ I(α), i.e. y � x, lbBi(α �i y) ≤ LRU(α �i y) and P (α �i y) ≥ mp.
Then, define β = α �i y, δ = x �i y, since β w δ, lbM(δ) ≤ lbM(β) ≤ lbBi(β) ≤
LRU(β) ≤ SWU(β) ≤ SWU(δ) and P (δ) ≥ P (β) ≥ mp, i.e. y ∈ iCMAP (x).
The inclusion S(α) ⊆ sCMAP (x) is proven similarly. Note that for all items x
of A, the two iCMAP (x) and sCMAP (x) sets are only calculated once. Thus,
to improve the process of mining HUPS by the tightening T S(LRU, lbBi, P ) stra-
tegy, we can additionally use the following CMAPS strategy: if y /∈ iCMAP (x)
or y /∈ sCMAP (x), then y /∈ I(α) or y /∈ S(α), without wasting much time for
computing the lbBi and LRU bounds of α � y, which are used in I(α) or S(α). In
other words, we obtain two tighter sets of candidate items for extensions: I(α) =
{y ∈ iCMAP (x)|y � x ∧ LRU(α �i y) ≥ lbBi(α �i y) ∧ P (α �i y) ≥ mp} and
S(α) = {y ∈ sCMAP (x)|LRU(α �s y) ≥ lbBi(α �s y) ∧ P (α �s y) ≥ mp}.

In short, the tuple (SWU , lbM , RBU , lbF , LRU , lbBi, P ) used in the five DPS,
WPS, T S, RedS and CMAPS strategies is called a solution of HUPSM.

c. Note that applying the tightening T S(LRU, lbBi, P ) strategy, based on the two smaller

I(α) and S(α) sets in this paper, is better compared to IS(α)
def
= I(α) ∪ S(α) as

shown in [17]. Moreover, replacing lbM , lbBi LBs with lbF , or SWU , LRU UBs with
RBU may result in incorrect results. Since theMBi(lbF ),M(lbF ) and AMBi(RBU)
properties do not hold, RedS(SWU, lbF, P ), WPS(SWU, lbF, P ), T S(RBU, lbBi, P )
as well as T S(SWU, lbF, P ) are incorrect. Indeed, we consider the following counter
example with D′ = {ψ′ = (d, 50) → (a, 5)(c, 40) → (a, 1)(b, 1)(f, 30) → (e, 1)}, where
the mu thresholds of all items in A = (a, b, c, d, e, f) are respectively (130, 30, 125, 132,
140, 133) and P (ψ′) = mp = 1. Assume conversely that RedS(SWU, lbF, P ) is true.
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Since SWU(f) = 128 < lbF (f) = 133, we can remove f from D′, so γ = d → ac → f
containing f cannot be present in HUPS, while umax(γ) = umin(γ) = mu(γ) = 125
and P (γ) = 1 = mp, i.e. γ is a HUP sequence w.r.t. umin as well as umax. In other
words, replacing lbM in RedS(SWU, lbM,P ) with lbF may lead to the incompleteness
of Algorithm 1 in [12] for mining HUPS using umax. The reason is thatMBi(lbF ) does
not hold. Indeed, for the backward extension γ of δ = d → a → f (with c), we have
ρ(γ) = ρ(δ) = D′ and lbF (γ) = 125 < lbF (δ) = 130. Using the correct width pruning
condition, we have WidthPCSWU,lbM,P (f) = (SWU(f) = 128 < lbM(f) = 30), which
does not hold, and thus, we are not allowed to remove f from D′.

d. Consider the two following particular cases of HUPSM. First, if all values P (ψ′) are
identical with a constant (e.g. P (ψ′) ≡ 1), ∀ψ′ ∈ D′ and mp = 1/|D′|, then P (α) =
supp(α)/|D′| is the relative support measure of α and P (α) ≥ mp for all sequences
α. Thus, HUPSM becomes the problem HUSM of high utility sequence mining in
(certain) QSDB with multiple minimum utility thresholds (using umin). Second, if all
mu(x) are identical to a constant mu, ∀x ∈ A, i.e. all items have the same importance,
then we obtain the problem of high utility-probability sequence mining in UQSDB with
a single minimum utility mu threshold. Thus, by replacing umin with umax, we obtain
the two corresponding problems proposed in [12] and [23] (using two MEU and LAS
UBs on umax in [12] instead of RBU and LRU).

Based on the above theoretical results, a novel algorithm named HUPSMT (High Utility-
Probability Sequence mining with Mulitiple minimum utility Thresholds) is designed for the
HUPSM problem using the minimum umin utility.

3.2. The HUPSMT algorithm

The proposed HUPSMT algorithm is based on a novel vertical data structure named
Extended Utility List (EUL). Given a sequence α and an input q-sequence ψ′i ∈ ρ(α), for

each ending end
def
= end(α,ψ′i) of α in ψ′i, let uendmin = u(α,ψ′i, end), urem = urem(end)

def
=

u(rem(α,ψ′i, end)) and murem = murem(end)
def
= min{mu(x)|x ∈ rem(α,ψ′i, end)} be re-

spectively the minimum utility, remaining utility and remaining minimum utility mu thres-
hold of α in ψ′i according to the ending end. Furthermore, we denote the list of tu-

ples tup(end)
def
= (end, uendmin, urem,murem) as tl(α,ψ′i) or briefly tl

def
= {tup(end)|end =

end(α,ψ′i)}. Without loss of generality, we can assume that the tl list is sorted in ascending

order by end. Then, the structure EUL of α is defined as EUL(α)
def
= {(i, tl(α,ψ′i))|ψ′i ∈

ρ(α)}. This structure allows us to quickly calculate the probability P , umin, RBU , LRU ,
SWU UBs and lbF , lbBi, lbM LBs of α as well as its extensions. Due to space limitations,
formulas for calculating them quickly are skipped.

The pseudo-code for the HUPSMT algorithm is shown in Figure 1. It takes as input

a UQSDB D′, a probability threshold mp and a set of minimum utility thresholds Mu
def
=

{mu(x), x ∈ A}. At the first level of the prefix-tree, the algorithm applies reducing and
width pruning strategies, Red(SWU, lbM,P ) andWPS(LRU, lbBi, P ). It scans UQSDB D′

once to calculate the set S
def
= {x ∈ A|P (x) ≥ mp ∧ SWU(x) ∧ lbM(x)} of relevant HUP

candidate items. Then, irrelevant items in A \ S are removed from D′ (lines 1-2) and all
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bounds (UBs and LBs) of all remaining items in S are updated (line 3) and can be tightened.
Next, the procedure SearchHUPS is called for each item x ∈ S (line 4).

Figure 1. Algorithm HUPSMT for mining the HUPS set

Figure 2. Procedure SearchHUPS

The recursive SearchHUPS procedure (Figure 2) takes as input a sequence α, two I and S
sets of candidate items for i− and s−extensions of the αs prefix, and the mp threshold. The
procedure uses the depth pruning strategy DPS(RBU, lbF ) in line 1. If umin(α) ≥ mu(α),
the HUP sequence α is output (line 2). Next, in lines 3-8, the width pruning and tightening up
strategies,WPS(LRU, lbBi, P ), T S(LRU, lbBi, P ) and CMAPS, are applied for extensions
of α. Finally, the SearchHUPS procedure is recursively called for each item in the two newI
and newS sets (lines 9-10). Theorems 1-3 guarantee the correctness of HUPSMT, which
allows to prune non-HUP candidate branches early without missing any HUP sequence.

4. EXPERIMENTAL EVALUATION

Experiments were performed on an Intel Core i5-2320 CPU, 3.0 GHz PC with 8 GB of
memory, running Windows 8.1. All algorithms used in the experiments are implemented in
Java SE 1.8 and compared on four real-life SDBs named BMS, SIGN, FIFA and BIBLE, and
one synthetic SDB named D4C7T5N5S6I4 generated using the IBM Quest data generator
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(obtained from [8]) with parameters described in Table 4. The characteristics of the databases
are shown in Table 5. For the four real-life SDBs, BMS is dense, while the three remaining
SDBs are sparse. SIGN is a smaller SDB, and FIFA and BIBLE are larger than BMS. To
obtain integrated UQSDBs from SDBs, we have used the IBM Quest data generator. Then,
the minimum probability thresholds and the quantities of all items of input q-sequences in
the SDBs were randomly generated in the [0; 1] interval and [1; 5] interval, respectively. The
external utilities of all distinct items in the SDBs are created using a log-normal distribution
in the range of 1 and 1000. Similar to [12], to avoid creating an enormous number of HUP
sequences, the minimum utility thresholds of all different items in the databases are set as
mu(item) = max{umin(item) ∗ β, LMU ∗ u(D′)} such that they are not too low, where β
is a constant (often greater than one) and LMU (%) is a least minimum utility threshold,
specified by users.

Table 4. Parameters of the IBM quest synthetic data generator

Parameter Meaning

D Number of sequences (in thousands) in the database

C Average number of item-sets per sequence

T Average number of items per item-set

N Number of different items (in thousands) in the database

S Average number of item-sets in maximal sequences

I Average number of items in maximal sequences

Table 5. Characteristics of databases

Database #sequences #items avg. seg. length type of data

BMS 59,601 497 2.51 web click stream

SIGN 730 267 51.99 language utterances

FIFA 20,450 2,990 36.24 web click stream

BIBLE 36,369 13,905 21.64 book

D4C7T5N5S6I4 4000 5000 28.68 synthetic

First, we consider the influence of the three depth, width and CMAP pruning strategies
on HUPSMT, which is the first algorithm for solving theHUPSM problem in UQSDBs using
the minimum umin utility. For comparing their pruning effect, we compared the performance
of HUPSMT for the six following cases using WPS(P ) and additionally: (1) using the three
DPS, WPS and CMAPS strategies (All), (2) only using CMAPS (CMAP), (3) using both
DPS and WPS (Both), (4) only using DPS (Depth), (5) only using WPS (Width), and
(6) without using any strategy related to utility (Non). The following experimental results
show that the runtime of the algorithm for the above cases always depends on the number
of performed extensions. We utilize the real-life BMS database as an illustration (Figure 3)
with the coefficient β = 10.

We fixed the mp threshold to 0.3% and decreased LMU . The runtime and number of
extensions are shown in Figure 3a. For high LMU values (greater than 4%), the pruning
effect (PE) of WPS is better than DPS because the width pruning condition using the
(LRU , lbBi) bounds has more chance to be applied compared to (RBU , lbF ), so the number
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(a) Varying LMU(%) for a fixed mp = 0.3%

(b) Varying mp(%) for a fixed LMU = 4%

(c) Memory usage in (All) and (Non) for fixed mp = 0.3% and LMU = 4%

Figure 3. Comparison of pruning strategies on BMS

of pruned candidate sequences (or extensions) is greater (or smaller, respectively). Otherwise,
for lower LMU , PE of DPS using the tighter (RBU , lbF ) bounds is better than WPS.
(All) is faster by 12, 14 and 55 times on average compared to (Depth), (Width) and (Non),
respectively.

To further analyze the PE of different strategies, we consider a fixed LMU = 4% while
decreasing mp. The resulting runtime and number of extensions are shown in Figure 3b.
For high mp (larger than 0.2%), since PE of WPS using the P probability is stronger than
LRU , and RBU is tighter than LRU , PE of DPS is better than WPS. Otherwise, WPS
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is better than DPS. However, using both WPS and DPS (Both) is always better than
using only one of them. The PE of (Both) is better than (CMAP) for low mp (less than
0.1%) because PE of WPS using the P probability becomes weaker, and (CMAP) uses the
pair of (SWU , lbM) bounds, while (Both) uses two pairs of tighter (LRU , lbBi) and (RBU ,
lbF ) bounds. Thus, applying simultaneously all of the above strategies is really necessary.
Finally, (All) is always the best. In terms of average, it is about 7, 5, 21, 17 and 472 times
faster than (CMAP), (Both), (Depth), (Width) and (Non), respectively.

In Figure 3c, the memory consumption of (All) is about 10 or 12 times on average less
than (Non) when LMU or mp are fixed, respectively.

Furthermore, Figure 4 shows that on average, using multiple mu thresholds for different
items in the HUPSM problem significantly decreases the cardinality of HUSP and mining
time (by more 700 and 200 times, respectively) compared to using the P-HUSPM algo-
rithm [23] for mining all high utility-probability sequences with a single common threshold
for all items, mu = min{mu(x)|x ∈ A}. In this experiment with BMS and β = 10, we have
mu = 0.01% (of u(D)).

Figure 4. Runtime (sec), cardinality of HUPS using multiple or single mu threshold(s)

We also have similar remarks for the experimental results on the synthetic dataset
D4C7T5N5S6I4, the smaller real-life SIGN and two larger FIFA, BIBLE datasets. Figu-
res 5a and 5b show the runtime, number of extensions and HUPS in D4C7T5N5S6I4 and
SIGN. Figure 6 shows the runtime and cardinality of HUPS when varying the mp parameter
for the FIFA and BIBLE datasets, generated by HUPSMT for (All) and (Non). When fixing
LMU and varying mp on the four above datasets, the execution time of (All) is faster than
(Non) on average by about 21, 17, 24 and 34 times.

5. CONCLUSIONS

This paper proposes depth and width pruning strategies, reducing and tightening strate-
gies, which rely on the anti-monotonic property of the probability P , anti-monotone-like pro-
perties of RBU , LRU and SWU upper-bounds on the minimum umin utility, and monotone-
like properties of three novel lbM , lbBi and lbF lower-bounds on a minimum utility threshold
mu measure of items. These strategies allow us to prune non high utility-probability bran-
ches of the prefix search tree early and to reduce databases as well as tighten the set of
candidate items to be considered for extensions. The strategies are integrated into the no-
vel EUL data structure and HUPSMT algorithm. It is the first algorithm for discovering
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(a) Influence of the LMU and mp parameters on D4C7T5N5S6I4

(b) Influence of the LMU and mp parameters on SIGN

Figure 5. Influence of the LMU and mp parameters on D4C7T5N5S6I4 and SIGN

all high utility-probability sequences in UQSDBs with multiple minimum utility thresholds
using umin. An experimental study shows the efficiency of the proposed algorithm in both
real-life and synthetic UQSDBs in terms of time and memory consumption.
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Figure 6. Influence of the mp parameter on FIFA and BIBLE

In the future, we will consider the similar problem of using the average utility measure
of sequences instead of umin and the problem of mining the top-k high utility-probability
sequences in UQSDBs.
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