
Journal of Computer Science and Cybernetics, V.35, N.2 (2019), 147–166

DOI 10.15625/1813-9663/35/2/13233

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE
AND ENGLISH: AN EMPIRICAL STUDY

HONG-HAI PHAN-VU1, VIET-TRUNG TRAN1,∗, VAN-NAM NGUYEN2, HOANG-VU DANG2,

PHAN-THUAN DO1

1Hanoi University of Science and Technology (HUST)
2FPT Technology Research Institute, FPT University

∗trungtv@soict.hust.edu.vn

�

Abstract. Machine translation is shifting to an end-to-end approach based on deep neural networks.

The state of the art achieves impressive results for popular language pairs such as English - French

or English - Chinese. However for English - Vietnamese the shortage of parallel corpora and ex-

pensive hyper-parameter search present practical challenges to neural-based approaches. This paper

highlights our efforts on improving English-Vietnamese translations in two directions: (1) Building

the largest open Vietnamese - English corpus to date, and (2) Extensive experiments with the latest

neural models to achieve the highest BLEU scores. Our experiments provide practical examples of

effectively employing different neural machine translation models with low-resource language pairs.

Keywords. Neural Machine Translation; Seq2seq; RNN; Attention Mechanism; ConvS2S; Trans-

former; ByteNet;

1. INTRODUCTION

Machine translation is shifting to an end-to-end approach based on deep neural net-
works. Recent studies in neural machine translation (NMT) such as [2, 14, 40, 41] have
produced impressive advancements over phrase-based systems while eliminating the need for
hand-engineered features. Most NMT systems are based on the encoder-decoder architec-
ture which consists of two neural networks. The encoder compresses the source sequences
into a real-valued vector, which is consumed by the decoder to generate the target sequen-
ces. The process is done in an end-to-end fashion, demonstrated the capability of learning
representation directly from the training data.

The typical sequence-to-sequence machine translation model consists of two recurrent
neural networks (RNNs) and an attention mechanism [2, 26]. Despite great improvements
over traditional models [27, 34, 41] this architecture has certain shortcomings, namely that
the recurrent networks are not easily parallelized and limited gradient flow while training
deep models.

Recent designs such as ConvS2S [14] and Transformer [40] can be better parallelized while
producing better results on WMT datasets. However, NMT models take a long time to train
and include many hyper-parameters. There is a number of works that tackle the problem of
hyper-parameter selection [5, 33] but they mostly focus on high-resource language pairs data,

c© 2019 Vietnam Academy of Science & Technology

mailto:trungtv@soict.hust.edu.vn

148 HONG-HAI PHAN-VU, et al.

thus their findings may not translate well to low-resource translation tasks such as English-
Vietnamese. Unlike in Computer Vision [17, 20], the task of adapting parameters spaces
from one NMT model to other NMT models is nearly impossible [5]. This reason limits
researchers and engineers to reach well-chose hyper-parameters and well-trained models.

To date there are several research works on English-Vietnamese machine translation such
as [3, 13, 22, 32], using traditional methods with modest BLEU scores. Some newer works
such as [18, 25] experimented on the IWSLT English-Vietnamese dataset [6] and showed
great potential to improve English-Vietnamese translation tasks using more data and more
complex models.

In [31] the authors introduced datasets for bilingual English-Vietnamese translation and
attained state-of-the-art BLEU scores using sequence-to-sequence models and vanilla prepro-
cessing. In this work we perform extensive experiments on large-scale English-Vietnamese
datasets with the latest NMT architectures for further improvements in BLEU scores and
report our empirical findings.

Our main contributions are as follows: (1) A brief survey of current state of the art in
NMT. (2) The construction of a large parallel corpus for English-Vietnamese translation,
which will be publicly available. (3) Implementation and experimentation of the newest
models, and our source code will also be shared. (4) Empirical findings on tuning the
aforementioned models.

2. LATEST NMT ARCHITECTURES

2.1. Sequence-to-sequence RNNs

Here we introduce the sequence-to-sequence model based on an encoder-decoder archi-
tecture with attention mechanism [26]. Let (X,Y) be the pair of source and target sentences,
where X = x1, . . . , xm is a sequence of m symbols and Y = y1, . . . , yn a sequence of n sym-
bols. The encoder function fenc maps the input sequence X to a fixed size vector, which the
decoder function fdec uses to generate the output sequence Y .

While fdec is usually a uni-directional RNN, fenc can be a uni-directional, bi-directional
or hybrid RNN. In this work we consider bi-directional encoders. Each state of fenc has the

form hi = [
−→
hi ,
←−
hi] where the components encode X in forward and backward directions. The

auto-regressive decoder fdec then predicts each output token yi from the recurrent state si,
the previous tokens y<i and a context vector ci.

The context vector ci is also called attention vector and depends on encoder states to-
gether with the current decoder state. Among known attention architectures, in this work
we use the most efficient as described in [26]. At the decoding step t, an alignment vector at
is derived from the current decoder hidden state ht and each encoder hidden state hs. The
context vector ct is a weighted average over all encoder states with weights at.

at(s) = align(ht, hs), (1)

ct =
∑

aths. (2)

The context vector ct is concatenated with the current hidden decoder state ht to pro-
duce an attentional state h̃, which is fed through a softmax layer to produce the predicted
distribution.

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 149

h̃ = tanh(Wc[ct;ht]), (3)

p(yt|y<t, x) = softmax(Wsh̃s). (4)

2.2. The convolutional sequence-to-sequence model

Figure 1. The convolution

sequence-to-sequence model architecture,

adapted from [14]

Multi-head

Attention

Positional
Encoding

Feed Forward

Add & Norm

Add & Norm

Add & Norm

Mask
Multi-head
Attention

Feed Forward

Multi-head

Attention

Input

Embedding

Output

Embedding

Add & Norm

Add & Norm

Linear

Softmax

Output
Probabilities

Positional
Encoding

Inputs Outputs
(shifted right)

Nx Nx

Figure 2. Overall architecture of the

transformer

The Convolutional Sequence-to-Sequence Model (ConvS2S) [14] is a sequence-to-sequence
model that uses a fully convolutional architecture. The model is equipped with gated linear
units [9] and residual connections [15].

2.2.1. Position embeddings

Because the CNN itself can not convey positional information, ConvS2S uses position
embeddings to tackle this problem. The input element x = (x1, . . . , xm) is represented as a
vector z = w + p where w = (w1, . . . , wm) embeds the symbols xi into an Euclidean space
Rf and p = (p1, . . . , pm) embeds the positions of the xi into Rf . The same process is applied
to the output elements generated by the decoder network, and the resulting representations
are fed back into the decoder.

2.2.2. Convolutional layer structure

We denote the output of the ith layer by ei = (ei1, . . . , e
i
n) for the encoder network and

di = (di1, . . . , d
i
o) for the decoder network. In the model, each layer contains a one dimensional

150 HONG-HAI PHAN-VU, et al.

convolution followed by a non-linearity.
Each convolution kernel is parameterized as a weight W ∈ R2s×ks and a bias bw ∈ R2s.

The kernel’s input is a matrix X ∈ Rk×s which is a concatenation of k input elements
embedded in s dimensions, the kernel’s output is a vector Y ∈ R2s that has twice the
dimensionality of the input elements. Each group of k output elements of the previous layer
are operated by a subsequence layer. The non-linearity is the gated linear unit (GLU:[9])
which implements a gating mechanism over the output of the convolution Y = [A B] ∈ R2s

v([A B]) = A⊗ σ(B), (5)

where A,B ∈ Rs are the non-linearity input, ⊗ is the point-wise multiplication and the
output v([A B]) ∈ Rs has half size of Y . The gates σ(B) control which inputs A of the
current context are relevant [14].

Residual connections from the input of each convolution to the output are applied, similar
to [15]

dij = v(W i[di−1
j−k/2, . . . , d

i−1
j+k/2] + biw) + di−1

j . (6)

The convolution outputs that are of size 2s are mapped to the embedding of size f by
linear projections. These linear mappings are applied to w while feeding embeddings to the
encoder network, to the encoder output eij , to the final layer of the decoder just before the

softmax dL and to all decoder layers di before computing the scores of the attentions.
Finally, a distribution over the T possible next target elements yj+1 is computed by

transforming the top decoder output dLj via a linear layer with weights Wo and bias bo

p(yj+1|y1, . . . , yj , x) = softmax(Wod
L
j + bo) ∈ RT . (7)

2.2.3. Multi-step attention

In ConvS2S, the attention mechanism is applied separately for each encoder layer. The
attention mechanism works as multiple “hops” [36] compared to single step attention [2, 26,
41, 42]. At the decoder layer i, the attention aikj of state k and the source element j are

computed as a dot-product between the decoder state summary vik and each output euj of
the last encoder layer u

aikj =
exp(vik · euj)∑m
t=1 exp(vik · euj)

(8)

where vik is combined of the current decoder state dik and the embedding of the previous
target element gk

vik = W i
vd
i
k + biv + gk. (9)

The conditional input vector cik to the current decoder layer is a weighted sum of the
encoder output as well as the input embeddings zj

cik =
m∑
j=1

aikj(e
u
j + zj). (10)

After that, cik is added to the output of the corresponding decoder layer dik. This attention
mechanism can be seen as determining useful information from the current layer to feed to

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 151

the subsequent layer. The decoder can easily access the attention history of k − 1 previous
time steps. Therefore, the model can take into account which previous inputs have been
attended more easily than recurrent networks [14].

2.3. The transformer model

Unlike other transduction models, Transformer does not use RNNs or CNNs for modeling
sequences. It has been claimed by authors to be the first transduction model to rely entirely
on self-attention to compute representations of its input and output [40]. Like other competi-
tive sequence transduction models, Transformer has an encoder and a decoder. The model is
auto-regressive, consuming at each step the previous generated symbols as additional input
to emit the next symbol. Compared to RNNs the proposed self-attention mechanism allows
for a high degree of parallelization in training, while relying on positional embeddings to
capture global dependencies within each sequence.

2.3.1. Overall structure

Like ByteNet [19] or ConvS2S [14], the decoder is stacked directly on top of the encoder.
Without the recurrence or the convolution, Transformer encodes the positional information
of each input token by a position encoding function. Thus the input of the bottom layer for
each network can be expressed as Input = Embedding + PositionalEncoding.

The encoder has several identical layers stacked together. Each layer consists of a
multi-head self-attention mechanism and a position-wise fully connected feed-forward net-
work. Each of these sub-layers has a residual connection around itself, followed by layer
normalization [23] (Figure 2). The output of each sub-layer is LayerNorm(x+Sublayer(x))
where x is the sub-layer input and Sublayer is the function implemented by the sub-layer
itself. The outputs of all sub-layers and the embedding layers in the model are vectors of
dimension dmodel.

The decoder is also a stack of identical layers, each layer comprising three sub-layers.
At the bottom is a masked multi-head self-attention, which ensures that the predictions for
position i depend only on the known outputs at the positions less than i. In the middle
is another multi-head attention which performs the attention over the the encoder output.
The top of the stack is a position-wise fully connected feed-forward sub-layer.

The decoder output finally goes through a linear transform with softmax activation to
produce the output probabilities. The final linear transform shares the same weight matrix
with the embedding layers of the encoder and decoder networks, except that the embedding
weights are multiplied by

√
dmodel.

2.3.2. Attention

The attention is crucial in NMT. It maps a query and a set of key-value pairs to an
output. The output of the attention is a weighted sum of the values whose weights show
the correlation between each key and query. The novelty is that the Transformer’s attention
is a multi-head self-attention. In the Transformer’s architecture, the query is the decoder’s
hidden state, the key is the encoder’s hidden state and the value is the normalized weight
measuring the “attention” that each key is given. It is assumed that the queries and the
keys are of dimension dk and the values are of dimension dv.

152 HONG-HAI PHAN-VU, et al.

• Scaled dot-product attention: Let Q be the matrix of queries, K be the matrix of keys
and V be the matrix of values. The attention is calculated as follows

Attention(Q,K, V) = softmax(
QKT

√
dk

)V. (11)

Instead of using a single attention function, Transformer uses multi-head attentions.
The multi-head attention consists of h layers (heads). The queries, keys and values
are linearly projected to dk and dv dimensions. Each head receives a set of projecti-
ons and performs a separate attention function yielding dv-dimensional output values.
The heads’ outputs are concatenated and projected, resulting in the final multi-head
attention output.

MultiHead(Q,K, V) = Concat(head1, head2, . . . , headh)WO (12)

where headi = Attention(QWQ
i ,KW

K
i , V W

V
i). The projections are parameter matri-

ces WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv and WO

i ∈ Rhdv×dmodel .

If we set dk = dv = dmodel/h, the multi-head attention then has the same computational cost
as a single full-dimensionality attention. The Transformer’s attention mechanism imitates
the classical attention mechanism where the attention queries are previous decoder layer
outputs, the keys and the values (memory) are the encoder layer outputs.

2.3.3. Position-wise feed-forward networks

The fully connected feed-forward network (FFN) at the top of each layer is applied
to each input position separately and identically. Each FFN here consists of two linear
transformations with a ReLU activation in between, acting like a stack two convolutions
with kernel size 1

FFN(x) = ReLU(xW1 + b1)Wx + b2. (13)

2.3.4. Positional encoding

There are many types of positional encodings, including both learned and fixed variants
[14]. Here the positional encodings are chosen as follows

PE(pos, 2i) = sin(
pos

100002i/dmodel
), (14)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
), (15)

where pos is the position and i is the dimension. The authors hypothesized this function
would allow the model to easily learn to attend by relative positions [40]. Their experiments
showed that these encodings have the same performance as learned positional embedding.
Furthermore they allow the model to extrapolate to sequences longer than the training
sequences.

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 153

2.4. Theoretical analysis

Considering a sequence transduction task, where an input sequence X = (x1, x2, . . . , xn)
is mapped to another sequence of equal length Y = (y1, y2, . . . , yn) with xi, yi ∈ Rd. There
are some essential aspects of transduction models that need to be marked: the total com-
putational complexity per layer, the parallel ability (that is inversely proportional to the
amount of computation that needs to be performed sequentially) and the distance of long-
range dependencies in the network.

Table 1. Complexity per layer, minimum number sequential operations and maximum dis-
tance from the start to the end of signal traveling path in each type of models; n is the length
of the sequence, d is the representation dimension and k is the kernel size of convolutions

complexity per layer sequential operations maximum distance

recurrent O(nd2) O(n) O(n)
convolution O(knd2) O(1) O(logk n)
self-attention O(n2d) O(1) O(1)

In terms of computation amount, as described in Table 1, self-attention layers are faster
than the recurrent layers when the representation dimension d is larger than the sequence
length n, which is the most often cases in neural machine translation. The convolution layers
have the highest complexity and are more expensive than the recurrent layers by factor of k
in general.

The convolution layers and self-attention layers connect all positions with a constant
number of operations, whereas a recurrent layer required at least n operations over a sequence
of length n.

The long-range dependencies are a key challenge in many translation task, the longer the
signal travel, the harder to learn the long-range dependencies [16]. The maximum length of
the traveling path of a signal can go up to 2n in recurrent layers. In convolution model, it
takes O(logk n) of stacking dilated convolutions to represent the whole sequence, therefore
the maximum distance is O(logk n). Because of self-attention mechanism, where all pairs
of input and output are connected, self-attention layers have a constant length of traveling
path of forward and backward signals.

3. PARALLEL CORPUS CONSTRUCTION FROM PUBLIC SOURCES

3.1. Data sources

An essential component of any machine translation system is the parallel corpus. A
good system requires a parallel corpus with a substantial number of qualified sentence pairs.
There are various projects building English-Vietnamese corpora for specific tasks such as
word-sense disambiguation [12, 10], VLSP project [1], web mining [8], etc. EVBCorpus
[29] is a multi-layered English-Vietnamese Bilingual Corpus (EVBCorpus) containing over
10,000,000 words.

However since corpora such as EVBCorpus or VLSP are not openly published, we first
needed to build a high-quality large-scale English - Vietnamese parallel corpus. We developed
a web crawler to collect English - Vietnamese sentences from 1,500 clip subtitles with variety

154 HONG-HAI PHAN-VU, et al.

Table 2. Details of input data sources

dataset sentences data sources

subtitles.en 1103456 1,500 clip subtitles
subtitles.vi 1103456 1,500 clip subtitles

IWSLT15.en 133,317 Web Inventory of Transcribed and Translated Talks
IWSLT15.vi 133,317 Web Inventory of Transcribed and Translated Talks

Table 3. Details of experiment dataset

dataset sentences tokens vocabulary

train.en 886,224 10151378 75059
train.vi 886,224 11454886 39061

tst2012.en 1553 28723 3412
tst2012.vi 1553 34345 2056
tst2013.en 1268 27317 3563
tst2013.vi 1268 33764 2204
tst2015.en 1080 21332 3056
tst2015.vi 1080 25341 2098

of genres from the Internet. Moreover, we also include the well-known IWSLT’15 English-
Vietnamese data [7] to the corpus (Table 2).

3.2. Data cleaning and preprocessing

The following steps were conducted to clean the dataset:

• Detecting and removing incomplete translations: A big part of our dataset is clip
subtitles, .where we found many partially translated examples. In order to detect and
remove such subtitles, we use Princeton WordNet [28] to extract an English vocabulary.
We then scan each subtitle for tokens found in the vocabulary. If a half of all tokens
match this criteria, the subtitle is considered untranslated. We also use langdetect
package1 to filter out sentences which are not in Vietnamese. Manual observation on
a random subset of removed subtitles shows that this heuristic filter works sufficiently
for our purpose.

• Removing low quality translations: There are many low quality translations in our
collected data, which we had to remove manually.

After filtering we obtained 886,224 sentences pairs for training. We use tst2012 for validation;
tst2013, tst2015 for testing; all the three are from IWSLT as provided in [7]. The sizes of
the datasets are shown in Table 3.

Following[31] we only use subword for our experiments. In particular we created a shared
subword code file using Byte Pair Encoding (BPE) [34] using 32,000 merge operations. This
shared subword code file was then used to transform the training, validation and test datasets
to sub-words with a vocabulary size of approximately 20,000.

1https://pypi.python.org/pypi/langdetect

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 155

4. EXPERIMENTS AND DISCUSSIONS

4.1. Overview of training configurations

For authenticity the experiments with each model are performed on original software
provided by the authors. Specifically sequence to sequence RNN experiments are performed
using [24], the Transformer experiments are performed using Tensor2Tensor (T2T) software
[39] and the experiments on ConvS2S are performed using Facebook AI Research Sequence-
to-Sequence Toolkit [14].

Training is performed on a single Nvidia Geforce Titan X. We run each experiment 3
times with random initializations and save one model checkpoint every 1000 steps. The
checkpoint for reporting results is selected based on BLEU score for the validation set.
We train and report the model’s performance at the maximum of 64th epoch due to our
computing resource constraints. For the sake of brevity, we only report mean BLEU on our
result tables.

In all our experiments, there are some common terms in all the models, which are specified
as follows:

• Maximum input length (max length). Specifies the maximum length of a sentence
in tokens (sub-words in our case). Sentences longer than max length are either ex-
cluded from the training (T2T) or cut to match the max length (RNN). Lowering
max length allows us to use a higher batch size and/or bigger model but biases the
translation towards shorter sentences. Since 99% of the training sentences are not
longer than 70, we set max length to 70.

• Batch size (batch size). For T2T batch size is the approximate number of tokens
(subwords) consumed in one training step, while for ConvS2S and RNN batch size

is the number of sentence pairs consumed in one training step. Hence for consistency
we define batch size as the approximate average number of tokens consumed in one
training step. In fact the number of tokens in a sentence is the maximum of source
and target subwords from the pair of training sentences. During training this allows us
to put as many training tokens per batch as possible while ensuring that batches with
long sentences still fit in GPU memory. In contrast, if we fixed the number of sentence
pairs in a training batch, the model can run out of memory if a batch has many long
sentences.

• Training epoch is one complete pass through the whole training set. The number of
training steps can be converted to epochs by multiplying by the batch size and dividing
by the number of subwords in the training data.

• Model size is number of trainable parameters of each model. Because of the difference
in model structures, it is almost certain that two models with the same model size will
not have the same training time.

Human judgment is always the best evaluation of machine translation systems; but in
practice it is prohibitively expensive in time and resources. Therefore automatic scoring
systems that evaluate machine translations against standard human translations are more
commonly used. The most popular automatic metric in use is undoubtedly the BLEU score

156 HONG-HAI PHAN-VU, et al.

[30]. BLEU has a high correlation with human judgments of quality and is easy to compute.
Even though there are some acknowledged problems with BLEU and other better-performing
metrics [4], we still stick to BLEU for its simplicity. In this work, we use the case-insensitive
sacrBLEU 2 version which uses a fixed tokenization.

4.2. Sequence-to-Sequence RNN

Based on previous literature in [5, 31], we build a baseline which is set reasonably large
for our dataset. We use LSTM [16] for the two models as suggested in [5]. The embedding
dimension in the baseline model is set to be equal to the number of cells in each layer.
We use two layers of 1024-unit LSTMs for both the encoder and the decoder, whereas the
encoder’s first layer is a bi-directional LSTM network and each layer is equipped with a
residual connection and a dropout of 0.15 is applied to the input of each cell. We use
Stochastic Gradient Descent (SGD) as the optimization algorithm with the batch size set to
approximately 1280 tokens per step. The learning rate is set to 1.0; after 10 epochs we begin
to halve the learning rate every single epoch. To prevent gradient explosion we enforce a
hard constraint on the norm of the gradient by scaling it when its norm exceeds a threshold.
In our two models the threshold is set to 5.0. For each training batch we compute s = ||g||2
where g is the gradient divided by the batch size. If s > 5.0, we set g =

5g

s
.

Table 4. The baseline system’s performance with approximately 98 millions parameters

task
batch
size

training
epochs

training time
(days)

tst2012 tst2013 tst2015

En-Vi 1300 32 3.5 34.77 37.00 31.03
Vi-En 1300 20 2.5 35.21 38.83 30.29

4.3. Convolution Sequence to Sequence

We introduce four different models for each direction of translation. The hyper-parameters
for each experiment are shown in Table 5:

• We used Nesterov’s accelerate gradient (NAG) [37] with a fixed learning rate: 0.25 for
the Bbase model and 0.5 for the rests. After a certain number of epochs, we force-
anneal the learning rate (lr) by a lr shrink factor: lr new = lr * lr shrink. We
start annealing the learning rate at the 24th epoch with a width lr shrink of 0.1 for
Bbase model and at the 50th epoch with the width lr shrink set to 0.2 for the rest.
Once the learning rate falls below 10−5 we stop the training process.

• In the B2 model, we use embedding size of 768 for all internal embeddings except the
decoder output embedding (pre-softmax layer) which is set to 512.

• The effective context size of Bbase, B1, B2 and B3 are 9, 13, 27 and 25, respectively.

2https://github.com/awslabs/sockeye/tree/master/contrib/sacrebleu

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 157

Table 5. The hyper-parameters set of ConvS2S model

encoder decoder
emb
size

lr pdrop

training
times

(hours)

params
×106

Bbase 4× [256× (3× 3)] 3× [256× (3× 3)] 256 0.5 0.1 4 10

B1

4× [512× (3× 3)]
2× [1024× (3×3)]
1× [2048× (1×1)]

4× [512× (3× 3)]
2× [1024× (3×3)]
1× [2048× (1×1)]

384 0.5 0.15 20 62

B2

9× [512× (3× 3)]
4× [1024× (3×3)]
2× [2048× (1×1)]

9× [512× (3× 3)]
4× [1024× (3×3)]
2× [2048× (1×1)]

768
(512)

0.5 0.15 48 144

B3

8× [512× (3× 3)]
4× [1024× (3×3)]
2× [2048× (1×1)]
1× [4096× (1×1)]

8× [512× (3× 3)]
4× [1024× (3×3)]
2× [2048× (1×1)]
1× [4096× (1×1)]

768 0.5 0.15 78 199

• We apply label smoothing of εls = 0.1 for all 4 models. This makes training perplexity
fluctuate in a small interval but improves accuracy and BLEU score [40].

We use cross-validation’s BLEU score to decide which checkpoint to select for evaluation:
the Bbase model is evaluated after 32 training epochs, the rest are evaluated after 64 training
epochs. We found that the best perplexity of the validation dataset does not correspond to
the best BLEU score on the test set but the BLEU score on the validation dataset does.

We did not observe over-fitting with the large number of parameters from the results in
Table 6, that suggests the training data is fairly good and the model’s dropout probability
is suitable. With the hypothesis that the models’ beam size and length penalty parameters
are independence, we found that all the model’s BLEU scores are improved a lot when beam
size is increased from b = 1 to b = 10 and is only improved by a small margin (or even worse)
when we keep increasing the beam size further. Because the decoding speed would slow
down when we increase the beam size, we can conclude that the beam size of the ConvS2S
models should be set to 10.

4.4. Transformer

In the Transformer architecture there are many hyper-parameters to be configured such
as the number of layers in the encoder and the decoder, the number of attention heads or
the size of the FFN weight matrix etc. In this work, we introduce three models based on
their number of parameters. Each model’s hyper-parameters are shown Table 7:

• We used the Adam optimizer with β1 = 0.9, β2 = 0.98 and ε = 10−9. The learning
rate is varied over the training processes according to the following formula: lr =
d−0.5
model ·min(step−0.5

num, step
−0.5
num · warmup−1.5

steps), where warmup steps is set to 4000 from
Cbase and warmup steps is set to 16000 for the rest.

• In the course of training we found that if batch size is too big, the model can so-
metimes run out of GPU memory after a long training time. Therefore while C2 can
be trained with a batch size of 3000 and the rest can be trained with a batch size

158 HONG-HAI PHAN-VU, et al.

Table 6. BLEU score of English-Vietnamese and Vietnamese-English translation task on
tst2012, tst2013, tst2015 of Bbase, B1, B2 and B3 model using beam-search with length
penalty set to 1, b is the beam size

model English-Vietnamese Vietnamese-English
tst2012 tst2013 tst2015 tst2012 tst2013 tst2015

Bbase, b = 1 24.31 25.34 23.98 25.18 27.76 23.89
Bbase, b = 2 26.40 28.02 26.56 26.09 27.42 24.89
Bbase, b = 5 26.92 28.75 27.86 26.74 28.60 25.36
Bbase, b = 10 27.09 28.64 27.87 26.97 29.21 25.59
Bbase, b = 20 27.08 28.66 28.09 26.86 29.46 25.61
Bbase, b = 100 27.22 28.55 28.18 26.83 29.31 25.60

B1 , b = 1 25.29 27.01 24.99 26.08 28.91 24.57
B1 , b = 2 27.97 29.01 27.15 27.67 30.07 26.38
B1 , b = 5 29.39 31.77 28.88 28.35 31.24 27.16
B1 , b = 10 29.86 32.26 29.31 28.40 31.63 27.32
B1 , b = 20 29.94 32.25 29.41 28.44 31.86 27.24
B1 , b = 100 29.84 32.15 29.75 28.58 31.87 27.39

B2 , b = 1 34.87 36.57 29.13 37.90 39.11 28.33
B2 , b = 2 36.36 37.61 30.42 39.85 41.78 29.99
B2 , b = 5 37.20 38.53 31.10 41.07 42.85 30.52
B2 , b = 10 37.19 38.48 31.23 41.19 43.03 30.60
B2 , b = 20 37.36 38.36 31.25 41.44 43.32 30.74
B2 , b = 100 37.49 38.42 31.42 41.49 43.36 30.71

B3 , b = 1 40.38 40.81 31.40 42.63 44.17 32.68
B3 , b = 2 41.87 42.62 32.04 43.09 45.61 33.41
B3 , b = 5 42.32 42.49 33.56 44.48 46.13 34.01
B3 , b = 10 42.40 43.51 33.50 44.32 46.31 34.11
B3 , b = 20 42.51 43.56 33.39 44.31 46.42 34.10
B3 , b = 100 42.26 43.60 33.48 44.52 46.45 33.99

larger than 6500, we recommend a batch size of 2048 for the C2 and 4096 for the rest
in order to keep the training stable. Another reason is our observation that the time
to convergence does not change significantly once the batch size gets sufficiently large.

• The learning rate are chosen based on batch size. Specifically, we set the learning
rate to 0.0001 for the largest model with beam size of 2048 and scale it by

√
k when

multiplying the batch size by k.

• We also observed that when the batch size is too small (i.e. < 512 for the biggest
model), the model can only converge when the learning rate is smaller than 0.00005.
Even then the model’s BLEU is much lower than with a large batch size. This is due
to the fact that the gradient noise scale is proportional to the learning rate divided by
the batch size. Thus, lowering the batch size increases the noise scale [35]. Therefore,
we would rather reduce the model’s complexity than reduce the batch size.

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 159

20 40 60 80 100

0

1,000

2,000

3,000

beam size (b)

d
ec

o
d

in
g

sp
ee

d

Bbase
B1

B2

B3

(a)

20 40 60 80 100

0

1,000

2,000

3,000

beam size (b)

d
ec

o
d

in
g

sp
ee

d

Cbase
C1

C2

(b)

Figure 3. The impact of beam size to the decoding speed of ConvS2S models (a) and
Transformer models (b). The decoding speed of ConvS2S models is often higher and becomes
slower when increasing the beamsize than the decoding speed of Transformer models with
the same model size

• The performance of the C2 model kept improving epoch by epoch and could potentially
be better than reported. However due to resource constraints we report the model’s
performance at the 64th checkpoint.

Table 7. Transformer hyper-parameters

N dmodel h dff pdrop

training
time

(hours)

params
×106

Cbase 2 256 4 1024 0.1 5 9M

C1 6 512 16 2048 0.15 36 54M

C2 8 1024 16 4096 0.15 72 197M

4.5. Length normalization for beam search

Beam search is a widespread technique in NMT, which finds the target sequence that
maximizes some scoring function by a tree search. In the simplest case the score is the log
probability of the target sequence. This simple scoring favors shorter sequences over longer
ones on average since a negative log-probability is added at each decoding step.

Recently, length normalization [41] have been shown to improve decoding results for RNN
based models. However, there is no guarantee that this strategy works well for other models.
In this work, we experiment on two normalization functions described below

f1 =
(5 + |Y |)α

6α
, (16)

f2 = (1 + |Y |)α. (17)

160 HONG-HAI PHAN-VU, et al.

Table 8. BLEU score of English-Vietnamese translation task on tst2012, tst2013, tst2015 of
Cbase, C1 and C2 model, b is the beam size with a default length penalty function

model English-Vietnamese Vietnamese-English

Cbase, b = 1 31.88 33.70 31.16 27.71 29.32 25.35
Cbase, b = 2 31.99 34.44 31.54 28.63 30.02 25.94
Cbase, b = 5 31.19 34.61 32.06 28.86 30.48 26.17
Cbase, b = 10 31.93 34.44 31.79 28.74 30.01 26.28
Cbase, b = 20 31.86 34.18 30.79 28.55 30.95 26.14
Cbase, b = 100 30.96 33.85 30.21 25.11 27.42 26.09

C1, b = 1 36.85 39.88 33.62 33.31 35.71 29.58
C1, b = 2 37.46 40.99 30.88 33.27 35.77 30.28
C1, b = 5 37.61 40.88 33.48 33.32 36.06 30.33
C1, b = 10 37.51 40.81 33.59 33.28 35.88 30.36
C1, b = 20 37.65 40.66 33.73 33.18 35.83 30.30
C1, b = 100 37.43 40.02 33.31 32.62 34.99 30.17

C2, b = 1 52.37 54.70 38.01 41.61 44.31 33.19
C2, b = 2 52.89 55.31 38.81 43.16 45.41 33.83
C2, b = 5 53.32 55.89 39.14 43.41 46.26 33.94
C2, b = 10 53.64 55.85 39.01 43.32 46.27 34.05
C2, b = 20 53.50 55.76 39.05 43.10 46.49 34.20
C2, b = 100 53.36 55.31 38.92 42.86 45.71 34.24

0 1 2 3

36.5

37

37.5

α

B
L

E
U

sc
or

e

f1
f2

Figure 4. The effect of length penalty factor α on BLEU of B2 on tst2012 with beam size
fixed to 10

We found that the length penalty can help improve the model’s performance up to 2 in
BLEU scale. The length penalty should be chosen between 2.0 to 3.0.

4.6. Ensembling

Ensemble methods combine multiple individual methods to create a learning algorithm
that is better than any of its individual parts [11]. They are widely used to boost machine

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 161

learning models’ performance [11, 21]. In neural machine translation, the most popular
ensemble method is checkpoint ensemble., in which the ensembled models are created by
combining (averaging) multiple model checkpoints together [40, 41]. This method does not
require training multiple model and the ensembled model has the size as same as the con-
stituent models.

In many experiments the authors suggest to average checkpoints based on training time
[38, 40], which depends on hardware and is hard to reproduce. In this work we experiment
with checkpoint ensembling based on training epoch, which can be easily adapted to different
platforms.

Table 9. Effect of checkpoint ensembling (n is number of checkpoint to be averaged) on the
B2 (a) and C1 (b) model for English-Vietnamese translation task on tst2015

(a)

n interval (% of a epoch)

1.5 3 4.5 6

8 32.26 32.74 32.82 32.68
16 31.58 31.75 31.55 31.68

(b)

n interval (% of a epoch)

1.5 3 4.5 6

8 30.63 30.90 30.77 30.81
16 30.61 30.80 30.85 30.89

According to our experiments checkpoint ensembling always improves the model’s per-
formance. ConvS2S benefits the most (up to 7% on the B2 model) while ensembling has a
smaller effect on the Transformer models (at most 5% on the C3 model). We observed that
taking 8 checkpoints for ensembling often yielded better results than 16 checkpoints. This
also has the advantage that less time is spent on checkpoint saving.

Ensembling can also be applied by training several new models starting form the same
checkpoint. Each model is trained at a random position in the training data. In this setup,
these models are semi-independent because they are rooted in the same source checkpoint.
These semi-independent models can be averaged as described above, resulting in a boost in
the result, but in a smaller margin.

5. RESULT AND EMPIRICAL STUDIES

From the above experiments we observed that the training data is well correlated with
the test data and training does not suffer from overfitting. However this makes it hard to
tell if the model is general enough.

For new experiments we can always choose RNNs as a reliable base line model, that
does not take much effort to achieve good results. The Transformer model has the highest
convergence speed while RNNs have the lowest convergence speed. The Transformer model
has showed its superiority in terms of achieving state-of-the-art results when given a suitable
batch size and learning rate. Interestingly, even a very simple Transformer model with only
5 training hours can achieve a comparable score.

In our experiments we showed that a well-tuned beam search with length penalty is
crucial, which can help to boost the model’s score by 1.5 to 3 BLEU point (Table 6, 8,
Figure 4). The most effective beam-size is 10 for ConvS2S and 5 for Transformer. The

162 HONG-HAI PHAN-VU, et al.

length penalty has a high impact on the final result, which should be set from 2 to 3.

Finally from our experiment results we compared our best performing hyper-parameter
sets across all models and combined to a final model with the state-of-the-art results (Table
10). This shows that careful hyper-parameter tuning can greatly improve performance.

Table 10. Hyper-parameter settings for our final combined model for bidirectional English-
Vietnamese translation

Hyper-parameters Value

N 8
dmodel 1024

h 16
dff 4096
pdrop 0.15

batch size 2048
length penalty 1.5

beam size 5
checkpoint to ensemble 8

ensemble interval 3% epoch

Table 11. BLEU results for our final combined model for bidirectional English-Vietnamese
translation

English-Vietnamese Vietnamese-English
tst2012 tst2013 tst2015 tst2012 tst2013 tst2015

Combined model 55.04 56.88 40.01 46.36 49.23 35.81

C2 52.37 54.70 38.01 42.63 44.17 32.68

6. CONCLUSION

We conducted a broad range of experiments with the RNN sequence-to-sequence, ConvS2S
and Transformer models for English-Vietnamese and Vietnamese-English translation, poin-
ting out key factors to achieving state-of-the-art results. In particular we performed extensive
exploration of hyper-parameters settings, which can be useful for other research works. In
sum, our experiments took about 2,000 GPU hours.

We highlighted several important points: efficient use of batch size, the importance of
beam search and length penalty, the importance of initial learning rate, the effectiveness of
checkpoint ensembling, and the model’s complexity. Along with these contribution we also
make our dataset publicly available at (location withheld for review).

We hope our findings can help accelerate the pace of research on and application of
English-Vietnamese and Vietnamese-English translation.

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 163

7. ACKNOWLEDGEMENT

This research is funded by the Hanoi University of Science and Technology (HUST) under
project number T2017-PC-078.

REFERENCES

[1] “Building basic resources and tools for vietnamese language and speech processing,” in VLSP
Projects, 2010. [Online]. Available: http://vlsp.vietlp.org:8080/demo/?page=resources

[2] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” CoRR, vol. abs/1409.0473, 2014. [Online]. Available:
http://arxiv.org/abs/1409.0473

[3] H. T. Bao, P. N. Khanh, H. T. Le, and N. T. P. Thao, “Issues and first
development phase of the english-vietnamese translation system evsmt1.0,” in Proceedings
of the third Hanoi Forum on Information Communication Technology. Ha Noi, 2009.
[Online]. Available: https://www.researchgate.net/publication/228966483 Issues and First
Development Phase of the English-Vietnamese Translation System EVSMT1 0

[4] O. Bojar, Y. Graham, and A. Kamran, “Results of the WMT17 metrics shared task,” in Pro-
ceedings of the Second Conference on Machine Translation (WMT), September 7–8, 2017, pp.
489–513.

[5] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive Exploration of Neural Machine Translation
Architectures,” ArXiv e-prints, Mar. 2017.

[6] M. Cettolo, J. Niehues, S. Stuker, L. Bentivogli, R. Cattoni, and M. Federico, “The iwslt 2015
evaluation campaign,” in Proceeding of the 12th International Workshop on Spoken Language
Translation, 2015. [Online]. Available: http://workshop2015.iwslt.org

[7] M. Cettolo, C. Girardi, and M. Federico, “Wit3: Web inventory of transcribed and translated
talks,” in Proceedings of the 16th Conference of the European Association for Machine Transla-
tion (EAMT), Trento, Italy, May 2012, pp. 261–268.

[8] V. B. Dang and B.-Q. Ho, “Automatic construction of english-vietnamese parallel
corpus through web mining.” in RIVF. IEEE, 2007, pp. 261–266. [Online]. Available:
http://dblp.uni-trier.de/db/conf/rivf/rivf2007.html#DangH07

[9] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with
gated convolutional networks,” CoRR, vol. abs/1612.08083, 2016. [Online]. Available:
http://arxiv.org/abs/1612.08083

[10] D. Dien and H. Kiem, “Pos-tagger for english-vietnamese bilingual corpus,” in Proceedings
of the HLT-NAACL 2003 Workshop on Building and Using Parallel Texts: Data Driven
Machine Translation and Beyond - Volume 3, ser. HLT-NAACL-PARALLEL ’03. Stroudsburg,
PA, USA: Association for Computational Linguistics, 2003, pp. 88–95. [Online]. Available:
http://dx.doi.org/10.3115/1118905.1118921

[11] T. G. Dietterich, “Ensemble methods in machine learning,” in Proceedings of the First
International Workshop on Multiple Classifier Systems, ser. MCS ’00. London, UK, UK:
Springer-Verlag, 2000, pp. 1–15. [Online]. Available: http://dl.acm.org/citation.cfm?id=648054.
743935

http://vlsp.vietlp.org:8080/demo/?page=resources
http://arxiv.org/abs/1409.0473
https://www.researchgate.net/publication/228966483_Issues_and_First_Development_Phase_of_the_English-Vietnamese_Translation_System_EVSMT1_0
https://www.researchgate.net/publication/228966483_Issues_and_First_Development_Phase_of_the_English-Vietnamese_Translation_System_EVSMT1_0
http://workshop2015.iwslt.org
http://dblp.uni-trier.de/db/conf/rivf/rivf2007.html#DangH07
http://arxiv.org/abs/1612.08083
http://dx.doi.org/10.3115/1118905.1118921
http://dl.acm.org/citation.cfm?id=648054.743935
http://dl.acm.org/citation.cfm?id=648054.743935

164 HONG-HAI PHAN-VU, et al.

[12] D. Dinh, “Building a training corpus for word sense disambiguation in english-to-
vietnamese machine translation,” in Proceedings of the 2002 COLING Workshop on
Machine Translation in Asia - Volume 16, ser. COLING-MTIA ’02. Stroudsburg, PA,
USA: Association for Computational Linguistics, 2002, pp. 1–7. [Online]. Available:
http://dx.doi.org/10.3115/1118794.1118801

[13] D. Dinh, H. Kiem, and E. Hovy, “Btl: a hybrid model for english-vietnamese machine transla-
tion,” in Proceedings of the Machine Translation Summit IX, 2003.

[14] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Convolutional
sequence to sequence learning,” CoRR, vol. abs/1705.03122, 2017. [Online]. Available:
http://arxiv.org/abs/1705.03122

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. [Online]. Available: http://arxiv.org/abs/1512.03385

[16] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,” in
Proceedings of the 9th International Conference on Neural Information Processing Systems,
ser. NIPS’96. Cambridge, MA, USA: MIT Press, 1996, pp. 473–479. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2998981.2999048

[17] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song,
S. Guadarrama, and K. Murphy, “Speed/accuracy trade-offs for modern convolutional object
detectors,” CoRR, vol. abs/1611.10012, 2016.

[18] P. Huang, C. Wang, D. Zhou, and L. Deng, “Neural phrase-based machine translation,” CoRR,
vol. abs/1706.05565, 2017.

[19] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. van den Oord, A. Graves, and K. Kavukcuoglu,
“Neural machine translation in linear time,” CoRR, vol. abs/1610.10099, 2016.

[20] C. Kandaswamy, L. M. Silva, L. A. Alexandre, J. M. Santos, and J. M. de Sá, “Improving
deep neural network performance by reusing features trained with transductive transference,” in
International Conference on Artificial Neural Networks. Springer, 2014, pp. 265–272.

[21] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation and active learning,”
in Proceedings of the 7th International Conference on Neural Information Processing Systems,
ser. NIPS’94. Cambridge, MA, USA: MIT Press, 1994, pp. 231–238. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2998687.2998716

[22] K. H. Le, “One method of interlingual translation,” in Proceedings of National Conference on
IT Research, Development and Applications, 2003.

[23] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” ArXiv e-prints, Jul. 2016.

[24] M. Luong, E. Brevdo, and R. Zhao, “Neural machine translation (seq2seq) tutorial,” 2017.
[Online]. Available: https://github.com/tensorflow/nmt

[25] M.-T. Luong and C. D. Manning, “Stanford neural machine translation systems for spoken
language domains,” in Proceeding of the 12th International Workshop on Spoken Language
Translation, 2015. [Online]. Available: http://workshop2015.iwslt.org

[26] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural
machine translation,” in Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, 2015. [Online]. Available: arXiv.org〉cs〉arXiv:1508.04025

http://dx.doi.org/10.3115/1118794.1118801
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1512.03385
http://dl.acm.org/citation.cfm?id=2998981.2999048
http://dl.acm.org/citation.cfm?id=2998687.2998716
https://github.com/tensorflow/nmt
http://workshop2015.iwslt.org
arXiv.org > cs > arXiv:1508.04025

NEURAL MACHINE TRANSLATION BETWEEN VIETNAMESE AND ENGLISH 165

[27] M.-T. Luong, I. Sutskever, Q. V. Le, O. Vinyals, and W. Zaremba, “Addressing
the rare word problem in neural machine translation,” May 2015. [Online]. Available:
http://arxiv.org/abs/1410.8206

[28] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38, no. 11, pp.
39–41, Nov. 1995. [Online]. Available: http://doi.acm.org/10.1145/219717.219748

[29] Q. H. Ngo, W. Winiwarter, and B. Wloka, “Evbcorpus-a multi-layer english-vietnamese
bilingual corpus for studying tasks in comparative linguistics,” in Proceedings of the
11th Workshop on Asian Language Resources, 2013, pp. 1–9. [Online]. Available:
https://www.aclweb.org/anthology/W13-4301

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for automatic evaluation
of machine translation,” in Proceedings of the 40th Annual Meeting on Association for Com-
putational Linguistics, ser. ACL ’02. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2002, pp. 311–318.

[31] H. Phan-Vu, V. Nguyen, V. Tran, and P. Do, “Towards state-of-the-art english-vietnamese neural
machine translation,” in Proceeding SoICT 2017 Proceedings of the Eighth International Sympo-
sium on Information and Communication Technology. Nha Trang City, Viet Nam, December
07–08, 2017, pp. 120–126.

[32] N. Q. Phuoc, Y. Quan, and C.-Y. Ock, “Building a bidirectional english-vietnamese statistical
machine translation system by using moses,” International Journal of Computer and Electrical
Engineering, vol. 8, no. 2, pp. 161–168, 2016.

[33] M. Popel and O. Bojar, “Training tips for the transformer model,” The Prague
Bulletin of Mathemetical Linguistics, vol. 110, no. 1, 2018. [Online]. Available: https:
//doi.org/10.2478/pralin-2018-0002

[34] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh neural machine translation systems for
WMT 16,” 2016. [Online]. Available: arXiv.org〉cs〉arXiv:1606.02891

[35] S. L. Smith, P. Kindermans, and Q. V. Le, “Don’t decay the learning rate, increase the batch
size,” 2017. [Online]. Available: arXiv.org〉cs〉arXiv:1711.00489

[36] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory networks,” 2015.
[Online]. Available: http://arxiv.org/abs/1503.08895

[37] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in Proceeding ICML’13 Proceedings of the 30th
International Conference on International Conference on Machine Learning - Volume
28. Atlanta, GA, USA, June 16–21, 2013, pp. III–1139–III–1147. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3042817.3043064

[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in Proceedings of the 27th International Conference on Neural Information Processing Systems,
ser. NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–3112. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969033.2969173

[39] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N. Gomez, S. Gouws, L. Jones, L. Kaiser,
N. Kalchbrenner, N. Parmar, R. Sepassi, N. Shazeer, and J. Uszkoreit, “Tensor2tensor for
neural machine translation,” 2018. [Online]. Available: http://arxiv.org/abs/1803.07416

http://arxiv.org/abs/1410.8206
http://doi.acm.org/10.1145/219717.219748
https://www.aclweb.org/anthology/W13-4301
https://doi.org/10.2478/pralin-2018-0002
https://doi.org/10.2478/pralin-2018-0002
arXiv.org > cs > arXiv:1606.02891
arXiv.org > cs > arXiv:1711.00489
http://arxiv.org/abs/1503.08895
http://dl.acm.org/citation.cfm?id=3042817.3043064
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://arxiv.org/abs/1803.07416

166 HONG-HAI PHAN-VU, et al.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” 2017. [Online]. Available: http:
//arxiv.org/abs/1706.03762

[41] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato,
T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s neural machine
translation system: Bridging the gap between human and machine translation,” CoRR, vol.
abs/1609.08144, 2016. [Online]. Available: http://arxiv.org/abs/1609.08144

[42] J. Zhou, Y. Cao, X. Wang, P. Li, and W. Xu, “Deep recurrent models with
fast-forward connections for neural machine translation,” Transactions of the Association
for Computational Linguistics, vol. 4, pp. 371–383, 2016. [Online]. Available: https:
//transacl.org/ojs/index.php/tacl/article/view/863

Received on October 29, 2018
Revised on April 09, 2019

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1609.08144
https://transacl.org/ojs/index.php/tacl/article/view/863
https://transacl.org/ojs/index.php/tacl/article/view/863

	Introduction
	Latest NMT architectures
	Sequence-to-sequence RNNs
	The convolutional sequence-to-sequence model
	Position embeddings
	Convolutional layer structure
	Multi-step attention

	The transformer model
	Overall structure
	Attention
	Position-wise feed-forward networks
	Positional encoding

	Theoretical analysis

	Parallel corpus construction from public sources
	Data sources
	Data cleaning and preprocessing

	Experiments and discussions
	Overview of training configurations
	Sequence-to-Sequence RNN
	Convolution Sequence to Sequence
	Transformer
	Length normalization for beam search
	Ensembling

	Result and Empirical studies
	Conclusion
	Acknowledgement

