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�

Abstract. The dissimilarity measures between fuzzy sets/intuitionistic fuzzy sets/picture fuzzy

sets are studied and applied in various matters. In this paper, we propose some new dissimilarity

measures on picture fuzzy sets. These new dissimilarity measures overcome the restrictions of all

existing dissimilarity measures on picture fuzzy sets. After that, we apply these new measures to

the pattern recognition problems. Finally, we introduce a multi-criteria decision making (MCDM)

method that uses the new dissimilarity measures and apply them in the supplier selection problems.
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1. INTRODUCTION

The ranking of subjects is very important in the decision-making process. The ranking

can be based on measures such as the similarity measures, the distance measures or dissi-

milarity measures. In practical problems, fuzzy set and intuitionistic fuzzy set have been

widely used [3, 9, 12, 18, 19, 21, 22]. The dissimilarity measures between them were also

studied and applied in various matters [10, 14, 16, 17, 20, 23].

In 2014, Picture fuzzy set was introduced by Cuong [4]. It has three memberships: a

degree of positive membership, a degree of negative membership, and a degree of neutral

membership. Picture fuzzy set is a generality of fuzzy set [42] and intuitionistic fuzzy set [1].

Today, picture fuzzy set has been studied and applied widely in many fields [2, 6, 8, 11, 24,

25, 26, 37], especially in clustering problems [13, 15, 27, 28, 29, 32, 33, 31, 36]. Hoa et al. [13]

used picture fuzzy sets to apply for Geographic Data Clustering. Thao and Dinh approxima-

ted the picture fuzzy set on the crisp approximation spaces to give results as rough picture

fuzzy sets and picture fuzzy topologies [30]. Dinh et al. investigated the picture fuzzy set

database [35]. Cuong and Hai [5] studied some fuzzy logic operators for picture fuzzy sets.

The cross-entropy and similarity measures on picture fuzzy sets were studied by Wei and

applied in MCDM [38, 41, 39, 40]. As opposed to the similarity measures, the dissimilarity

measures on picture fuzzy sets were first introduced by Dinh et al. in 2017 [7, 34]. But these
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dissimilarity measures have certain restrictions (detail in Example 1, Section 3). To continue

with the idea of the dissimilarity measures on picture fuzzy sets in practical applications, we

propose some new dissimilarity measures to overcome the mentioned restrictions and apply

them in practical problems (detail in Example 1 and Example 2, Section 3). In the similarity

measure, if the value of the similarity measure between two objects is greater, the two objects

are more likely to be identical. On the contrary, in the dissimilarity measure, if the value of

the dissimilarity measure between two objects is smaller, the two objects are considered to

be the same.

In this paper, we introduce some new dissimilarity measures on picture fuzzy sets. The

paper is organized as follows: the concept of picture fuzzy set is recalled in Section 2.

The dissimilarity measures on PFS-sets are defined in Section 3. After that, we introduce

an application of the dissimilarity measures between PFS-sets for the pattern recognition in

Section 4. We also propose a multi-criteria decision making using new dissimilarity measures

and apply this MCDM to select the supplier in Section 5.

2. BASIC NOTIONS

Definition 1. (see [4]) Picture fuzzy set on a universe U is an object of the form A =

{(u, µA(u), ηA(u), γA(u))|u ∈ U}, where µA is a membership function, ηA is neutral mem-

bership function, γA is non-membership function of A and 0 ≤ µA(u) + ηA(u) + γA(u) ≤ 1

for all u ∈ U .

Further, we denote by PFS(U) the collection of picture fuzzy sets on U with U =

{(u, 1, 0, 0)|u ∈ U} and ∅ = {(u, 0, 0, 1)|u ∈ U} for all u ∈ U.
For A,B ∈ PFS(U) and for all u ∈ U consider some algebraic operators for picture fuzzy

sets as follows:

+ Union of A and B: A ∪B = {(u, µA∪B(u), ηA∪B(u), γA∪B(u))|u ∈ U}, where

µA∪B(u) = max{µA(u), µB(u)},
ηA∪B(u) = min{ηA(u), ηB(u)} and

γA∪B(u) = min{γA(u), γB(u)}.

+ Intersection of A and B: A ∩B = {(u, µA∩B(u), ηA∩B(u), γA∩B(u))|u ∈ U}, where

µA∩B(u) = min{µA(u), µB(u)},
ηA∩B(u) = min{ηA(u), ηB(u)}, and

γA∩B(u) = max{γA(u), γB(u)}.

+ Subset: A ⊂ B iff µA(u) ≤ µB(u), ηA(u) ≤ ηB(u) and γA(u) ≥ γB(u).

3. NEW DISSIMILARITY MEASURES ON PICTURE FUZZY SETS

In this section, we introduce concept of dissimilarity measure on picture fuzzy sets.

Definition 2. A function DM : PFS(U) × PFS(U) → R is a dissimilarity measure on

PFS-sets if it satisfies the following properties:
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+ PF-Diss 1: 0 ≤ DM(A,B) ≤ 1;

+ PF-Diss 2: DM(A,B) = DM(B,A);

+ PF-Diss 3: DM(A,A) = 0;

+ PF-Diss 4: If A ⊂ B ⊂ C then DM(A,C) ≥ max{DM(A,B), DM(B,C)} for all

A,B,C ∈ PFS(U).

In [7, 34] Dinh et al. gave some dissimilarity measures on picture fuzzy sets as follows.

Definition 3. [7, 34] Let U = {u1, u2, ..., un} be a universe set. Given two picture fuzzy sets

A,B ∈ PFS(U). We define some dissimilarity measures on picture fuzzy sets as follows:

DMC(A,B) =
1

3n

n∑
i=1

[|SA(ui)− SB(ui)|+ |ηA(ui)− ηB(ui)|] (1)

where SA(ui) = |µA(ui)− γA(ui)| and SB(ui) = |µB(ui)− γB(ui)|.

DMH(A,B) =
1

3n

n∑
i=1

[|µA(ui)− µB(ui)|+ |ηA(ui)− ηB(ui)|+ |γA(ui)− γB(ui)|] . (2)

DML(A,B) =

1

5n

n∑
i=1

[
|SA(ui)− SB(ui)|+ |µA(ui)− µB(ui)|+ |ηA(ui)− ηB(ui)|+ |γA(ui)− γB(ui)|

]
. (3)

DMO(A,B) =
1√
3n

n∑
i=1

[
|µA(ui)−µB(ui)|2 + |ηA(ui)−ηB(ui)|2 + |γA(ui)−γB(ui)|2

] 1
2
. (4)

These measures have a restriction, which is shown in the following example.

Example 1. Assume that there are two patterns denoted by picture fuzzy sets on U =

{u1, u2} as follows: Let

A1 = {(u1, 0, 0, 0), (u2, 0.2, 0.2, 0.1)}, A2 = {(u1, 0, 0.1, 0.1), (u2, 0.1, 0.1, 0.1)} and B =

{(u1, 0, 0.1, 0), (u2, 0, 0.3, 0.1)}.
Question: Which class of pattern does B belong to?

+ Case 1: If using DMC(A,B) in eq.(1) then

DMC(A1, B) = DMC(A2, B) = 0.066666667.

+ Case 2: If using DMH(A,B) in eq.(2) then

DMH(A1, B) = DMH(A2, B) = 0.066666667.

+ Case 3: If using DML(A,B) in eq.(3) then DML(A1, B) = DML(A2, B) = 0.06.

+ Case 4: If using DMO(A,B) in eq.(4) then

DMO(A1, B) = DMO(A2, B) = 0.132111922.

We do not know which class of pattern B belongs to when using these dissimilarity

measures.
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This drawback suggests us to improve the dissimilarity measure on picture fuzzy sets.

Suppose U = {u1, u2, ..., un} is an universe set. For any A,B ∈ PFS(U), we denote

RA(uj) = µA(uj)− γA(uj), RB(uj) = µB(uj)− γB(uj),

SA(uj) = ηA(uj)− γA(uj), SB(uj) = ηB(uj)− γB(uj),

and

Dj(A,B) =
|RA(uj)−RB(uj)|+ |SA(uj)− SB(uj)|

4
(5)

for all j = 1, 2, ..., n.

Definition 4. Let U = {u1, u2, . . . , un} be an universal set. For any A,B ∈ PFS(U) the

dissimilarity measure DMN : PFS(U)× PFS(U)→ [0, 1] is defined by

DMN (A,B) =
1

n

n∑
j=1

Dj(A,B). (6)

Theorem 1. Let U = {u1, u2, ..., un} be a universal set. For any A,B ∈ PFS(U), a function

DMN : PFS(U)× PFS(U)→ R defined by DMN (A,B) = 1
n

∑n
j=1Dj(A,B) satisfies

(i) 0 ≤ DMN (A,B) ≤ 1;

(ii) DMN (A,B) = DMN (B,A);

(iii) DMN (A,A) = 0;

(iv) If A ⊂ B ⊂ C then DMN (A,C) ≥ max{DMN (A,B), DMN (B,C)} for all

A,B,C ∈ PFS(U).

Proof.

(i) We have 0 ≤ RA(uj), RB(uj), SA(uj), SB(uj) ≤ 1. Hence, 0 ≤ Dj(A,B) ≤ 1. Therefore,

from eq.(6) we have 0 ≤ DMN (A,B) ≤ 1.

(ii) It is obvious.

(iii) It is obvious.

(iv) If A ⊂ B ⊂ C then µA(uj) ≤ µB(uj) ≤ µC(uj), ηA(uj) ≤ ηB(uj) ≤ ηC(uj) and

γA(uj) ≥ γB(uj) ≥ γC(uj) for all uj ∈ U .

So that, RA(uj) ≤ RB(uj) ≤ RC(uj) and SA(uj) ≤ SB(uj) ≤ SC(uj).

Hence, |RC(uj)−RA(uj)| ≥ max{|RC(uj)−RB(uj)|, |RB(uj)−RA(uj)|} and |SC(uj)−
SA(uj)| ≥ max{|SC(uj)− SB(uj)|, |SB(uj)− SA(uj)|}.

Hence, DMN (A,C) ≥ max{DMN (A,B), DMN (B,C)}. It means PF-Diss 4 is satisfied.

�

Now, we assign to uj a weight ωj ∈ [0, 1] such that
∑n

j=1 ωj = 1. We can define a new

dissimilarity measure between two picture fuzzy sets as follows.

Definition 5. Let U = {u1, u2, ..., un} be a universal set. For any A,B ∈ PFS(U), a

dissimilarity measure DMω
N : PFS(U)× PFS(U)→ [0, 1] is defined by

DMω
N (A,B) =

n∑
j=1

ωjDj(A,B). (7)
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Definition 6. Let U = {u1, u2, ..., un} be a universal set. For any A,B ∈ PFS(U), a

dissimilarity measure DMω
P : PFS(U)× PFS(U)→ [0, 1] is defined by

DMω
P (A,B) =

n∑
j=1

ωjD
P
j , (A,B) (8)

where

Dp
j (A,B) =

[|RA(uj)−RB(uj)|p + |SA(uj)− SB(uj)|p]
1
p

4
(9)

for all j = 1, 2, ..., n; p ∈ N∗.

Theorem 2. Let U = {u1, u2, ..., un} be a universe set. Then for any A,B ∈ PFS(U)

DMω
N (A,B) =

n∑
j=1

ωjDj(A,B)

and

DMω
P (A,B) =

n∑
j=1

ωjD
P
j (A,B)

are the dissimilarity measures on picture fuzzy sets.

Proof. It is easy.

Example 2. We consider the problem in Example 1. In that example, we cannot determine

whether sample B belongs to the class of pattern A1 or A2 if we use the dissimilarity measures

in expressions eq.(1), eq.(2), eq.(3) and eq.(4). Now, we consider this problem with the new

dissimilarity measures in eq.(6) and eq.(8) with ω1 = ω2 = 0.5 and p = 2.

+ Using the dissimilarity measure in eq.(6), we have

DMN (A1, B) = 0.05 and DMN (A2, B) = 0.0375.

+ Using the dissimilarity measure in eq.(8), we have

DMω
P (A1, B) = 0.04045 and DMω

P (A2, B) = 0.03018.

We can easily see that using two new measures we can conclude that the sample B

belongs to the class of pattern A2.

4. APPLYING THE PROPOSED DISSIMILARITY MEASURE IN
PATTERN RECOGNITION

In this section, we will give some examples using dissimilarity measures in the pattern

recognition. Given for m patterns A1, A2, . . . , Am are picture fuzzy sets in the universal set

U = {u1, u2, . . . , un}. If we have a sample B is also a picture fuzzy set on U .

Question: Which class of pattern does B belong to?

To answer this question, we practice the following steps:

Step 1. Compute the dissimilarity measures DM(Ai, B) of Ai(i = 1, 2, . . . ,m) and B.
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Step 2. We put B to the class of pattern A∗, in which

DM(A∗, B) = min{DM(Ai, B)|i = 1, 2, ...,m}.

Example 3. Assume that there are two patterns denoted by picture fuzzy sets on U =

{u1, u2, u3} as follows

A1 = {(u1, 0.1, 0.1, 0.1), (u2, 0.1, 0.4, 0.3), (u3, 0.1, 0, 0.9)},
A2 = {(u1, 0.7, 0.1, 0.2), (u2, 0.1, 0.1, 0.8), (u3, 0.1, 0.1, 0.7)}.
Now, there is a sample B = {(u1, 0.4, 0, 0.4), (u2, 0.6, 0.1, 0.2), (u3, 0.1, 0.1, 0.8)}.

Question: Which class of pattern does B belong to?

To answer this question, we consider the dissimilarity measures shown in eq.(6), eq.(8)

with the weight vector ω = (
1

3
,
1

3
,
1

3
)

+ Applying the dissimilarity measure in eq.(6), we have

DMN (A1, B) = 0.1417, DMN (A2, B) = 0.1667.

It means that B belongs to the class of pattern A1.

+ Applying the dissimilarity measure in eq.(8) with p = 2, we have

DMω
P (A1, B) = 0.0982, DMω

P (A2, B) = 0.1741.

It means that B belongs to the class of pattern A1.

+ Applying the dissimilarity measure in eq.(8) with p = 3, we have

DMω
P (A1, B) = 0.0935, DMω

P (A2, B) = 0.161.

It means that B belongs to the class of pattern A1.

Example 4. Assume that there are three patterns denoted by picture fuzzy sets on

U = {u1, u2, u3} as follows

A1 = {(u1, 0.5, 0, 0.4), (u2, 0.5, 0.2, 0.25), (u3, 0.1, 0, 0.9), (u4, 0.1, 0.1, 0.65)},
A2 = {(u1, 0.7, 0.1, 0.2), (u2, 0.1, 0.1, 0.8), (u3, 0.1, 0.1, 0.7), (u4, 0.4, 0.1, 0.5)},
A3 = {(u1, 0.6, 0.1, 0.2), (u2, 0.6, 0.2, 0.15), (u3, 0, 0.1, 0.9), (u4, 0.15, 0.2, 0.6)}.
Now, there is a sample

B = {(u1, 0.5, 0.1, 0.4), (u2, 0.6, 0.15, 0.2), (u3, 0.1, 0, 0.8), (u4, 0.1, 0.2, 0.6)}.
Question: Which class of pattern does B belong to?

Using the weight vector ω = (
1

4
,
1

4
,
1

4
,
1

4
) and eq.(6), eq.(8), then:

+ Applying the dissimilarity measure in eq.(6), we have

DMN (A1, B) = 0.0375, DMN (A2, B) = 0.15, DMN (A3, B) = 0.0594.

It means that B belongs to the class of pattern A1.
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+ Applying the dissimilarity measure in eq.(8) with p = 2, we have DMω
P (A1, B) = 0.06,

DMω
P (A2, B) = 0.303, DMω

P (A3, B) = 0.099. It means that B belongs to the class of

pattern A1.

+ Applying the dissimilarity measure in eq.(8) with p = 3, we have DMω
P (A1, B) = 0.073,

DMω
P (A2, B) = 0.3598, DMω

P (A3, B) = 0.1154. It means that B belongs to the class

of pattern A1.

Example 5. Assume that there are three patterns denoted by picture fuzzy sets on U =

{u1, u2, u3, u4} as follows

A1 = {(u1, 0.3, 0.4, 0.1), (u2, 0.3, 0.4, 0.1), (u3, 0.6, 0.1, 0.2), (u4, 0.6, 0.1, 0.2)},
A2 = {(u1, 0.4, 0.4, 0.1), (u2, 0.3, 0.2, 0.4), (u3, 0.6, 0.1, 0.3), (u4, 0.5, 0.2, 0.2)},
A3 = {(u1, 0.4, 0.4, 0.1), (u2, 0.3, 0.1, 0.3), (u3, 0.6, 0.1, 0.2), (u4, 0.5, 0.2, 0.1)}.

Now, there is a sample

B = {(u1, 0.35, 0.65, 0), (u2, 0.55, 0.35, 0.1), (u3, 0.65, 0.1, 0.1), (u4, 0.6, 0.15, 0.2)}.
Question: Which class of pattern does B belong to?

To answer this question, we consider the dissimilarity measures shown in eq.(6), eq.(7),

and eq.(8) with the weight vector ω = (0.4, 0.3, 0.2, 0.1)

+ Applying the dissimilarity measure in eq.(6), we have

DMN (A1, B) = 0.06875, DMN (A2, B) = 0.125, DMN (A3, B) = 0.10625.

⇒ DMN (A1, B) < DMN (A3, B) < DMN (A2, B). It means that B belongs to the class

of pattern A1.

+ Applying the dissimilarity measure in eq.(7), we have

DMω
N (A1, B) = 0.08625, DMω

N (A2, B) = 0.14125, DMω
N (A3, B) = 0.12375.

⇒ DMω
N (A1, B) < DMω

N (A3, B) < DMω
N (A2, B). It means that B belongs to the class

of pattern A1.

+ Applying the dissimilarity measure in eq.(8) with p = 2, we have

DMω
P (A1, B) = 0.06746, DMω

P (A2, B) = 0.10744, DMω
P (A3, B) = 0.09585.

⇒ DMω
P (A1, B) < DMω

P (A3, B) < DMω
P (A2, B).

It means that B belongs to the class of pattern A1.

5. APPLICATION IN MULTI-CRITERIA DECISION MAKING

In the MCDM problem, one has to find an optimal alternative from a set of alternatives

A = {A1, A2, . . . , Am}. In this section, we introduce a method based on the new dissimilarity

measures to solve a MCDM problem.
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Step 1. Determine the criteria set C = {C1, C2, . . . , Cn} for the MCDM.

Step 2. Express each alternative Ai as a picture fuzzy set on the set C = {C1, C2, . . . , Cn},

Ai = {(Cj , µij , ηij , γij)|Cj ∈ C}

for all i = 1, 2, . . . ,m.

Step 3. We choose the best alternative Ab to be also a picture fuzzy set on the set

C = {C1, C2, . . . , Cn}.

Step 4. Determine the weight ωj of criteria Cj by considering Cj = {(Ai, µij , ηij , γij)|Ai ∈
A} as a picture fuzzy set on A = {A1, A2, . . . , Am}.
Based on the union of picture fuzzy sets we propose a method to determine the weight

ωj of criteria Cj(j = 1, 2, . . . , n) as follows:

• We calculate

dj = d1j + d2j + d3j (10)

where d1j = max
1≤i≤m

µij , d2j = min
1≤i≤m

ηij , and d3j = min
1≤i≤m

γij for all j = 1, 2, . . . , n.

Then, A∗ = {(Cj , d1j , d2j , d3j)|Cj ∈ C}=
m⋃
i=1

Ai and dj in the eq.(10) is referred to

frequency of Cj(j = 1, 2, . . . , n) in A∗.

So that, we can determine the weight ωj of criteria Cj(j = 1, 2, . . . , n) based on fre-

quency dj(j = 1, 2, ..., n).

• Put

ω
(k)
j =

d
(k)
j∑n

j=1 d
(k)
j

(11)

for all j = 1, 2, . . . , n; k = 0, 1, 2, . . .

Note that, when k = 0 then we have the weight ωj =
1

n
for all j = 1, 2, . . . , n.

Step 5. Compute the dissimilarity measures DM(Ai, Ab) between Ai(i = 1, 2, . . . ,m) and

Ab.

Step 6. Rank the alternatives based on the dissimilarity measures as follows

Ai ≺ Ak iff DM(Ai, Ab) < DM(Ak, Ab)(i, k = 1, 2, . . . ,m).

Example 6. Consider a supplier section problem. Suppose a construction company wants

to procure the material for their upcoming project. The company invites the tenders for

procuring the required material. Given five suppliers are {A1, A2, A3, A4, A5}. To find an

optimal supply, we apply the six steps for solving this MCDM problem as follows:

Step 1. The company has fixed criteria for supplier selection: C1: quality of material; C2:

price; C3: services; C4: delivery; C5: technical support if required; C6: behavior.
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Step 2. Alternatives Ai is expressed as a picture fuzzy set on a criteria set {C1, C2, . . . , C6}
in Table 1 and Table 2.

Step 3. The best alternative Ab is

Ab = {(Cj , 1, 0, 0)|j = 1, 2, 3, 4, 5, 6}.

Step 4. Using the eq.(1), we get d1 = 0.85, d2 = 1, d3 = 0.9, d4 = 1, d5 = 0.95, d6 = 0.9.

To calculate the weight ωj of criteria Cj(j = 1, 2, . . . , 6) we use the eq.(11):

k = 0 we have the weight vector is ω0 = (
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
).

k = 1 we have the weight vector is ω1 = (0.145, 0.171, 0.171, 0.171, 0.171, 0.171).

k = 2 we have the weight vector is ω2 = (0.125, 0.175, 0.175, 0.175, 0.175, 0.175).

Table 1. The picture fuzzy decision matrix for the supplier selection

C1 C2 C3 C4

A1 (0.4, 0.05, 0.5) (0.1, 0.1, 0.8) (0.7, 0, 0.3) (0.6, 0.1, 0.2)

A2 (0.7, 0.05, 0.2) (0.5, 0.1, 0.3) (0.3, 0.3, 0.4) (0.8, 0.05, 0.1)

A3 (0.6, 0.2, 0.1) (0.7, 0, 0.3) (0.6, 0.1, 0.2) (0.4, 0.3, 0.1)

A4 (0.5, 0.05, 0.4) (0.4, 0.2, 0.3) (0.8, 0.1, 0.1) (0.7, 0.05, 0.2)

A5 (0.4, 0.3, 0.3) (0.1, 0.15, 0.7) (0.5, 0.25, 0.2) (0.9, 0, 0.1)

Table 2. The picture fuzzy decision matrix for the supplier selection (cont.)
C5 C6

A1 (0.5, 0.1, 0.4) (0.3, 0.2, 0.4)

A2 (0.2, 0.1, 0.6) (0.4, 0, 0.5)

A3 (0.3, 0.2, 0.4) (0.8, 0, 0.2)

A4 (0.6, 0.25, 0.1) (0.7, 0.2, 0.1)

A5 (0.8, 0.05, 0.1) (0.6, 0, 0.4)

Step 5. Compute the dissimilarity measures DM(Ai, Ab) between Ai(i = 1, 2, . . . ,m) and

Ab using the eq.(8) with p = 1 and p = 2.

Step 6. Rank the alternatives based on the dissimilarity measure.

The results of Step 5 and Step 6 with the various weight vectors are shown in Table 3,

4, 5.

- With the weight vector ω0 = (
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
), we have the dissimilarity measure and

ranking of alternatives as in Table 3.

- With the weight vector ω1 = (0.145, 0.171, 0.171, 0.171, 0.171, 0.171), we have the

dissimilarity measure and ranking of alternatives as in Table 4.
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Table 3. The dissimilarity measure and ranking of alternatives with the weight vector ω0

A1 A2 A3 A4 A5

p = 1 DM(Ai, Ab) 0.2688 0.2229 0.1833 0.1813 0.1917
Rank 5 4 2 1 3

p = 2 DM(Ai, Ab) 0.2651 0.2281 0.1776 0.1693 0.198
Rank 5 4 2 1 3

Table 4. The dissimilarity measure and ranking of alternatives with the weight vector ω1

A1 A2 A3 A4 A5

p = 1 DM(Ai, Ab) 0.2657 0.2245 0.1842 0.1778 0.1908
Rank 5 4 2 1 3

p = 2 DM(Ai, Ab) 0.2919 0.2548 0.1957 0.1829 0.216
Rank 5 4 2 1 3

- With the weight vector ω2 = (0.125, 0.175, 0.175, 0.175, 0.175, 0.175), we have the

dissimilarity measure and ranking of alternatives as in Table 5.

Table 5. The dissimilarity measure and ranking of alternatives with the weight vector ω2

A1 A2 A3 A4 A5

p = 1 DM(Ai, Ab) 0.2632 0.22261 0.1852 0.175 0.1902
Rank 5 4 2 1 3

p = 2 DM(Ai, Ab) 0.2902 0.257 0.197 0.1802 0.215
Rank 5 4 2 1 3

6. CONCLUSION

In this paper, we introduce some new dissimilarity measures on picture fuzzy sets. These

new measures overcome the limitations of the previous dissimilarity measures on picture

fuzzy sets in [7, 34]. After that, we apply the proposed dissimilarity measures in the pattern

recognition. We also use these new dissimilarity measures for a MCDM problem to select an

optimal supplier. In the future, we also continue to study about the dissimilarity measures

on picture fuzzy sets and the relationship of them and other measures on picture fuzzy sets.

Beside, we also find new applications of them to deal with the real problems.
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