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Abstract. Aggregation of knowledge bases in the propositional language was soon investigated

and the requirements of aggregation processes of propositional knowledge bases basically are unified

within the community of researchers and applicants. Aggregation of standard possibilistic knowledge

bases where the weight of propositional formulas being numeric has also been investigated and applied

in building the intelligent systems, in multi-criterion decision-making processes as well as in decision-

making processes implemented by many people.

Symbolic possibilistic logic (SPL for short) where the weight of the propositional formulas is

symbols was proposed, and recently it was proven that SPL is soundness and completeness. In order

to apply SPL in building intelligent systems as well as in decision-making processes, it is necessary

to solve the problem of aggregation of symbolic possibilistic knowledge bases (SPK bases for short).

This problem has not been researched so far.

The purpose of this paper is to investigate aggregation processes of SPK bases from the postulate

point of view in propositional language. These processes are implemented via impossibility distribu-

tions defined from SPK bases. Characteristics of merging operators, including hierarchical merging

operators, of symbolic impossibility distributions (SIDs for short) from the postulate point of view

will be shown in the paper.

Keywords. Aggregation; Hierarchical aggregation; Merging operator; Impossibility distribution;

Symbolic possibilistic logic; Postulate point of view.

1. INTRODUCTION

Aggregation of knowledge bases is always an important research subject in the field of
artificial intelligence and has been researched for a long time [1, 5, 8, 9, 10, 11, 12, 17,
18, 19]. It is applied in multi-criteria decision-making processes, decision-making processes
implemented by many people and to develop intelligent systems.

Standard possibilistic logic where the truth state (or weight) of sentences in the classical
propositional language to be numeric values was rather completely developed [6, 7]. In
[6], one proved that this logic is soundness and completenes. In other words, the standard
possibilistic logic under the syntactic and semantic approaches is the same.

It means that if a possibilistic formula is received by applying the rules of inference in a
standard possibilistic knowledge base (syntactic approach) then it is also received by calcula-
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ting its weight via the least specificity possibility distribution among possibility distributions
satisfying the given knowledge base (semantic approach) and vice versa.

This suggests that the aggregation of standard possibilistic knowledge bases can be im-
plemented via the aggregation of their least specificity possibility distributions. It is very
different in terms of comparing with the aggregation of knowledge bases in the propositional
logic, where the aggregation is only implemented under the syntactic approach.

The first researches of the aggregation of standard possbilistic knowledge bases carried out
via possibility distributions were introduced in the works [13, 14, 15, 16]. The author of these
works proposed some conditions which aggregation processes of possibility distributions need
to be satisfied (called the axiomatic approach) as well as proposed some merging operators
(or aggregation operators) satisfying these conditions. These merging operators were also
developed under some different strategies such as respecting majority’s opinions where each
knowledge base is considered as an agent, respecting differences as well as reliability levels
of knowledge bases [13, 16].

Works [2, 3] also researched aggregation processes of standard knowledge bases via possi-
bility distributions but under another way. Here its authors based on the conditions (called
postulates) which aggregation processes of propositional knowledge bases need to be satis-
fied to investigate properties of merging operators of standard possibilistic knowledge bases
[1, 3]. The postulates of aggregation processes of knowledge bases in the classical proposi-
tional language were proposed by Konieczny & Perez [9], and then they were adjusted by
Benferhat et al. to fit aggregation processes of knowledge bases in the standard possibilistic
logic [3]. The properties of merging operators from the postulate point of view are important
suggestions to propose appropriate merging operators for specific applications in standard
possibilistic logic.

Possibilistic logic has been continually developed in the direction of being able to express
and build the mechanism of reasoning for symbolic knowledges. Over time, many researchers
attempted to build SPL where the weights measuring the truth state of propositional formulas
are symbols. In a recent paper [4], its authors showed that SPL is also soundness and
completeness.

From the work [4], similarly to the standard possibilistic logic, one question arises as
whether the aggregation of SPK bases can be implemented via symbolic possibility distribu-
tions? and how to aggregate?

The purpose of this paper is to answer these questions. Namely, this paper will focus on
proposing solutions to aggregate SPK bases via special impossibility distributions of SPK
bases from the postulate point of view [2, 3]. In SPL, calculations performing on the symbols
are only min, max, or a combination of these two calculations under a way, so in this logic,
there is no merging operators satisfying all the postulates as in the standard possibilistic
logic [3, 6]. Which postulates can be satisfied by merging operators in SPL will be shown in
the paper.

The paper is structured as follows, after this section, Section 2 will briefly introduces some
preliminaries for next sections such as the standard possibilistic logic and the aggregation of
knowledge bases in this logic, SPL and the adjusted postulates of aggregation processes of
SPK bases. Sections 3, 4 introduce about the aggregation and the hierarchical aggregation
of SIDs from the postulate point of view, respectively. Section 5 presents some conclusions
and further research directions.
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2. PRELIMINARIES

2.1. Standard possibilistic knowledge bases

Suppose that L is a propositional language on a limit H, Ω is the set of all possible
words (or set of interpretations) of L on H; ≡ is denotes logical equivalence and the logical
operations are denoted by ∧, ∨. The logical consequence relation is `. For ω ∈ Ω , if a
formula φ (or sentence) in the language L is true in this possible world then we say ω is the
model of the formula φ and denoted by ω ` φ.

On the semantics, the standard possibilistic logic can be built on possibility distributions
π, that is a mapping from Ω to [0, 1], π(ω) represents the uncertain degree of knowledge
about (or satisfaction degree) ω. π(ω) = 1 means that it is totally possible for ω to be the
real world, 1 > π(ω) > 0 means that ω is only somewhat possible, while π(ω) = 0 means
that ω does not satisfy at all. From the possibility distribution π, the necessity measure
N on the language L is defined as follows: For each formula φ in L, N(φ) = 1 − Π(¬φ),
here Π(φ) = max{π(ω) : ω ∈ Ω and ω ` φ}; Π is called possibility measure. The relation
between the possibility and necessity measures as well as details about these measures can
be referenced in [6].

Standard possibilistic knowledge base is the set B = {(φi, ai) : i = 1, . . . , n}, where φi
is a propositional formula and ai ∈ [0, 1]. The pair (φi, ai) means that the certainty degree
of φi is at least ai (N(φi) ≥ ai). Denoting B∗ = {φi, i = 1, . . . , n} and Cnp(B∗) = {φ ∈
L : B∗ ` φ}. A standard possibilistic knowledge base B is consistent if and only if Cnp(B∗)
is consistent [3, 6]. The degree of inconsistent of the standard possibilistic knowledge base
B is denoted by Inc(B) and is defined as follows

Inc(B) = NB(⊥) = max{ a : B ` (⊥, a)} , (2.1)

there⊥ is the inconsistent element (tautology) of the language L. IfN(⊥) = 0, the knowledge
base B is consistent, if N(⊥) = α, the knowledge base B is consistent with degree α and
this knowledge base is completely inconsistent if N(⊥) = 1.

For a possibilistic knowledge base, generally, there may be many possibility distributi-
ons π on the set of representations Ω so that the necessity measure determined from this
possibilistic distribution satisfies N(φi) ≥ ai for every formula φi. Among these possibility
distributions, there is a special possibility distribution that is defined as follows [3, 6]

πB(ω) =

{
1 if ω ` φi
1−max{ai} otherwise,

(2.2)

∀ω ∈ Ω and (φi, ai) ∈ B.
This possibility distribution in fact is found out by the principle of minimal specificity

[13]. This principle is proposed by R.Yager by basing on the idea of the maximal entropy
principle in information theory. In [13], its author proved that the two principles really have
relations together under a sense.

In [6] it was proven that

Cnp(B) = {(φ, a) : B ` (φ, a)} = {(φ, a) : B|=π(φ, a)} = Cnπ(B). (2.3)
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Here ` and |=π are notations of the classical syntactic and semantic inferences, respectively.
In other words, the system of reasoning in the standard possibilistic logic is soundness and
completeness for the semantic of this logic.

2.2. SPL base

2.2.1. The syntax of SPL

Definition 2.1. [4] (about SPL base) The set ℘ of symbolic expressions ai acting as weig-
hts is recursively obtained using a finite set of variables (called elementary weights) H =
{p1, . . . , pk, . . . } and the max /min operators built on H as follows

1. H ⊂ ℘, 0, 1 ∈ ℘;

2. If ai, aj ∈ ℘ then max(ai, aj) and min(ai, aj) ∈ ℘, here assume that 1 ≥ pi ≥ 0 ∀i.

SPK base B = {(φi, ai), i = 1, . . . , n} is a set of formulas φi in the propositional language
L and the ai attached to φi, is called a weight, that is a symbolic expression of max, min and
is built on H. In SPL, (φi, ai) is defined as N(φi) ≥ ai, where N is the necessity measure.

The min and max operations are commutative, [4] indicates that any symbolic expression
can also be presented in the form of

mini=1, rmaxj=1, nxji or maxh=1, mmink=1, sxhk, (2.4)

there xji, xhk are single variables on [0, 1].

Definition 2.2. ([4]) Valuation is a positive mapping, v : H → (0, 1], it instantiates all
elementary weights in H.

Its domain is extended to all max /min operators and a combination of these two operators
in H. The notation V is the set of all valuation on H, we say that ai ≥ aj if and only if
∀v ∈ V then v(ai) ≥ v(aj).

Definition 2.3. ([4]) The rules of inference in SPL is defined as follows:

1. Fusion: {(ϕ, p), (ϕ, p′)} ` (ϕ,max(p, p′) );

2. Weakening: (ϕ, p) ` (ϕ, p′) if p ≥ p′;

3. Modus Ponens: {(ϕ→ ψ, p), (ϕ, p)} ` (ψ, p);

From the above rules, it can be inferred.

4. The rule of Modus Ponens extension: {(ϕ→ ψ, p), (ϕ, p′)} ` (ψ,min(p, p′)).
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2.2.2. The semantic of SPL

Definition 2.4. ([4]) Suppose B = {(φi, ai) : i = 1, . . . , n} is a SPK base. The special
impossibility distribution τB is defined as follows

τB(ω) =

{
maxj:φj /∈B(ω)aj

0, if B(ω) = B∗,
(2.5)

∀ω ∈ Ω, B(ω) = {φ ∈ B∗ : ω ` φ} and necessity measure NB corresponding to this
distribution is

NB(φi) = minω/∈[φi]
τB(ω) = minω/∈φimaxj:φj /∈B(ω)aj , (2.6)

there [φi] = {ω ∈ Ω : ω ` φi}.

In essence, the determination formula of impossibility distributions according to the
formula (2.5) is similar to the determination formula of possibility distributions according to
the formula (2.2). Because in SPL there is no term “1 -”, hence the formula (2.2) is adjusted
to fit this context and τB(ω) is defined by the formula (2.5). Thus, τB is not a symbolic
possibility distribution and it is called SID.

Similar to the standard possibilistic logic, for each SPK base, in general, there are many
different impossibility distributions so that necessity measures generated from these distri-
butions according to the formula (2.6) satisfy the given SPK base. It is easy to see that all
impossibility distributions τ always satisfy τ(ω) ≥ τB(ω) ∀ ω ∈ Ω. In other words, τB(ω)
is the most specificity impossibility distribution. This is contrasts with the least specificity
possibility distribution τB(ω) in the standard possibilistic logic [6, 13]. Soundness and com-
pleteness of SPL were also proven in [4], i.e. the formula (2.3) is true for every SPK base.
Example 2.5 below illustrates SPK base.

Example 2.5. (Improved from [4]) Assume that different agents exchange information about
potential participants in an upcoming meeting.

- Agent A1 says: Albert, Chris will not come together; if Albert and David arrive, the
meeting will not be quiet;

- Agent A2 says: If the meeting starts late, it will not be quiet; if David comes, then
Chris comes.

- Agent A3 says: if Albert arrives, the meeting will begin late; Chris can not attend the
meeting if it starts late.

Here, it is assumed that the agents A1, A2 are known to be more reliable than the agent
A3, but it is not known whether the agent A1 is more reliable than the agent A2. This
assumption can be expressed by assigning a symbol to each agent. Assume that a1, a2, a3

are symbolic weights attached to these agents. For example, a1 = “High reliability”,
a2 = “reliable”, a3 = “moderate trust”. We can say a1 and a2 > a3, but a1 and a2 are not
comparable. Therefore, symbol values are only partially ordered.

Notations α, β, γ are propositional variables corresponding to Albert, Chris, David come
to the meeting, κ is a quiet meeting, λ is the meeting started late. With the note that the
logical implication “if A then B” is logically equivalence to the logical expression ¬A ∨ B,
so three SPK bases corresponding to the three agents aforementioned are defined as follows:

(A1) (¬(α ∧ β ), a1), (¬(α ∧ γ ) ∨ ¬κ, a1);
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(A2) (¬λ ∨ ¬κ, a2), (¬β ∨ γ , a2);

(A3) (¬α ∨ λ, a3), (¬λ ∨ ¬γ , a3).

2.3. Postulates of merging SPK bases

Assume B1, . . . , Bn are n standard possibilistic knowledge bases, B∗i ⊂ L, i = 1, . . . , n.
For every knowledge base, we can determine the least specificity possibility distribution
according to formula (2.2) so that its necessity measure satisfies this knowledge base. So,
the aggregation of standard possibilistic knowledge bases can be implemented via their least
specificity possibility distributions.

Definition 2.6. ( [3, 14]) Denote by ⊕ a merging operator of possibility distributions. It
is a mapping ⊕ : [0, 1]n → [0, 1], where n is the number of possibilistic knowledge bases,
satisfies two following conditions:

• ⊕ (0, . . . , 0) = 0;

• If ai ≥ bi ∀ i = 1, . . . , n then ⊕ (a1, . . . , an) ≥ ⊕(b1, . . . , bn).
(2.7)

Each possibilistic knowledge base is considered as an agent and the aggregation of pos-
sibility distributions is in fact the aggregation of agents to create a new agent from given
agents and an aggregated agent is a fusion of these given agents.

Assume that SPK bases Bi, i = 1, . . . , n are consistent. In the context of SPL, the
postulates of merging standard possibilistic knowledge bases in [3] are adjusted appropriately
as in the Definition 2.7 below.

Definition 2.7. The postulates of aggregation processes of SPL bases are as follows:

W1 : Cnπ(B⊕) is consistent, here the B⊕ is SPK base aggregated from given consistent SPK
bases.

In SPL, the inconsistent degree of SPK base B (denoted as Inc (B)) is also defined by
the formula (2.1).

W2 : If B1 ∪ B2 ∪ · · · ∪ Bn is consistent then Cnπ(B⊕) ≡ Cnπ(B1 ∪ B2 ∪ · · · ∪ Bn), here
≡ means that ∀(φ, a) ∈ Cnπ(B⊕) then (φ, a) ∈ Cnπ(B1 ∪ B2 ∪ · · · ∪ Bn) and vice
versa.

Let Bi be a SPK base, B = {B1, B2, . . . , Bn} is called a multi-set (or a set of sets).
The notation

⊔
is a union of multi-sets.

W3 : Suppose B, B′ are multi-sets, if B ⇔ B′ then Cnπ(B⊕) ≡ Cnπ(B′⊕), here B ⇔ B′

means ∀Bi ∈ B, ∃!B′j ∈ B′ so that Cnπ(Bi) ≡ Cnπ(B′j) and reverse ∀B′j ∈
B′, ∃!Bi ∈ B : Cnπ(Bi) ≡ Cnπ(B′j), here Bi, B

′
j are SPK bases.

Let A, B be SPK bases; A is called conflict set of B if A∗ ⊂ B∗, A is inconsistent,
and for ∀(φ, a) ∈ A, A− {(φ, a)} is consistent [3].
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SPK base B1 is said to be more prioritized than to B2 [3] if for all conflict sets A ⊂ B1∪
B2 then DegB1

(A) > DegB2
(A) here DegB(A) = min{a : (φ, a) ∈ A ∩ B}, DegB(A) = 1

if A ∩ B is an empty set. Thus, DegB(A) is a weight of the lowest certainty formula of A.
It can be seen that B1 is more prioritized than B2 if for ∀A in B1 ∪ B2 the least certainty
formula of A is in B2. Two SPK bases B1, B2 are said to be equally prioritized if for every
conflict set A of B1 ∪B2 then DegB1

(A) = DegB2
(A).

Example 2.8. Let B1 = {(φ ∨ ψ ∨ ξ, a1), (¬ψ, a1), (¬σ, a1)} and B2 = {(σ ∨ ξ, a2),
(¬ξ, a2), (¬φ, a2), (σ ∨ ψ, a2)} be two SPK bases, where a1, a2 are symbols. There are
two inconsistent propositional knowledge bases A∗1, A∗2 ⊂ B∗1 ∪ B∗1 so that after removing
any proposition from each knowledge base, they will become consistent knowledge bases,
namely A∗1 = {φ ∨ ψ ∨ ξ, ¬φ, ¬ξ, ¬ψ} and A∗2 = {¬ξ, σ ∨ ξ, ¬σ}. So A1 = {(φ ∨ ψ ∨
ξ, a1), (¬φ, a1), (¬ξ, a2), (¬ψ, a1)} and A2 = {(¬ξ, a2), (σ ∨ ξ, a2), (¬σ, a1)} are two
inconsistent SPK bases and are also two conflict sets of B = B1 ∪ B2. We have DegB1

(A1)
= a1, DegB2

(A1) = a2 and DegB1
(A2) = a1, DegB2

(A2) = a2. Hence B1 is more prioritized
than to B2 if a1 ≥ a2 and B2 is more prioritized than to B1 if a1 < a2. In the case a1, a2

are not comparable, it is not possible to conclude which SPL base is more prioritized.

W4 : If B1, B2 are inconsistent possibilistic knowledge bases and equally prioritized then
Cnπ(B⊕) 2 Cnπ(B1) and Cnπ(B⊕) 2 Cnπ(B2) .

For the sake of simplicity, if B and B′ are SPK bases and E is a multi-set, instead of
writing E

⊔
{B} and {B}

⊔
{B′}, we can simply write E

⊔
B and B

⊔
B′, respectively.

W5 : Cnπ(B′⊕)
⊔
Cnπ(B′′⊕) |= Cnπ(B⊕), here B = B′

⊔
B′′,

⊔
is a union of multi-sets.

W6 : If Cnπ(B′⊕)
⊔
Cnπ(B′′⊕) is consistent then Cnπ(B⊕) |= Cnπ(B′⊕)

⊔
Cπ(B”

⊕).

In addition to these six postulates, there are two other postulates which can be satisfied
by aggregation processes:

Warb : ∀B′, ∀n, Cnπ((B
⊔
B′n)⊕ ) ≡ Cnπ((B

⊔
B′)⊕), here B′

n
is a multi-set,

B′
n

= { B′, B′, . . . , B′} with size of n.

Wmaj : ∀ B′, ∃n, Cnπ((B
⊔
B′n)⊕ ) |= Cnπ(B′), here B = {B1, B2, . . . , Bm},

Bi (i = 1, 2, ...,m) and B′ are SPK bases.

In a similar way as in the standard possibilistic logic [3], the meaning of the postulates
aforementioned can be explained as follows: The postulate W1 says that the result of merging
of consistent SPK bases should be consistent; The postulate W2 requires that when the
sources are not conflicting, the result of merging should recover all the information provided
by the sources; The postulate W3 expresses the syntax independence of the merging process;
The postulate W4 says that when two SPK bases are equally prioritized then the result
of merging should not give preference to any of the two bases; The postulates W5 and
W6 express the decomposition of the merging process; The postulate Warb means that the
merging process should ignore redundancies; The postulateWmaj says that if a same symbolic
possibilistic formula is believed to a weight α by two agents, it should be believed with a
larger weight β in the result of merging.
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3. AGGREGATION OF SPK BASES

Definition 3.1. SID τB is called a standard SID if there exists an interpretation ω so that
τB(ω) = 0. SPK base B is consistent if and only if there does not exist φ in L so that
NB(φ) ≥ a and NB(¬φ) ≥ b here 0 < a , b ∈ ℘.

Proposition 3.2.

1) SPK base B = {(φi, ai), i = 1, . . . , n} is consistent if and only if B∗ = {φi, i = 1, . . . , n}
is consistent.

2) If τB is a standard SID, then B is consistent, and vice versa if B is consistent then τB is
a standard SID.

Proof.

1) We have, B |= (φ, a) if and only if B∗ ` φ and NB(φ) ≥ a. By definition, B is
consistent iff @φ ∈ L : B ` (φ, a) and B ` (¬φ, b), 0 < a, b ∈ ℘ iff @φ ∈ L : B∗ ` φ
and B∗ ` ¬φ iff B∗ are consistent.

2) Suppose τB is a standard SID ⇒ ∃ω ∈ Ω : τB(ω) = 0 ⇒ ∃ω ∈ Ω : ω `
∧
i=1−nφi.

(According to the formula (5)), so ∀φ ∈ L obtained by applying the inference rules of the
propositional logic on the formulas φi in B∗ then ω ` φ and ω 0 ¬φ or ∀φ ∈ L, B∗ ` φ and
B∗ 0 ¬φ. So B∗ is consistent. According to 1) we have B consistent.

Conversely, assume that B is consistent but τB is not a standard SID. Select (φ, α) so
that φ 6= ⊥, α > 0, ∃C1 ⊂ B∗ and C1 ` φ. Denote C∗ = {∪ki=1Ci : Ci ` φ, Ci ⊂ B∗} and
Ω∗ = {ω ∈ Ω : ∃i for ω ` Ci} then ∀ω ∈ Ω∗, we have ω ` φ which means ω ∈ [φ].

According to the formula (2.6) we have β= NB(¬φ) = minω∈[φ]τB(ω) = minω∈Ω∗τB(ω).
Because τB is not a standard SID so τB(ω) > 0 for every ω ∈ Ω∗ so β > 0.

On the other hand, NB(φ) = minω/∈[φ]τB(ω) = minω∈Ω/Ω∗τB(ω) = α > 0. Thus,
NB(⊥) = min(NB(φ), NB(¬φ)) = min(α, β) > 0, i.e. B is inconsistent. This is contra-
dictory with the assumption that B is consistent. So τB must be a standard SID. �

Back to Example 2.5 above, when information about the meeting comes from three agents
with different confident degrees, to answer questions like: Should the meeting be held sooner
or later? Who will attend? How will be the meeting, quiet or noisy?... it is neccesary to
merge three SPK bases corresponding to the these agents into a new SPK base and basing on
such an aggegated knowledge base to answer the arised questions. This paper will research
the aggregation of SPK bases via most specificity SIDs of SPK bases.

Suppose that B1, . . . , Bn are n SPK bases, where Bi
∗ is the set of sentences in Bi,

Bi
∗ ⊂ L. The Bi

∗ are generally different. Denote by τBi (i = 1, . . . , n) a most specificity SID
from SPK base Bi, (i = 1, . . . , n), the arised problem is that from the most specificity SIDs
τBi (i = 1, . . . , n) we need to generate an SID τB⊕ of SPK base B⊕ aggregated from SPK
bases Bi, (i = 1, . . . , n).

Definition 3.3. Merging operator of n SIDs τBi (i = 1, 2, ..., n) is a mapping ⊕ : ℘n →
℘ satisfying two conditions:

• ⊕ (1, . . . , 1) = 1;

• If ai ≥ bi, ∀ i = 1, . . . , n then ⊕ (a1, . . . , an) ≥ ⊕(b1, . . . , bn).
(3.1)
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The second condition is that for every i = 1, ..., n, ai, bi ∈ ℘ and ∀v : H → (0, 1], if
v(ai) ≥ v(bi) then v(⊕(a1, . . . , an)) ≥ v(⊕(b1, . . . , bn)).

In fact, Definition 3.3 is similar to Definition 2.6 by adjusting the formula (2.2) to fit the
context of defining of SIDs.

Example 3.4. Identifying most specificity SIDs of the 3 SPK bases given in Example 2.5
and of two aggregated SPK bases using the merging operators max and min.

The results are shown in Table 1 below.
As is known, calculations implemented on weights of formulas in SPL are only min and

max, and a combination of these two calculations in a way, thus merging operators of SIDs
can also only be min and max operators, and a combination of these two operators. The
combination can be transformed into the forms as in the formula (2.4) above. From this, we
have following remarks:
Remark 1. It is easy to see that ⊕ is commutative, associative, idempotent (⊕(a, a, ..., a) =
a) and monotonic but not strictly [3].

And from the Remark 1 we have following proposition.

Proposition 3.5. Suppose ⊕ is operators min, max or a combination of the two operators,
then ⊕ satisfies the postulates W3, W4, W5, and Warb.

Proof. The way of proving that the merging operator ⊕ defined by the Definition 3.3 satisfies
the postulates W3, W4, W5, and Warb is very similar to that the merging operator defined by
Definition 2.6 satisfies the postulates P3, P4, P5 and Parb in [3] with some small adjustments
to fit the context of SIDs, so it is ignored here. �

Remark 2. There exist some situations as follows: SIDs τBi (i = 1, 2, ..., n) are standard
SIDs but its aggregated SID may not be a standard SID. For example, with the operator
⊕ = max, consider the following example.

Example 3.6. Suppose φ ∈ L,

τB1(ω) =

{
1 if ω ` φ
0 otherwise

and τB2(ω) =

{
0 if ω ` φ
1 otherwise

are the two most specificity impossibility distributions of B1, B2.
Then τB⊕(ω) = max(τB1(ω), τB2(ω)) = 1 ∀ω, so τB⊕ is not standard distribution

while τB1 and τB2 are standard SIDs. So B1, B2 are consistent SPK bases whereas B⊕
is an inconsistent SPK base. In other words, the operator

⊕
= max does not satisfy the

posttulate W1 as in the standard possibilistic logic [3].

Example 3.6 also implies that when a merging operator is a combination in a way of the
min and max operators, SID aggregated from standard SIDs may not be a standard SID.
But for the operator min, that’s not true. Specifically:

Proposition 3.7. ⊕ = min satisfies the postulates W1, W2.

Proof.
1. For the postulate W1: Suppose that Bi, i = 1, ..., n are consistent SPK bases, to prove
that Cnp(B⊕) is also consistent we just need to prove that an aggregated SPK base B⊕
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Table 1. Impossibility distribution of given and aggregated SPK bases

Ω τA1 τA2 τA3 τmax τmin

(α, β, γ, κ, λ) a1 a2 a3 max(a1, a2) a3

(α, β, γ, κ,¬λ) a1 a2 0 max(a1, a2) min(a1, a2)

(α, β, γ,¬κ, λ) 0 0 a3 a3 0

(α, β, γ,¬κ,¬λ) 0 0 0 0 0

(α, β,¬γ, κ, λ) 0 a2 0 a2 0

(α, β,¬γ, κ,¬λ) 0 a2 0 a2 0

(α, β,¬γ,¬κ, λ) 0 a2 0 a2 0

(α, β,¬γ,¬κ,¬λ) 0 a2 0 a2 0

(α,¬β, γ, κ, λ) a1 a2 a3 max(a1, a2) a3

(α,¬β, γ, κ,¬λ) a1 0 a3 a1 0

(α,¬β, γ,¬κ, λ) 0 0 a3 a3 0

(α,¬β, γ,¬κ,¬λ) 0 0 a3 a3 0

(α,¬β,¬γ, κ, λ) 0 a2 0 a2 0

(α,¬β,¬γ, κ,¬λ) 0 0 a3 a3 0

(α,¬β,¬γ,¬κ, λ) 0 0 0 0 0

(α,¬β,¬γ,¬κ,¬λ) 0 0 a3 a3 0

(¬α, β, γ, κ, λ) 0 a2 a3 a2 0

(¬α, β, γ, κ,¬λ) 0 0 0 0 0

(¬α, β, γ,¬κ, λ) 0 0 a3 a3 0

(¬α, β, γ,¬κ,¬λ) 0 0 0 0 0

(¬α, β,¬γ, κ, λ) 0 a2 0 a2 0

(¬α, β,¬γ, κ,¬λ) 0 a2 0 a2 0

(¬α, β,¬γ,¬κ, λ) 0 a2 0 a2 0

(¬α, β,¬γ,¬κ,¬λ) 0 a2 0 a2 0

(¬α,¬β, γ, κ, λ) 0 a2 a3 a2 0

(¬α,¬β, γ, κ,¬λ) 0 0 0 0 0

(¬α,¬β, γ,¬κ, λ) 0 0 a3 a3 0

(¬α,¬β, γ,¬κ,¬λ) 0 0 0 0 0

(¬α,¬β,¬γ, κ, λ) 0 a2 0 a2 0

(¬α,¬β,¬γ, κ,¬λ) 0 0 0 0 0

(¬α,¬β,¬γ,¬κ, λ) 0 0 0 0 0

(¬α,¬β,¬γ,¬κ,¬λ) 0 0 0 0 0

is consistent. Indeed, because Bi is consistent so τBi is a standard SID, i.e. ∃ωi ∈ Ω :
τBi(ωi) = 0. Since all τBj (ωi) (j = 1, 2, ..., n) are comparable to 0, namely τBj (ωi) ≥ 0 and
τBi(ωi), = 0, so τB⊕(ωi) = min (τB1(ωi), ..., τBi(ωi),..., τBn(ωi)) = 0 (i = 1, ..., n). Thus
τB⊕ is a standard SID and arccording to the Proposition 3.2, B⊕ is consistent.

2. For the postulate W2: First of all, it should be noted that, in the standard possibilistic
logic, if B1 ∪ B2 ∪ · · · ∪ Bn is consistent, then Cnp(B⊕) ≡ Cnp(B1 ∪ B2 ∪ · · · ∪ Bn) if and
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only if ⊕ is a conjunctive operator [3]. Essentially, the Definitions 2.6 and 3.3 about merging
operators are related, and the condition that a merging operator of standard possibility
distributions is a conjunctive operator is very similar to the condition that a merging operator
of SIDs is a disjunctive operator. The min operator is disjunctive. So, the satisfaction of the
postulate W2 of min operator can be proven in the same way as in [3]. �

As we know, in the standard possibilistic logic, operator ⊕ satisfies W6 if and only if
⊕ is a strictly monotonic operator; The operator ⊕ satisfies Wmaj if and only if ⊕ is strict
monotonic and reinforcement operator [3]. In the standard possibilistic logic, the min and
max operators as well as a combination of the operators aren’t strict by monotonic so they
do not satisfy W6 and Wmaj .

In SPL, the operators min, max, and all combination of these two operators are also not
strictly monotonic operators, and the same as in the standard possibilistic logic, we have
following proposition.

Proposition 3.8. Aggregation of SIDs does not satisfy W6, Wmaj.

Proof. The idea is quite similar to the proof of the postulates P6 and Pmaj in [3], so it is
ignored here. �

4. HIERARCHICAL AGGREGATION OF SPK BASES

Assume that τB1 , τB2 , . . . , τBn are most specificity SIDs corresponding to the SPK
bases B1, . . . , Bn. In these SIDs, there may be some situations that there are several groups
of distributions having same characteristics, such as the order of interpretations (or possible
words) sorted by values of SIDs or the reliability of the knowledge bases in each group are
the same. In such situations, it would be more reasonable if the aggregation process of SIDs
is implemented as follows: First of all, aggregating knowledge bases in each group and an
aggregated knowledge base of each group is considered as a representative knowledge base
of the group. This procedure can be performed by such some times and a final created
knowledge base is an aggregated knowledge base of the merging process. The aggregation
implemented by this way is called a hierarchical aggregation.

Assume that n SIDs τB1 , τB2 , . . . , τBn are divided into m groups (τBi11 , τBi12 , . . . ,
τBi1k1 ), (τBi21 , τBi22 , . . . , τBi2k2 ),..., (τBim1

, τBim2
, . . . , τBimkm ), so that SIDs in each

group have common properties. Suppose that a merging operator ⊕2 is used to aggregate
SIDs in each group and other merging operator ⊕1 is used to aggregate representative SIDs
of the groups.

Definition 4.1. A hierarchical merging operator (2 hierarchies) denoted by ⊕ = ⊕1 ∗ ⊕2

is defined as follows

⊕(τB1 , τB2 , . . . , τBn)=⊕1(⊕2(τBi11 , τBi12 , . . . , τBi1k1 ), . . . ,⊕2(τBim1
, τBim2

, . . . , τBimkm )),

where ⊕1, ⊕2 are the merging operators of SIDs in low and high levels, respectively.

A merging operator of n - hierarchies is also defined in a similar way.

Example 4.2. Suppose that the process of hierarchical aggregation of 3 SPK bases in Ex-
ample 2.5 is implemented as follows ⊕(τA1, τA2, τA3) = ⊕1(⊕2(τA1), ⊕2(τA2, τA3)),
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where ⊕1, ⊕2 are max or min operators. Then, there are 4 of aggregated SIDs correspon-
ding to 4 combinations of min and max operators, as shown in Table 2 below. The table
also shows that all 4 aggregated SPK bases are consistent.

Table 2. Aggregated impossibility distributions by min-min, min-max, max-min, max-max
operators

Ω τA1 τA2 τA3 min−min min-
max

max-min max-max

(α, β, γ, κ, λ) a1 a2 a3 min(min(a1, a2), a3) a3 max(min(a1, a2), a3) max(a1, a2)

(α, β, γ, κ,¬λ) a1 a2 0 0 0 0 max(a1, a2)

(α, β, γ,¬κ, λ) 0 0 a3 0 0 a3 a3

(α, β, γ,¬κ,¬λ) 0 0 0 0 0 0 0

(α, β,¬γ, κ, λ) 0 a2 0 0 0 0 a2

(α, β,¬γ, κ,¬λ) 0 a2 0 0 0 0 a2

(α, β,¬γ,¬κ, λ) 0 a2 0 0 0 0 a2

(α, β,¬γ,¬κ,¬λ) 0 a2 0 0 0 0 a2

(α,¬β, γ, κ, λ) a1 a2 a3 min(min(a1, a2), a3) a3 max(min(a1, a2), a3) max(a1, a2)

(α,¬β, γ, κ,¬λ) a1 0 a3 0 a3 a3 a1

(α,¬β, γ,¬κ, λ) 0 0 a3 0 0 a3 a3

(α,¬β, γ,¬κ,¬λ) 0 0 a3 0 0 a3 a3

(α,¬β,¬γ, κ, λ) 0 a2 0 0 0 0 a2

(α,¬β,¬γ, κ,¬λ) 0 0 a3 0 0 a3 a3

(α,¬β,¬γ,¬κ, λ) 0 0 0 0 0 0 0

(α,¬β,¬γ,¬κ,¬λ) 0 0 a3 0 0 a3 a3

(¬α, β, γ, κ, λ) 0 a2 a3 0 a3 a3 a2

(¬α, β, γ, κ,¬λ) 0 0 0 0 0 0 0

(¬α, β, γ,¬κ, λ) 0 0 a3 0 0 a3 a3

(¬α, β, γ,¬κ,¬λ) 0 0 0 0 0 0 0

(¬α, β,¬γ, κ, λ) 0 a2 0 0 0 0 a2

(¬α, β,¬γ, κ,¬λ) 0 a2 0 0 0 0 a2

(¬α, β,¬γ,¬κ, λ) 0 a2 0 0 0 0 a2

(¬α, β,¬γ,¬κ,¬λ) 0 a2 0 0 0 0 a2

(¬α,¬β, γ, κ, λ) 0 a2 a3 0 a3 a3 a2

(¬α,¬β, γ, κ,¬λ) 0 0 0 0 0 0 0

(¬α,¬β, γ,¬κ, λ) 0 0 a3 0 0 a3 a3

(¬α,¬β, γ,¬κ,¬λ) 0 0 0 0 0 0 0

(¬α,¬β,¬γ, κ, λ) 0 a2 0 0 0 0 a2

Definition 4.3. In order to fit the context of hierarchical aggregation of SPK bases, the
postulates W4, W5 in [3] are adjusted as follows:

W ∗4 : Suppose that B1, B2, .., Bn are consistent SPK bases, if {B1, . . . , Bk}⊕2
and
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{Bk+1, . . . , Bn}⊕2
are equally prioritized, then Cnp(B⊕) 2 {B1, . . . , Bk}⊕2

and
Cnp(B⊕) 2 {Bk+1, . . . , Bn}⊕2

, here ⊕ = ⊕1 ×⊕2.

W ∗5 : Cnp(B′⊕)
⊔
Cnp(B′′⊕) |= Cnp(B⊕), here B = B′

⊔
B′′, the symbol

⊔
denotes the union

on multi-sets, B′ and B′′ are divided into the same number of groups.

Following propositions show properties of hierarchical merging operators from the pos-
tulate point of view.

Proposition 4.4. If operators ⊕1, ⊕2 satisfy the postulates W1, W2, W3, W4, W5, and Warb

then ⊕ also satisfies the postulates W1, W2, W3, W ∗4 , W ∗5 and Warb, respectively.

Proof.

1) W1: Because SPK bases Bi, i = 1, . . . , n are consistent, so τBi (i = 1, ..., n) are standard
SIDs. From the properties of ⊕2, we can infer that the aggregated SID τ⊕2ij

of the group

ij (j = 1, . . . ,m) is a standard SID. Similarly, from the properties of ⊕1 it can be seen that
τ⊕ is also a standard SID. Hence Cnp(B⊕) is consistent.

2) W2: Because B1∪B2 ∪· · ·∪Bn are consistent, so Bij1∪Bij2∪· · ·∪Bijkj are also consistent.
Based on this and from Proposition 3.7, we infer that Cnp(Bij⊕2) ≡ Cnp(Bij1

∪Bij2∪· · ·∪Bijkj )
and Bij⊕2 is consistent for every j = 1, 2, ..., m.

Next we will prove that Bi1⊕2 ∪Bi2⊕2 ∪ · · · ∪Bim⊕2 is consistent. Suppose the opposite
Bi1⊕2 ∪Bi2⊕2 ∪ · · · ∪Bim⊕2 is inconsistent iff ∃φ ∈ L so that Bi1⊕2 ∪Bi2⊕2 ∪ · · · ∪Bim⊕2 |=
(φ, a) and Bi1⊕2 ∪ Bi2⊕2 ∪ · · · ∪ Bim⊕2 |= (¬φ, β), here a and β > 0 iff ∃p, q so that
Bip⊕2 |= (φ, a) and Biq⊕2 |= (¬φ, β) iff (Bip1

∪ Bip2 ∪ · · · ∪ Bipkp) |= (φ, a) and (Biq1
∪

Biq2 ∪ · · · ∪ Biqkq) |= (¬φ, β) ⇒ (Bip1
∪ Bip2 ∪ · · · ∪ Bipkp∪ Biq1 ∪ Biq2 ∪ · · · ∪ Biqkq) is

inconsistent⇒ B1∪B2∪ · · · ∪Bn is inconsistent. This is contrary to the assumption of SPK
bases Bi (i = 1, ..., n). And therefore we also have Cnp(B⊕) ≡ Cnp(Bi1⊕2∪ Bi2⊕2 ∪ · · · ∪
Bim⊕2).

With (φ, a) ∈ Cnp(B⊕) iff (φ, a) ∈ Cnp(Bi1⊕2∪ Bi2⊕2 ∪· · · ∪ Bim⊕2) iff Bi1⊕2∪ Bi2⊕2 ∪
· · · ∪ Bim⊕2 |= (φ, a) iff ∃p so that Bip⊕2 |= (φ, a) iff ∃p : (Bip1

∪Bip2∪· · ·∪Bipkp) |= (φ, a)
iff B1 ∪B2 ∪ · · · ∪Bn |= (φ, a) iff (φ, a) ∈ Cnp (B1 ∪B2 ∪ · · · ∪Bn).

3) W3: If B⇔ B′ then Cnp(B⊕) ≡ Cnp(B′⊕).
By definition B ⇔ B′ ⇒ with each group (Bij1

, Bij2 , . . . , Bijkj ) in B, j = 1, 2, ...,m

there exists only the jth group (B′hj1 , B
′
hj2 , . . . , B

′
hjkj ) in B′ so that Cnp(Bijk

) ≡ Cnp(B′hjk)

for k = 1, 2, ..., kj . From Cnp(Bijk
) ≡ Cnp(B′hjk)⇒ τBijk (ω) = τB′hjk (ω) for ∀ω ∈ O. Thus,

τBij⊕2
(ω) = ⊕2(τBij1 (ω), . . . , τBijj (ω)) = ⊕2(τB′hj1 (ω), . . . , τB′hjk (ω)) = τB

′
hj

⊕2
(ω)

⇒ τB⊕(ω) = ⊕1(τBi1⊕2
(ω), . . . , τBim⊕2

(ω)) = ⊕1(τB
′
h1

⊕2
(ω), . . . , τB

′
hm

⊕2
(ω)) = τB′⊕(ω)

⇒ Cnp(B⊕) ≡ Cnp(B′⊕).

4) W ∗4 : Because ⊕1 satisfies the postulate W4, so the proof of this postulate is directly
inferred.

5) W ∗5 : Suppore that B′ and B′′ are divided into m groups ⇒ B = B′
⊔
B′′ is also divided

into m groups, B = { B1, . . . , Bm},
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Bj = {Bj1
, Bj2 , . . . , Bjk} = {{B′j1 , B

′
j2 , . . . , B

′
jh}
⊔
{B′′j1 , B′′j2 , . . . , B

′′
jq}

= B′j
⊔

B′′j ,

here, B′jh ∈ B′ and B′′jq ∈ B
′′
.

From the properties of ⊕2, we have

Cnp(B′j⊕2
)
⊔
Cnp(B”

j⊕2
) |= Cnp(Bj⊕2

). (4.1)

For each (φ, a) ∈ Cnp(B⊕) ⇒ B⊕ |= (φ, a) ⇒ ∃h so that Bh⊕1
|= (φ, a) ⇒ (φ, a) ∈

Cnp(Bh⊕2
) ⇒ according to (4.1), we obtain Cnp(B′h⊕2

)
⊔
Cnp(B

′′
h⊕2

) |= (φ, a) and from the

hypothesis of ⊕1 ⇒ Cnp(B′⊕)
⊔
Cnp(B′′⊕) |= (φ, a).

6) Warb : ∀B′, ∀n, Cnp((B
⊔
B′n)⊕) ≡ Cnp((B

⊔
B′)⊕).

Suppose that B =
⊔
j=1, ...,m{Bij1 , Bij2 , . . . , Bijkj},

(B
⊔
B′

n
)
⊕

= {{Bi11 , Bi12 , . . . , Bi1k1}⊕2
, ..., {Bim1 , Bi12 , . . . , Bimkm

⊔
B′

n}
⊕2

}⊕1

= {{Bi11 , Bi12 , . . . , Bi1k1}⊕2
, ..., {Bim1 , Bi12 , . . . , Bimk1

⊔
B′}

⊕2

}⊕1

= (B
⊔
B′)
⊕

(by the properties of ⊕2).

So Cnp((B
⊔
B′n)⊕ ) ≡ Cnp((B

⊔
B′)⊕). �

5. CONCLUSIONS

The soundness and completeness of the inference system in SPL [4] has enabled to im-
plement the aggregation of SPK bases via their most specificity impossibility distributions.

This paper focused on researching and clarifying the nature of merging operators of the
SIDs from the postulate point of view. The postulates of aggregation processes are adjusted
from the accepted postulates widely in aggregation processes of knowledge bases in classical
propositional language. The properties of merging operators as well as hierarchically merging
operators of SIDs from the postulate point of view are also clarified.

Since only the min and max calculations and a combination of these two calculations are
performed on the weights (which are symbols), so merging operators as well as hierarchically
merging operators of SIDs are only min, max, and a combination of these two operators
in a way. The poverty of merging operators in SPL shows a limitation of this logic. This
suggests that it is necessary to continue developing a SPL by using weights (symbols) having
an algebraic structure with more calculations.

However, it can be said that with the proposed SPL, we had a complete logic language
for expressing and reasoning as well as building smart systems on symbolic knowledges.
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