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Abstract. This paper presents a definition of Multi-Valued Martingale Difference (MVMD) based

on Castaing representation of a multi-valued martingale that consists of martingale difference selecti-

ons. Then testing the Multi-Valued Martingale Difference Hypothesis (MVMDH) is studied. Testing

the Martingale Difference Hypothesis (MDH) earlier was based on linear measures, and later is deve-

loped in two directions to consider the existing nonlinearity in economic and financial data. First, the

classical approaches have been modified by taking into account the possible nonlinear dependence.

Second, the use of more sophisticated statistical tools such as those based on the generalized spectral

analysis. In this paper, both these developments in MDH are modified for MVMDH and are applied

to exchange rate data and returns of stock market data.

Keywords. Martingale difference hypothesis; Multi-values martingale difference; Generalized spectral

analysis; Exchange rates.

1. INTRODUCTION

Given a time series, one may want to know whether observations in this series are inde-
pendent. If they are independent, there is no way to predict the next value. The problem of
testing the independence of a time series received much attention in the literature. The first
approaches should be mentioned are the tests using Portmanteau statistics based on auto-
correlation functions [4]. Skaug and Tjφstheim [40] later proposed a test for serial pairwise
independence based on empirical distribution function. Kendall’s study [20] found that the
weekly changes in a wide variety of financial prices could not be predicted from either past
changes in the series or from past changes in other price series. The publication of the papers
by Roberts [39] and Osborne [36] develops the proposition that it is not absolute price chan-
ges but the logarithmic price changes which are independent of each other, this implies that
prices are generated as Brownian motion. However, it was proved that Brownian motion is
a martingale [35].

Historically, martingale hypothesis has been widely studied and applied in economics
[12, 37]. One of the main reasons is efficient market hypothesis (EMH) [15, 32]. The efficient
market hypothesis is a theory in financial economics that states that asset prices fully reflect
all available information. A direct implication is that it is impossible to “beat the market”
consistently on a risk-adjusted basis since market prices should only react to new information.
Discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of random
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variables) X1, X2, X3, ... that satisfies for any time n,{
E (|Xn|) <∞
E (Xn+1|Xn, Xn−1, ..., X1) = Xn.

a.s. (1)

Therefore, an implication of EMH is that asset price follows a martingale [2, 34]. It means
that the best prediction of tomorrow’s asset price is the today’s. Then the asset returns

which is defined by Rt =
Xt −Xt−1
Xt−1

follows a martingale difference sequence (MDS) [13]. A

martingale difference series relative to a given filtration Ft is a time series Yt such that, for
every t

(i) Yt is Ft-measurable,
(ii) E(Yt|Ft−1) = 0.

(2)

From the definitions (1) and (2), the sequence Xt follows a martingale then the asset returns
Rt follows a martingale difference sequence. For some technical reasons, instead of testing
whether a sequence follows a martingale, it is more common to test whether its returns follow
a martingale difference sequence.

There have been many studies in the literature concentrated on tests of the martingale
difference hypothesis in the general form

E(Yt|Ft−1) = µ a.s. (3)

for some unknown µ ∈ R. Since the procedure that has been widely used proposed by Lo
and MacKinlay [29] using a variance ratio (VR) test, this undergone many improvements for
testing market efficiency and return predictability [6, 7, 8, 21, 42]. Another currently popular
test for predictability is Ljung and Box [28] and later generalized by Lobato, Nankervis and
Savin [30, 31] and Escanciano and Lobato [12]. These two approaches are designed to test
lack of serial correlation but not necessarily the MDH. Durlauf [11] and Deo [9] proposed
the spectral shape tests which are powerful in testing for lack of correlations but may not be
able to capture nonlinear non-martingales with zero correlations. Alternative tests designed
to detect nonlinear dependence have been proposed by Hong [16, 17] and Kuan and Lee [24].
All the above tests are MDH tests that are convenient to deal with real-valued asset returns
and test whether the asset returns follow a MDS.

From the works by Kendall [19] and Matheron [33], random variables are no longer limited
to real values that are extended to set-valued (or multi-valued). In many real problems we
are faced with random experiments whose outcomes are not numbers but are expressed in
inexact linguistic terms. For instance, when we are questioned about the asset returns of
a stock price, there are a group of individuals chosen to answer in linguistic terms such as
‘good’, ‘very good’, ‘very very good’, ‘bad’, ‘very bad’, ‘very very bad’. These outcomes can
be described by fuzzy set which was introduced by Zadeh [44]. A possible way to handle this
type of ‘data’ is using the concepts of fuzzy set-valued random variable introduced by Puri
and Ralescu [38]. Over past 40 years there were many important works for set-valued and
fuzzy set-valued random variables related to strong law of large numbers [5, 14, 41], center
limit theorems [1, 26, 27] and convergence of martingales [22, 25] in plenty of areas such
as in media, imaging, and data processing. Currently there is no proposal in the literature
which works on set-valued (milti-valued) martingale difference sequences and tests the null
hypothesis for that concept on real-life data.
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The aim of this paper is to define multi-valued Martingale difference, and then test the
MDH for some asset returns in the cases of exchange rate and stock market index. The
remaining of this paper is organized as follows: Section 2 reviews the preliminary definitions
and previous tests for MDH both in linear and nonlinear measures of dependence. Section
3 presents a definition of multi-valued Martingale difference and its MDH test for the same
data in Section 2. Finally, Section 4 concludes the results of the tests and proposes several
future works.

2. PRELIMINARIES

As mentioned in the section introduction, instead of testing the Martingale hypothesis it
is more convenient to test the MDH. A vast empirical and theoretical literature on MDH are
also mentioned along with basic definitions of Martingale and MDS given by (1) and (3). In
order to make a brief part of this literature, we start by considering the following definitions.
Let It = {Yt, Yt−1, ...} be the information set at time t and Ft be the σ-field generated by It.
A MDS implies that Yt linear unpredictable given any linear or nonlinear transformation of
the past w (It−1). That is

H0 : E[Yt|It−1] = µ, a.s. µ ∈ R⇔ E[(Yt − µ)w(It−1)] = 0, (4)

for all Ft−1-measurable weighting function w(.) (providing the moment exists).
There are two classifications on testing the MDH according to the functions w(.) are

linear or nonlinear. Moreover, both classifications include the tests for a finite number of
lags or not according to whether they assume that w(It−1) = w(Yt−1, ..., Yt−P ) for some
P ≥ 1 or not. The following subsections demonstrate some available methods for testing the
MDH by applying them to exchange rate returns and stock index returns.

The data for examination consists of five daily exchange rate returns on the Canadian
Dollar (CAN), the Sterling Pound GBP (£), Euro (EUR), the Japanese Yen YEN (U)
and the Vietnamese Dong (VND) against the US Dollar. These methods test the MDH
on returns of five stock market indexes including VN-Index VNI(Vietnam Stock Index),
S&P500, DJIA (Dow Jones Industrial Average), FTSE(Financial Times Stock Exchange 100
Index) and HSI (Hong Kong Hang Seng Index). The data is all taken from January 1, 2014
to December 31, 2017 with more than 1000 observations. All the data are obtained from
https://vn.investing.com/.

Figure 1 plots the daily returns of the exchange rates from January 1, 2014 to December
31, 2017. One can see that the returns of VND/USD (VND) are different from the others
and unusual to occur big changes. Figure 2 plots the daily returns of the stock market index
in the same period to the exchange rates. It is not easy to find the differences between these
returns from the image.

2.1. Tests based on linear measures of dependence

This test employs a linear function w(.) and the simplest approach is to set w(It−1) = Yt−j
for some j ≥ 1. Hence, the time series is uncorrelated is a necessary condition for the MDH
to hold. That is

γj = Cov(Yt, Yt−j) = E [(Yt − µ)Yt−j ] = 0, ∀j ≥ 1. (5)
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Figure 1. Daily returns of the Euro (Euro), Canadian Dollar (Can), the Sterling Pound (Pound),
the Japanese Yen (Yen) and the Vietnamdong (VND) against the US Dollar.

In the case of finite number of lags, the most popular test is Box-Pierce [3] Portmanteau
Qp test if the first p autocorrelations of a series are zero (i.e. j = 1, 2, ..., p). Given a series
of observations {Yt}nt=1 then the sample autocovariance can be estimated

γ̂j = (n− j)−1
n∑

t=1+j

(Yt − Y )(Yt−j − Y ), (6)

where Y is sample mean. The j−th order autocorrelation now is denoted by ρ̂j = γ̂j/γ̂0.
The Qp statistic now is

Qp = n

p∑
j=1

ρ̂2j . (7)

Its modification is implemented by Ljung and Box [28] as follows

LBp = n(n+ 2)

p∑
j=1

(n− j)−1ρ̂2j . (8)

In the infinite lag case, Escanciano and Lobato [12] modified the Box-Pierce statistic
using an adaptive Neyman test in the form

Nn = Qp̃, (9)
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Figure 2. Daily returns of the S&P500 (S&P500), Dow Jones Industrial Average (DJIA), Financial
Times Stock Exchange 100 Index (FTSE), Hong Kong Hang Seng Index (HSI) and the Vietnam Sotck
Index (VND) stock martket.

where p̃ = min{m : 1 ≤ m ≤ pn, Lm ≥ Lh, h = 1, 2, ..., pn}, Lp = Qp − π(p, n, q), pn is an
upper bound that tends to infinity with n and

π(p, n, q) =


p log n, if max

1≤j≤pn

∣∣∣ρ̂2j ∣∣∣ ≤ √q log n

2p if max
1≤j≤pn

∣∣∣ρ̂2j ∣∣∣ > √q log n,
(10)

where q is some fixed positive number.
In principle, testing the MDH using linear measures of dependence is necessary for the

equation (5) to hold but not sufficient. The null hypothesis means that the time series is
uncorrelated. It is equivalent to agreement that the time series is not linear dependence.
According to Escanciano and Lobato [12]: “These tests are suitable for testing for lack of
serial correlation but not necessarily for the MDH, and in fact, they are not consistent against
non-martingale difference sequences with zero autocorrelations. These tests are inconsistent
because they only employ information contained in the second moments of the process”.

Table 1 shows LBp and Mn test to check whether the returns of five our exchange rates
are uncorrelated or not. The table finds that all tested exchange rate returns are not linear
dependent (i.e. independent) with an exception of the daily VND for all chosen p (P-values
less than 0.05 for all tests).
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Table 1. Linear predictability of exchange rates returns

Statistics (P -value)
EUR GBP(£) CAN YEN(U) VND

LB5 3.9656 (0.5544) 8.7828 (0.118) 6.3573 (0.273) 2.4164 (0.789) 40.847 (1.008E-7)
LB15 17.366 (0.2975) 14.796 (0.4662) 17.135 (0.3109) 11.665 (0.7042) 64.344 (4.45E-8)
LB25 26.523 (0.3801) 22.529 (0.605) 23.843 (0.5284) 29.173 (0.2568) 75.829 (5.06E-7)
LB50 55.699 (0.269) 44.39 (0.6971) 48.971 (0.5147) 56.993 (0.2311) 112.18 (1.13E-6)
Nn 0.7937 (0.3729) 0.0009 (0.9756) 0.1553 (0.6934) 0.0017 (0.9668) 6.2554 (0.0124)

The tests for the linear dependence on some stock market indexes are given in Table 2.
The results are similar to the exchange rates case with an exception of the FTSE for LBp

test and the VNI for LB5. Surprisingly, the contradictory results for these stock market
indexes obtained by Nn test. These contradictory results may be due to a lack of power of
the tests rather than a lack of evidence against the MDH.

Table 2. Linear predictability of stock market returns

Statistics (P-value)
S&P500 DJIA FTSE HSI VNI

LB5 6.2249 (0.2849) 5.9451 (0.3116) 22.428 (0.0004) 0.99972 (0.9626) 11.119 (0.049)
LB15 8.9002 (0.8827) 15.973 (0.3839) 32.772 (0.005) 9.2918 (0.8618) 24.666 (0.0546)
LB25 22.806 (0.5889) 32.581 (0.1419) 54.576 (0.00055) 16.292 (0.9059) 33.881 (0.1105)
LB50 51.77 (0.4046) 57.742 (0.2109) 89.872 (0.00046) 29.707 (0.99) 64.761(0.0782)
Nn 0.0113 (0.9152) 0.2935 (0.5879) 0.3834 (0.5357) 0.1286 (0.7198) 1.1753 (0.2783)

2.2. Tests based on nonlinear measures of dependence

Similarly to the previous subsection in the case of finite number of lags, the lags (P )
are chosen manually. This subsection reviews the use of w(It−1) = w0(Ỹt,P , x) in (4) where

Ỹt,P = (Yt−1, ..., Yt−P )′ and w0 is a nonlinear function driven by x. The null hypothesis of

the MDH is to check how “far” it is from the sample analogue of E
[
(Yt − µ)w0(Ỹt,P , x)

]
to

zero. This work reviews indicator functions w0(Ỹt,P , x) = 1(Ỹt,P ≤ x), x ∈ R that were used
by Koul and Stute [23] for autoregression check and by Dominguez and Lobato [10] for the
MDH test. The later extended Cramer-von Mises (CvM) and Kolmogorov-Smirnov (KS)
statistics in Koul and Stute [23] to the multivariate case, that is respectively

CvMn,P :=
1

σ̂2n2

n∑
j=1

[
n∑

t=1

(Yt − Y )1(Ỹt,P ≤ Ỹj,P )

]2
, (11)

KSn,P := max
1≤i≤n

∣∣∣∣∣ 1

σ̂
√
n

n∑
t=1

(Yt − Y )1(Ỹt,P ≤ Ỹj,P )

∣∣∣∣∣ , (12)

where σ̂2 =
1

n

n∑
t=1

(Yt − Y )2.
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There is a notice that the asymptotic null distribution of the test depends on the data
generating process in which critical values can not be tabulated. Therefore, it is important
to approximate the null distribution by the so-called bootstrap methods. Based on these
methods the asymptotic distribution is approximated by replacing (Yt−Y ) by (Yt−Y )(Vt−
V ), where {Vt}nt=1 is a independent random variables sequence with zero mean and unit
variance and also independent of the sequence {Yt}nt=1. Obviously, V is the sample mean of
{Vt}nt=1. This work employs a sequence of i.i.d Bernoulli random variables with p = P (Vt =

0.5(1−
√

5)) =
1 +
√

5

2
√

5
and P (Vt = 0.5(1−

√
5)) = 1− p for {Vt} due to the popular choice

in previous literature.

Table 3 and Table 4 report the bootstrap MDH tests on exchange rate and stock market
returns using CvMn,P and KSn,P with P = 1 and P = 3. For the exchange rate returns in
Table 3, the results favor the MDH with all of them even with VND/USD exchange rate.

Table 3. Testing the MDH of exchange rates returns: P -values

EUR GBP(£) CAN YEN(U) VND

CvMn,1 0.14 0.4433 0.26 0.7233 0.1

CvMn,3 0.82 0.69 0.59 0.8 0.2066

KSn,1 0.1066 0.6233 0.2333 0.72 0.0866

KSn,3 0.4933 0.4466 0.5866 0.87 0.0866

In Table 4, the MDH tests are implemented on five stock market returns. The results
support the previous conclusions in linear measure case (see LB5 in Table 2) that all stock
market returns support the MDH except VNI (VN-Index). These results arise the doubts
about efficiency of Vietnam stock market compared to others.

Table 4. Testing the MDH of stock market returns: P -values

S&P500 DJIA FTSE HSI VNI

CvMn,1 0.3033 0.11 0.24 0.3633 0.04

CvMn,3 0.5466 0.3933 0.2066 0.1866 0.04

KSn,1 0.4933 0.1566 0.32 0.5766 0.0233

KSn,3 0.73 0.31 0.0966 0.6766 0.0633

The MDH tests based on finite number of lags may miss some dependence structure in the
conditional mean at omitted lags because of working on a finite-dimensional information set.
Hence, there have been some MDH tests on infinite-dimensional information sets [10, 17].
This paper examined the test of Escanciano and Velasco [13]. This MDH test consists of
checking all the pairwise

H0 : γj = 0 a.s. ∀j ≥ 1, (13)

where γj = E[Yt − µ|Yt−j ]. Then the measure for the conditional mean dependence in a
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nonlinear time series framework is given by

γj(x) = E[(Yt − µ)eixYt−j ]. (14)

The sample counterpart of γj(x) is

γ̂j(x) =
1

n− j

n∑
t=1+j

(Yt − Y n−j)e
ixYt−j , (15)

where

Y n−j =
1

n− j

n∑
t=1+j

Yt. (16)

A norm for the Cramer-von Mises test which is called generalized spectral test has the form

D2
n =

n−1∑
j=1

(n− j) 1

(jπ)2

∫
R
|γ̂j(x)|2W (dx), (17)

where W (.) is a weighting function satisfying the condition W : R −→ R+ is non-decreasing,
absolutely continuous with respect to Lebesgue measure and with bounded total variation. In
practice, we choose the standard normal cumulative probability distribution function as the
weighting function W (.).

Table 5. P -values of generalized spectral test

EUR GBP(£) CAN YEN(U) VND

D2
n 0.3066 0.72 0.1366 0.5433 0.56

S&P500 DJIA FTSE HSI VNI

D2
n 0.9633 0.48 0.8666 0.7266 0.0566

Table 5 reports the P -values of generalized spectral test for MDH on both exchange rates
and stock market returns. The results continuously support our previous findings that the
VNI returns do not follow a MDS. For the VND/USD exchange rate returns, the nonlinear
measure-based MDH tests slightly support MDH whereas linear measure-based MDH tests
strongly reject.

3. MULTI-VALUED MARTINGALE DIFFERENCE HYPOTHESIS

This section defines multi-valued martingale difference and examines the multi-valued
martingale difference hypothesis tests on our data. Suppose throughout this section that
(Ω,F , P ) is a complete probability space, F0 ⊂ F1 ⊂ ... ⊂ Fn ⊂ ... (with F0 = {∅,Ω}) is an
increasing sequence of sub σ-algebras of F , E is a Banach space.

Multi-valued random variables and multi-valued martingale were relatively fully intro-
duced in Lee 2013 [26] and the references therein. However, it is difficult to directly define
a multi-valued martingale difference sequence from a martingale in the way of single-valued
martingale difference due to the lack of subtraction between two sets. Fortunately, it is
thanks to the definition of martingale selections that martingale difference selections could
be defined and a Castaing representation of a multi-valued martingale difference that consists
of martingale difference selections is provided.
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3.1. Multi-valued martingale difference

We introduce a definition of multi-valued martingale differences in the form of (2) for a
sequence of multi-valued random variables.

Definition 1. (Multi-valued Martingale differences) Let {Dn, n ≥ 1} be a sequence of multi-
valued random variables, {Dn, n ≥ 1} is said to be a multi-valued Martingale differences if

(i) Dn is Fn-measurable;
(ii) E(Dn|Fn−1) = 0 for all n ≥ 1.

(18)

Clearly, it is to run into difficulties to work with this definition because the properties
of a real single-valued martingale difference are no longer preserved. The following concept
relates to the multi-valued and single-valued martingale differences.

Definition 2. (Martingale difference selection) An E−valued martingale {(dn,Fn) , n ≥ 1}
is said to be a martingale difference selection of {Dn, n ≥ 1} if dn ∈ S1(Dn) for every n ≥ 1,
where

S1(Dn) = {f ∈ L1[Ω,E] : f(ω) ∈ Fn(ω) a.s.}. (19)

The family of all martingale selections is denoted by MDs({Dn, n ≥ 1}).

The concept of the projective limit makes it possible to establish the existence of mar-
tingale difference selections and to provide a Castaing representation of {Dn} that consists
of martingale difference selections (see Vu Viet Yen [43]). Note that projn−1({Dn, n ≥ 1}) =
Dn−1 denotes a projection of a sequence {Dn, n ≥ 1} onto its (n − 1)th coordinate. For
example, projn−1(MDs({Dn, n ≥ 1})) is the family of all martingale difference selections at
time n− 1.

Example. Consider a sequence of asset prices {Xt, t ≥ 1} and its returns {Rt, t ≥ 1}. One
may be more interested in how the trend of the tomorrow return will be than how the value
of the tomorrow return will be. For instance, given the state of Rt today is “high”, whether
the tomorrow Rt+1 will be “very high”, “high”, “low”, “very low” or “very very low”. It
means one may want to estimate E(Rt+1|Rt = high). From this point of view, it is possible
to define a space of sets E which consists of the elements such as “very very high”, “very
high”, “high”, “low”, “very low” or “very very low” where each element is represented by an
interval of real line R. Now the random variable Rt becomes a set-valued random variable
that takes its values in E. The task now is to check whether {Rt} follows an MVMD.

3.2. Testing the multi-valued Martingale difference hypothesis

Given a return series {Rt, t ≥ 1} of an asset price, the following transformation converts
{Rt, t ≥ 1} into multi-valued (or set-valued) random sequence. From the histograms of all
our return series show that their values are concentrated in the interval from -0.02 to 0.02
(see Figure 3), we could define elements of E as follows,

• E1=“normal”=[−0.004, 0.004] • E5=“low”=[−0.012, 0.004]
• E2=“high”=[0.004, 0.012] • E6=“very low”=[−0.02,−0.012]
• E3=“very high”=[0.012, 0.02] • E7=“very very low”=(mint≥1Rt,−0.02]
• E4=“very very high”=[0.02,maxt≥1Rt)
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Figure 3. Histograms of some exchange rate and stock market returns

Now Rt, t ≥ 1 are set-valued (multi-valued) random variables whose values are Ei, i = 1, ..., 7.
The scenario for this transformation is demonstrated in Figure 4.

0 0.004−0.004 0.012−0.012 0.02−0.02

normal highlow very highvery low very very highvery very low

Figure 4. Definitions of set-valued random variables for returns

To test the MVMDH for {Rt, t ≥ 1}, we choose a selection of {Rt} by their midpoints
denoted by {rt, t ≥ 1}. Testing the MDH on {rt, t ≥ 1} provides the results of MVMDH for
{Rt, t ≥ 1}. Figure 5 compares the difference between return time series and return selection
time series of EUR/USD and VND/USD exchange rate. One can see that the selection time
series of VND/USD is almost “normal” (e.g. no change) whereas EUR/USD’s are similar.
This means the returns of VND/USD exchange rate are linearly dependent and easy to
predict. Others need to test to make conclusions.

Now the MVMDH tests are implemented on our data by testing the MDH on return
selections instead of on the returns. The Table 6 reports the results in the case of linear
measures for exchange rate data. Compare to Table 1 in Section 2, the results are similar
except LB5 of CAN/USD exchange rate. But there is not enough evidence to reject the
MDH for CAN/USD returns.
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Figure 5. Returns and selection of returns of EUR/USD (above) and VND/USD (below)

Table 6. Linear predictability of multi-valued exchange rates returns

Statistics (P -value)
EUR GBP(£) CAN YEN(U) VND

LB5 1.8263 (0.8726) 9.916 (0.0776) 12.14 (0.0329) 4.1058 (0.5343) 52.589 (4.08E-10)
LB15 8.9807 (0.8785) 22.192 (0.1029) 23.137 (0.0812) 17.263 (0.3034) 71.603 (2.3E-9)
LB25 18.679 (0.8122) 30.467 (0.2073) 34.85 (0.0909) 37.48 (0.0519) 74.821 (7.22E-7)
LB50 40.808 (0.8198) 63.236 (0.0989) 62.298 (0.1137) 67.403 (0.0508) 137.11 (4.8E-10)
Nn 0.0174 (0.8948) 5.8E-5 (0.9938) 0.8821 (0.3476) 0.0161 (0.8988) 6.0418 (0.0139)

Table 7 examines linear predictability of some stock market returns with multi-valued
MDH. There are some differences between Table 7 and Table 2. Focus on VNI, Table 2
shows that VNI returns is not linear dependent whereas its selections reject the MDH. This
difference implies difficult to predict values of VNI returns but easier to predict its trend.
The similar comment is also conformable to FTSE returns.

Table 7. Linear predictability of multi-valued stock market returns

Statistics (P -value)
S&P500 DJIA FTSE HSI VNI

LB5 3.9887 (0.5511) 5.5736 (0.3499) 32.522 (4.6E-6) 6.0097 (0.3053) 14.432 (0.013)
LB15 7.7672 (0.9328) 17.878 (0.2691) 42.073 (0.0002) 39.033 (0.0006) 29.642 (0.0133)
LB25 21.873 (0.643) 28.37 (0.2911) 63.083 (3.8E-5) 57.949 (0.0002) 38.433 (0.042)
LB50 51.132 (0.429) 48.491 (0.5341) 91.808 (0.0003) 80.924 (0.0036) 69.976 (0.032)
Nn 0.0006 (0.9806) 0.5785 (0.4468) 1.1952 (0.2742) 0.219 (0.6397) 3.6076 (0.0575)

For the nonlinear measures of dependence, the MVMDH tests on exchange rate stock
market returns in the case of finite number of lags are given in Table 8 and Table 9. We find
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that the VND/USD strongly rejects the MVMDH in the linear measure case but it supports
MVMDH in the nonlinear measure case. One may understand that VND/USD returns
are not nonlinear dependent but linear dependent in the sense of set-valued martingale
difference. By contrast, VNI stock market returns reject the MVMDH whatever linear or
nonlinear measure case. FTSE returns in Table 4 support the MDH but reject the MVMDH
in Table 9. This implies that it is difficult to predict FTSE returns but one can predict its
“level of changes” by some suitable nonlinear-based predictors.

Table 8. Nonlinear MVMDH tests of exchange rates returns: P -values

EUR GBP(£) CAN YEN(U) VND

CvMn,1 0.3333 0.45 0.33 0.96 0.37

CvMn,3 0.52 0.54 0.8633 0.55 0.1266

KSn,1 0.5566 0.2133 0.6033 0.85 0.16

KSn,3 0.84 0.2533 0.99 0.8066 0.4533

Recall that in equations (11) and (12) both test statistics CvMn,P and KSn,P are based
on indicator transformation of the past w(It−1).

Table 9. Nonlinear MVMDH tests of stock market returns: P -values

S&P500 DJIA FTSE HSI VNI

CvMn,1 0.6566 0.3333 0.04 0.22 0

CvMn,3 0.6333 0.4533 0.04 0.2 0.0033

KSn,1 0.9166 0.63 0.09 0.43 0

KSn,3 0.36 0.67 0.0566 0.8566 0.02

Table 10 reports the generalized spectral test for MVMDH on our data in the infinite
number of lags case. Note that D2

n statistic is based on w0(Yt−j , x) = exp (ixYt−j) (i.e.
exponential dependence of the past w(It−1)). The results show that the MVMDH is rejected
for all our returns. This asserts that the multi-valued returns of exchange rate or stock
market are not exponentially dependent.

Table 10. P -values of generalized spectral test for MVMDH

EUR GBP(£) CAN YEN(U) VND

D2
n 0.4133 0.9066 0.0733 0.3266 0.8133

S&P500 DJIA FTSE HSI VNI

D2
n 0.8666 0.8466 0.5266 0.4733 0.1233
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4. CONCLUSIONS

This paper has presented some popular tests for MDH on several exchange rate re-
turns and stock market returns. The tests are included linear measure-based and nonlinear
measure-based statistics. These tests are also used to examine the MDH for a multi-valued
martingale difference, called MVMDH. The results of MDH and MVMDH tests are recapped
in Table 11.

Table 11. Martingale difference hypothesis vs multi-valued Martingale difference hypothesis

MDH-MVMDH

Linear measures Nonlinear measures

LB5 LB15 LB25 LB50 Nn CvMn,1 CvMn,3 KSn,1 KSn,3 D2
n

EUR 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
GBP 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
CAN 3-7 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
YEN 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
VND 7-7 7-7 7-7 7-7 7-7 3-3 3-3 3-3 3-3 3-3
SP500 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
DJIA 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3 3-3
FTSE 7-7 7-7 7-7 7-7 3-3 3-7 3-7 3-3 3-3 3-3
HSI 3-3 3-7 3-7 3-7 3-3 3-3 3-3 3-3 3-3 3-3
VNI 7-7 3-7 3-7 3-7 3-7 7-7 7-7 7-7 3-7 3-3

3: support H0, 7: reject H0, left: MDH - right: MVMDH

According to the results, this work provides some following conclusions:

• The MDH tests on some exchange rate returns and stock market returns are in agreement
with previous findings (see [16, 18]) that most of them (e.g. EUR, GBP, CAN, YEN,
S&P500, DJIA, HSI) support the MDH. Rejecting the MDH makes the confidence in
an efficient market where all trades are performed in a “fair game”.

• The exceptions of VND, VNI and FTSE are the evidences that the MDH (or predicta-
bility) on exchange rate and stock market returns depends on which market is tested.
As the MDH is rejected, there exist some kinds of dependence in the series correspon-
ding to the measures of the tests. One may fit several available forecast models as the
predictors of the series.

• Interestingly, the tests of MVMDH (multi-valued martingale difference hypothesis)
show the same results to MDH for EUR, GBP, CAN, YEN, S&P500, DJIA and HSI.
These similarities strengthen their unpredictability even when forecasting the trend of
the series. However, the changes from MDH support to MVMDH rejection of HSI and
VNI say that it is impossible to predict the values of the return series but possible
to predict its trend. This finding helps one to reassess the efficiency of the market or
forecast the market tendency.
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