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Abstract. In this paper we construct two families of nonstandard finite difference (NSFD) sche-

mes preserving the essential properties of a computer virus propagation model, such as positivity,

boundedness and stability. The first family of NSFD schemes is constructed based on the nonlocal

discretization and has first order of accuracy, while the second one is based on the combination of

a classical Runge-Kutta method and selection of a nonstandard denominator function and it is of

fourth order of accuracy. The theoretical study of these families of NSFD schemes is performed with

support of numerical simulations. The numerical simulations confirm the accuracy and the efficiency

of the fourth order NSFD schemes. They hint that the disease-free equilibrium point is not only

locally stable but also globally stable, and then this fact is proved theoretically. The experimental

results also show that the global stability of the continuous model is preserved.

Keywords. Computer viruses, high order NSFD schemes, Lyapunov stability theorem, NSFD

schemes, numerical simulations.

1. INTRODUCTION

The mathematical models describing the computer virus propagation play especially
important role in both theory and practice. The study of properties of these models helps
us to understand the law governing the spread of computer viruses. Based on this we can
make appropriate policies for controlling and preventing the spread of them. In the last two
decades some authors proposed different mathematical models for computer viruses through
differential equations systems, e.g., [23, 25, 26, 27, 28, 29, 30]. The idea leading to these
models comes from the high similarity between computer viruses and biological viruses.

In this paper we are concerned with a modified epidemiological model for computer
viruses proposed by Piqueira and Araujo [25]. The mathematical analysis there shows that
the solution of the model is positive and bounded. Besides, the local stability of disease-free
equilibrium points and endemic equilibrium point (if it exists) is established. The aim of
our paper is to construct difference schemes preserving the essential properties of the above
mentioned model. In other words, our task is to convert the continuous model to discrete
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models which are dynamically consistent with the continuous one. As is known, the es-
tablishment of stability properties of continuous models in biology, epidemiology, ecology
is a problem of most interest in mathematical biology, meanwhile the conversion of these
models to dynamically consistent discrete models is one of the most important problems
in numerical solution of differential equations and simulation of dynamical systems. There
are many methods for discretization of continuous models. Popular ones are standard fi-
nite difference methods (SFDM) such as Euler method, Runge-Kutta method and Taylor
method [1]. However, for many nonlinear problems SFDM revealed a serious drawback. It
is numerical instabilities [19, 20, 21, 22], when numerical methods do not preserve the pro-
perties of the differential equations. In order to overcome this phenomenon, in the 1980s,
Mickens proposed a type of difference schemes, which are named as nonstandard finite dif-
ference (NSFD) schemes. These schemes can preserve essential properties of corresponding
differential equations [19, 20, 21, 22].

Up to now, NSFD schemes become an important and efficient tool for solving nonlinear
differential equations and simulating complicated dynamical systems [19, 20, 21, 22, 24].
They are applied to many important mathematical models in physics, chemistry, biology,
medicine, and so on. Recently, we achieved some results on the construction of NSFD
schemes for certain important practical models [2, 3, 4, 5, 6, 7, 8]. To our best knowledge,
NSFD schemes are still not applied to computer viruses spread models although these models
have great significance and many results of qualitative aspects are obtained. For this reason,
in this paper we construct NSFD schemes preserving essential properties of a model for
computer viruses proposed by Piqueira and Araujo [25]. It should be emphasized that in
general, NSFD schemes which are dynamically consistent with differential equations, have
first order of accuracy [19, 20, 21, 22]. This motivates the problem of increasing the order
of accuracy of NSFD schemes. Recently, some higher order NSFD schemes were constructed
[11, 17, 18]. They are based on the combination of nonstandard schemes and Richardson’s
extrapolation. Differently from the above way, here we construct higher order nonstandard
finite methods based on Runge-Kutta methods without extrapolation. More specifically,
we design NSFD schemes based on the classical Runge-Kutta methods with selection of
nonstandard denominator. It is an important contribution of ours in this paper. For our
schemes, the positivity is obtained from the positivity of Runge-Kutta methods, while the
stability is established by Lyapunov method in combination with the stability properties of
Runge-Kutta methods. It should be emphasized that the proposed method for designing
NSFD schemes is applicable to some other applied models.

The results of numerical simulations reported in Section 4 confirm the validity of the
obtained theoretical results. The errors and the computation time support the accuracy and
efficiency of the designed high order NSFD schemes. Especially, the numerical experiments
hint that the disease-free equilibrium is not only locally asymptotically stable, but is globally
stable. This prediction of the global stability is proved by using a suitable Lyapunov function.

The paper is organized as follows. In Section 2 we recall a mathematical model of
computer virus spread and its properties. The construction of NSFD schemes based on
nonlocal discretization of the continuous model is presented in Section 3. The next section
is devoted to design of high order NSFD schemes. In Section 5, the results of numerical
simulations are reported. Finally, Section 6 is some conclusions.
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2. MATHEMATICAL MODEL AND ITS PROPERTIES

First, we recall the computer virus spread model proposed by Piqueira and Araujo [25]

Ṡ = αSASA− βSI + σR,

İ = βSI − αIAAI − δI,
Ṙ = δI − σR,
Ȧ = αSASA+ αIAIA.

(1)

This model is a modification of the original compartmental SIR model. The total population
T is divided into four groups: S of non-infected computers subjected to possible infection;
A of noninfected computers equipped with anti-virus; I of infected computers; and R of
removed ones due to infection or not. Besides, αSA, αIA, β, δ, σ are positive parameters. For
more detail, see [25].

The mathematical analysis in [25] shows that the model (1) has the following properties:

(P1) Positivity and boundedness:
The solutions of (1) with positive initial values are always positive and the sum of solutions
is constant

S(t) + I(t) +R(t) +A(t) ≡ T.

In other words, the set Ω = {(S, I,R,A) ∈ R4
+ : S + I +R+A = T} is a positively invariant

set of (1).

(P2) Equilibrium points and locally asymptotic stability:
For all possible parameter values, the model (1) always has two disease-free equilibrium
points: P1 = (S, I,R,A) = (0, 0, 0, T ) and P2 = (S, I,R,A) = (T, 0, 0, 0). Meanwhile,
endemic equilibrium point P3 exists if and only if T > δ/β.

The equilibrium point P1 is asymptotically stable and the equilibrium point P2 is unsta-
ble, while the endemic equilibrium point P3, if existing, is unstable.

In Sections 3 and 4 we shall construct NSFD schemes preserving the properties (P1) and
(P2) of the model. Notice that, due to S(t)+ I(t)+R(t)+A(t) ≡ T , instead of (1) it suffices
to consider the reduced system

Ṡ = −αSAS(T − S − I −R)− βSI + σR,

İ = βSI − αIA(T − S − I −R)− δI,
Ṙ = δI − σR,

(2)

with the positively invariant set Ω∗ = {(S, I,R) : S + I +R ≤ T}.
The numerical simulations in Section 5 hint that P1 is not only locally stable but also

globally stable. Therefore, below we prove this fact.

Theorem 1. The equilibrium point P1 of the model (1) is globally stable.

Proof. Notice that the global stability of (1) and (2) are equivalent. Therefore, it suffices
to prove that the point (0, 0, 0) is globally stable equilibrium point of (2) on the positively
invariant set Ω∗. Indeed, consider the Lyapunov function

V (S, I,R) = S + I +R.
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Clearly, the function V is continuous and positive definite. Moreover, the derivative of V
among the trajectory of (2) is

V̇ = −αSAS(T − S − I −R)− αIA(T − S − I −R).

Obviously, V̇ < 0 except for (S, I) = (0, 0). Therefore, by the Lyapunov stability theorem
[16] the global stability of the model is ensured. �

3. NSFD SCHEMES FOR MODEL (1) BY NONLOCAL
APPROXIMATIONS

Now we construct NSFD schemes for the model (1). Firstly, we design NSFD schemes
based on the nonlocal discretization of the right-hand sides with the use of nonstandard
denominators in the form

Sk+1 − Sk
ϕ(h)

= −αSASk+1Ak − βSk+1Ik + σRk,

Ik+1 − Ik
ϕ(h)

= βSk+1Ik − αIAIk+1Ak − δIk+1,

Rk+1 −Rk
ϕ(h)

= δIk+1 − σRk,

Ak+1 −Ak
ϕ(h)

= αSASk+1Ak + αIAIk+1Ak,

(3)

where ϕ(h) = h + O(h2). For simplicity, we omit the argument h in the function ϕ(h) in
some places.

Theorem 2. The set Ω = {(S, I,R,A) ∈ R4
+ : S + I +R+A = T} is a positively invariant

set of the model (3) if the function ϕ(h) satisfies the condition

ϕ(h) < 1/σ, ∀h > 0. (4)

Proof. Adding sides-by-sides the equations (3) we obtain

Sk+1 + Ik+1 +Rk+1 +Ak+1 = Sk + Ik +Rk +Ak.

Hence, if Sk + Ik +Rk +Ak = T , then Sk+1 + Ik+1 +Rk+1 +Ak+1 = T . On the other hands,
it is easy to convert the schemes (3) to the explicit form

Sk+1 =
Sk + ϕσRk

1 + ϕαSAAk + ϕβIk
,

Ik+1 =
Ik + ϕβSk+1Ik

1 + ϕαIAAk + ϕδ
,

Rk+1 = (1− ϕσ)Rk + ϕδIk+1,

Ak+1 = Ak + ϕ(αSASk+1Ak + αIAIk+1Ak).

(5)

Therefore, if Sk, Ik, Rk, Ak ≥ 0 and (4) are satisfied then Sk+1, Ik+1, Rk+1, Ak+1 ≥ 0. The
proof of the theorem is complete. �
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It is not difficult to show that the model (3) also has the equilibrium points P1 =
(S, I,R,A) = (0, 0, 0, T ) and P2 = (S, I,R,A) = (T, 0, 0, 0), while the endemic equilibrium
point P3 exists if and only if T > δ/β. In a similar way as in the previous works [2, 4, 5, 6, 7, 8],
it is easy to establish the local stability of P2 and P3 by the nondirect Lyapunov method.
So, we have

Proposition 1. Consider NSFD (3) under the assumptions (4). Then the equilibrium point
P2 is unstable, while the equilibrium point P3, if existing, also is unstable.

As an important corollary of Theorem 2, we can establish the global stability of the
model (2).

Corollary 1. The equilibrium point P1 of the model (3) is globally stable.

Proof. Repeating the proof of Theorem 1 with the discrete Lyapunov function

V (Sk, Ik, Rk) = Sk + Ik +Rk,

we obtain the corollary. �

Summarizing the results in this section we have the following

Theorem 3. NSFD scheme (3) preserves the properties (P1) and (P2) of the model (1) if
the denominator function satisfies (4).

4. FOURTH ORDER NSFD SCHEMES FOR MODEL (1) BY
RUNGE-KUTTA METHOD

In this section we construct NSFD schemes of fourth order accuracy based on the expli-
cit Runge-Kutta methods. Firstly, we briefly recall the definition of explicit Runge-Kutta
methods for the initial value problem (IVP) of the following form

y′ = f(x, y), y(x0) = y0. (6)

Definition 1. (See [13], Definition 1.1]). Let s be an integer (the “number of stages”) and
a21, a31, a32, . . . , as1, as2, . . . , as,s−1, b1, . . . bs, c2, . . . c2 be real coefficients. Then the method

k1 = f(x0, y0),

k2 = f(x0 + c2h, y0 + a21hk1),

k3 = f
(
x0 + c3h, y0 + h(a31k1 + a32k2

)
,

. . .

ks = f
(
x0 + csh, y0 + h(as1k1 + . . .+ as,s−1ks−1

)
,

y1 = y0 + h(b1k1 + . . .+ bsks),

is called an s-stage explicit Runge-Kutta method (ERK) for (6).

Usually, ci satisfy the conditions

c2 = a21, c3 = a31 + a32, . . . , cs = as1 + . . . as,s−1ks,
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or briefly,

ci =
s∑
j=1

aij .

These conditions, already assumed by Kutta, express that all points where f is evaluated
at are first order approximations to the solution. They greatly simplify the derivation of
order conditions for high order methods. For low orders, however, these assumptions are not
necessary (see [13, Chapter II]). Definition of order and order conditions for Runge-Kutta
methods are presented in detail in [13].

For brevity, Runge-Kutta methods usually are denoted by (c, A, bT ) or RK(A, b) (see
[13, 14, 15]), where c = (ci), b = (bi) ∈ Rs and A = (ai,j) ∈ Rs×s.

The problem of the positivity of Runge-Kutta methods is especially paid attention to
(see [13, 14] and references therein). In this section, we shall use the result on the positivity
step size threshold of Runge-Kutta methods [13]. For ease of understanding, we recall it as
follows.
Consider IVPs of the form

U ′(t) = f
(
t, U(t)

)
, t ≥ t0, U(t0) = u0, (7)

where t0 ∈ R, n is a positive integer, u0 ∈ Rn and f : R × Rn → Rn. We assume tacitly
that f is continuous and (7) has a unique uncontinuable solution for all t0 ∈ R and u0 ∈ Rn
(i.e., there exists the largest t∗ ∈ (t0,∞] with the property that (7) has a unique solution on
[t0, t

∗)).
We call the IVP (7) positive if U(t) ≥ 0 holds for all t ∈ [t0, t

∗) whenever t0 ∈ R and u0 ≥ 0
are arbitrary. We denote by P the set of functions f for which the corresponding IVPs of
form (7) are positive. A sufficient and necessary condition for f to belong to P can be found
in [13, 14]. Namely f ∈ P iff for all k, t and v ≥ 0 with vk = 0 we have fk(t, v) ≥ 0.

Definition 2. (See [13]) Let there be given ∅ 6= F ⊂ P, (A, b) a scheme of an RK method
and H ∈ (0,∞]. We call RK (A, b) positive on F with positivity step size threshold H if the
method is well-defined on (7) with step sizes less than or equal to H and um ≥ 0 for any
m, f ∈ F , t0 ∈ R, u0 ≥ 0 and finite steps hm ∈ [0, H]. If H is a positivity step size threshold
and there is no greater positivity step size threshold than H, we call H the strict positivity
step size threshold of RK(A, b) w.r.t. F .

For any α ∈ R we define (see [13])

Pα =
{
f
∣∣f(t, v) + αv ≥ 0 for all t, v ≥ 0

}
.

Theorem 4. (See [13, Theorem 4]) Let (A, b) be the scheme of an RK method and ∅ 6= F ⊂
Pα with an α > 0. Suppose that RK(A, b) is well-defined on (7) with any f ∈ F , t0 ∈ R,
u0 ∈ Rn and step sizes not larger than Hdef = Hdef

(
(A, b),F

)
. Then

H = min

{
R(A, b)

α
, Hdef

}
,

is a positivity step size threshold of RK(A, b) w.r.t. F .
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In Theorem 4, R(A, b) is positivity radius of Runge-Kutta methods with the coefficient
scheme (A, b) [13, 14, 15]. The radius R(A, b) is used by Kraaijevanger [15] in the study of
contractivity of RK methods and also used in the nonlinear positivity theory for RK methods
by Horvath [13, 14]. The results related to the properties of R(A, b) may be found in [15].

Next, in order to construct NSFD schemes not only preserving properties of the continu-
ous model but also having high order accuracy, we shall use a 5-stage Runge-Kutta method
(c, A, bT ) defined in [15]

b1 = 0.14681187608478644956; a21 = c2;

b2 = 0.24848290944497614757; a31 = 0.21766909626116921036;

b3 = 0.10425883033198029567; a32 = 0.36841059305037202075;

b4 = 0.27443890090134945681; a41 = 0.8269208665781075441;

b5 = 0.22600748323690765039; a42 = 0.13995850219189573938;

c2 = 0.39175222657188905833; a43 = 0.25189177427169263984;

c3 = 0.58607968931154123111; a51 = 0.06796628363711496324;

c4 = 0.47454236312139913362; a52 = 0.11503469850463199467;

c5 = 0.93501063096765159845; a53 = 0.20703489859738471851;

a54 = 0.54497475022851992204.

However, a difference here is that instead of the standard denominator h we use a nonstan-
dard denominator function ϕ(h) = h + O(h2). We call this difference scheme nonstandard
Runge-Kutta (NSRK) scheme (c, A, bT , ϕ).

Theorem 5. NSRK scheme (c, A, bT , ϕ) preserves the positivity and boundedness (Property
(P1)) of the model (1) if the denominator function ϕ(h) satisfies

ϕ(h) < min

{
r

(αSA + β)T
,

r

(αIA + δ)T
,
r

σ

}
, ∀h > 0 (8)

with
r = R(A, b) ≈ 1.50818004918983792280.

Proof. Set τ = min{(αSA + β)T, αIA + δ)T, σ}. It is easy to verify that the right-hand side
of (1) belongs to the set Pα with α = τ . Therefore, from the positivity of Runge-Kutta
methods (Theorem 4) it follows the conclusion of the theorem. �

Before the analysis of stability of NSFD we determine the eigenvalues of the Jacobian
matrix of (1). We call J(P ) the Jacobian matrices of (1) calculated at the equilibrium point
P and σ(J(P )) the set of the eigenvalues of J(P ). Then by [25, Section 3] we have

σ(J(P1)) =
{
− αSAT, −αIAT − δ, −σ, 0

}
,

σ(J(P2)) =
{

0, −βT − δ, −σ, αT
}
.

On the other hand, if the equilibrium point P3 exists (T > δ/β) then J(P3) has a positive
eigenvalue defined by

λ∗ = αSAδσ + αSAδ
2 + αIAβσT − αIAδσ.
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Theorem 6. Consider NSRK scheme (c, A, bT , ϕ) under the assumption (8). Then
1. The equilibrium point P2 is unstable.
2. The equilibrium point P3 if existing, is unstable.
3. There exists a number τ∗ > 0 such that if the denominator function ϕ(h) satisfies ϕ(h) <
τ∗ then P1 is locally asymptotically stable.

Proof. Call J and J∗ the Jacobian matrices of (1) and NSRK (c, A, bT , ϕ) calculated at a
certain equilibrium point E∗, respectively. Then, according to the results of the stability
function of Runge-Kutta methods [1] we obtain: if λ is an eigenvalue of J then µ = µ(λ) is
a corresponding eigenvalue of J∗, where µ is defined by

µ = a5z
5 +

1

24
z4 +

1

6
z3 +

1

2
z2 + z + 1,

with a5 = bTA41 > 0 and z = λϕ.

For the equilibrium point P2, corresponding to the eigenvalue λ = αT of J there is the
eigenvalue µ = µ(λ) of J∗. Since λ > 0 then µ > 1. Therefore, the matrix J∗(P2) has an
eigenvalue lying outside of the unit circle. By Lyapunov theorem [10, 16] the point P2 is
unstable.

In a similar way, as is known, if the equilibrium point P3 exists (T > δ/β) then J(P3)
has a positive eigenvalue λ∗. Corresponding to the eigenvalue λ∗ of J we have the eigenvalue
µ∗ of J∗. Obviously, µ∗ > 1 because λ∗ > 0. Hence, the point P3 is unstable.

Now we consider the stability of the equilibrium point P1. Recall that σ(J(P1)) =
{−αSAT,−αIAT − δ,−σ, 0}. Corresponding to the eigenvalue λ = 0 of J we have the
eigenvalue µ = 1 of J∗. Nevertheless, as in the continuous case, this eigenvalue does not
imply bifurcation or central manifold for the model [25], representing only the fact that one
equation can be expressed as a linear combination of the other three. Corresponding to the
eigenvalues λ1 = −αSAT, λ2 = −αIAT − δ, λ3 = −σ of J we have the following eigenvalues
of J∗

P(z) = a5z
5 +

1

24
z4 +

1

6
z3 +

1

2
z2 + z + 1, z = ϕλ1,

P(z) = a5z
5 +

1

24
z4 +

1

6
z3 +

1

2
z2 + z + 1, z = ϕλ2,

P(z) = a5z
5 +

1

24
z4 +

1

6
z3 +

1

2
z2 + z + 1, z = ϕλ3.

By Lyapunov theorem [10, 16], the necessary and sufficient condition for P1 to be locally
stable is |P(λi)| < 1, i = 1, 2, 3. This is equivalent to the system

a5ϕ
5(λi)

5 +
1

24
ϕ4(λi)

4 +
1

6
ϕ3(λi)

3 +
1

2
ϕ2(λi)

2 + ϕλi < 0, (9)

Pi(ϕ) := a5ϕ
5(λi)

5 +
1

24
ϕ4(λi)

4 +
1

6
ϕ3(λi)

3 +
1

2
ϕ2(λi)

2 + ϕλi > −2, (10)

for i = 1, 2, 3. We also see that (9) is equivalent to

Qi := a5ϕ
4(λi)

5 +
1

24
ϕ3(λi)

4 +
1

6
ϕ2(λi)

3 +
1

2
ϕ(λi)

2 + λi < 0.
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It is easy to see that Pi(ϕ) → 0 as ϕ → 0 and Qi(ϕ) → λi < 0 as ϕ → 0. Therefore, from
the definition of limit of a function it follows that there exists a number τ∗ > 0 such that
Pi(ϕ) > −2 and Qi(ϕ) < 0 for any ϕ < τ∗, or in other words, (9) and (10) are satisfied if
ϕ < τ∗. Thus, the theorem is proved. �

Remark 1. In Theorem 6, the number τ∗ can be determined as τ∗ = mini=1,2,3{pi, qi},
where pi and qi are minimal root of the polynomials Pi(ϕ) and Qi(ϕ), respectively.

Summarizing the results in this section we obtain

Theorem 7. NSRK (5) preserves the properties (P1) and (P2) of (1) if the denominator
function satisfies the condition

ϕ(h) < min

{
r

(αSA + β)T
,

r

(αIA + δ)T
,
r

σ
, τ∗
}
, ∀h > 0. (11)

Clearly, the denominator function ϕ(h) = h does not satisfy (11). Therefore, we should
select the denominator function satisfying (11) and not influencing on the accuracy order of
the original Runge-Kutta methods. For doing this we need the following

Corollary 2. NSRK (c, A, bT , ϕ) is of fourth order of accuracy if the denominator function
satisfies the condition

ϕ(h) = h+O(h5). (12)

Thus, we have to select denominator functions satisfying simultaneously (11) and (12).
The selection of such functions is an interesting and important problem. Analogously as in
the recent work [6], we select denominator functions of the form

ϕ(h) = (1− θ(h))
1− e−τh

τ
+ θ(h)he−µh

m
, θ(h) = 1 +O(hp).

5. NUMERICAL SIMULATIONS

In this section we report the results of some numerical simulations in order to confirm the
validity of obtained theoretical results and to demonstrate the efficiency of designed NSFD
schemes. It should be emphasized that all numerical simulations in [2, 4, 5, 6, 7, 8, 19, 20,
21, 22] showed that standard difference schemes do not preserve essential properties of the
corresponding continuous models.

Example 1. Consider the model (1) with the parameters

β = 0.1, δ = 20, σ = 0.8, αSA = 0.25, αIA = 0.25.

In this case we take T = 100. The numerical solutions obtained by NSFD schemes (3)
for the model (2) is depicted in Figure 1. From the figure it is seen that P1 is globally
asymptotically stable, P2 is unstable and P3 does not exist. Moreover, the properties of the
continuous model are preserved.
Example 2. Consider the model (1) with the parameters

β = 0.1, δ = 9, σ = 0.8, αSA = 0.25, αIA = 0.25.

For this case we take T = 100. The numerical solutions of the model (2) obtained by the
NSFD schemes (3) are depicted in Figure 2. Obviously, P1 is globally asymptotically stable,
P2 and P3 are unstable. Moreover, the properties of the continuous model are preserved.
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Figure 1. Numerical solutions obtained by NSFD schemes (3) with ϕ(h) = 1−e−h and h = 1

Example 3. Accuracy and computation time of schemes
Consider the model (1) with the parameters

β = 0.01, δ = 0.02, σ = 0.5, αSA = 0.025, αIA = 0.02

and the initial values (20, 30, 20, 30). We report the errors of the NSFD and NSRK (c, A, bT , ϕ).
For comparison we also consider the method proposed by Wood and Koruharov in [27], which
preserves the positivity and stability of dynamical systems based on nonlocal discretization.
The denominator functions used for NSFD scheme (3), NSRK scheme and Wood and Kor-
uharov’s scheme, respectively are

ϕ(h) =
1− e−0.6h

0.6
, ϕ(h) = e−h

8
he−0.0001h

6
+

(1− e−h8)(1− e−1.1h)

1.1
, ϕ(h) =

1− e−0.6h

0.6h
.

Since it is impossible to find the exact solution of the model, as a benchmark we use the
numerical solution obtained by 11-stage Runge-Kutta method [9]. The benchmark solution
is depicted in Figure 3. From the figure it is seen that the components of the solution change
very quickly in a short time from the starting points, after that they become stable. The
differential problem in this case is stiff. Table 1 provides the errors and the rates of the NSFD
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Figure 2. Numerical solutions obtained by NSFD schemes (3) with ϕ(h) = e−h
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+

(1− e−h8)(1− e−1.1h)/1.1 and h = 1

scheme, Wood and Koruharov’s (W-K’s) scheme and NSRK scheme for different stepsizes.
There errors are computed by the formula

err = max
k
{|Sk − S(tk)|+ |Ik − I(tk)|+ |Rk −R(tk)|+ |Ak −A(tk)|},

where Uk and U(tk) are the solutions obtained by a scheme and the benchmark solution,
respectively. Besides, rate := log h1

h2
(err1/err2) (see [1, Example 4.1]) is an approximation for

accuracy order of the schemes. In the last column of Table 1 (rate of NSRK scheme), we see
an unexpected phenomenon, when h is small the rates decrease. A similar phenomenon also
was indicated in [1, Example 4.1]) when studying explicit standard Runge-Kutta methods.
The reason of this is that the rounding errors generally increase as h decreases.

The computation time is given in Table 2. From the tables we see that NSFD (3)
has better accuracy and faster then the Wood and Koruharov’s scheme. The reason is
that at each step Wood and Koruharov’s scheme needs to consider the sign of the right-
hand sides for choosing appropriate discretization. NSRK scheme has the best accuracy but
the computation time is largest because at each step it requires computation of values of
stages Ki. However, to obtain the solution of high order of accuracy the use of NSRK is
more efficient than the use of extrapolation, which combines the solutions of first order of
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Figure 3. Benchmark solution obtained by RK8 with h = 10−5

Table 1. Errors and rates of the schemes

Stepsize NSFD scheme Rate W-K’s scheme Rate NSRK scheme Rate
0.25 6.463466701595602 7.713254298410573 1.2780e-04
0.2 5.243459924068896 0.9374 6.056566836376636 1.0836 2.7012e-05 6.9650
0.15 3.989310828795733 0.9502 4.459865753797996 1.0638 5.5149e-06 5.5229
0.1 2.698912044130053 0.9638 2.920085782158711 1.0445 9.2956e-07 4.3913
0.05 1.369838435912756 0.9784 1.434358023863455 1.0256 5.6487e-08 4.0405
0.001 0.027798934145437 0.9963 0.028200224634866 1.0044 1.7708e-12 2.6509

0.00001 0.000278071734776 0.9999 0.000281905383956 1.0001 9.3258e-15 1.1392

accuracy. The advantage of NSRK is that it has high order of accuracy for small stepsizes
and preserves the properties of the model for large stepsizes. Moreover, it is explicit, easy
to be programmed.

6. CONCLUSIONS

In this paper we have constructed two families of NSFD schemes preserving the essential
properties of a computer virus spread model. They are positivity, boundedness and local
stability. Besides, the first NSFD schemes are globally stable, the second NSFD schemes are
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Table 2. Computation times of the schemes in seconds

Stepsize NSFD scheme (3) W-Ks scheme NSRK scheme

0.2 0.001897 0.027662 0.048200
0.1 0.001942 0.012523 0.043975
0.05 0.002224 0.016025 0.064037
0.01 0.006202 0.066508 0.306687
0.005 0.006793 0.118272 0.632497
0.001 0.028386 0.616064 2.859388
0.0001 0.210997 5.866315 27.817605
0.00001 2.069937 57.343785 273.413824

of fourth order of accuracy. The numerical simulations confirm the validity of obtained the-
oretical results. Among these constructed schemes, NSFD schemes have advantage in order
of accuracy for small stepsizes and preserves the properties of the corresponding continuous
model for large stepsizes. The method for designing high order, dynamically consistent sche-
mes are applicable to some other applied models. This is the subject of our research in the
future.
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