
Journal of Computer Science and Cybernetics, V.34, N.3 (2018), 249–263

DOI 10.15625/1813-9663/34/3/13053

MINING TOP-K FREQUENT SEQUENTIAL PATTERN IN ITEM
INTERVAL EXTENDED SEQUENCE DATABASE

TRAN HUY DUONG1,a, NGUYEN TRUONG THANG1, VU DUC THI2, TRAN THE ANH1

1Institute of Information Technology, Vietnam Academy of Science and Technology
2Information Technology Institute, Vietnam National University (VNU)

aHuyDuong@ioit.ac.vn

�

Abstract. Frequent sequential pattern mining in item interval extended sequence database (iSDB)
has been one of the interesting tasks in recent years. Unlike classic frequent sequential pattern mi-

ning, the pattern mining in iSDB also considers the item interval between successive items; thus,

it may extract more meaningful sequential patterns in real life. Most previous frequent sequential

pattern mining in iSDB algorithms needs a minimum support threshold (minsup) to perform the

mining. However, it’s not easy for users to provide an appropriate threshold in practice. The too high

minsup value will lead to missing valuable patterns, while the too low minsup value may generate

too many useless patterns. To address this problem, we propose an algorithm: TopKWFP - top-K
weighted frequent sequential pattern mining in item interval extended sequence database. Our algo-

rithm doesn’t need to provide a fixed minsup value, this minsup value will dynamically raise during

the mining process.

Keywords. Sequential pattern; Item interval; Top-K.

1. INTRODUCTION

Sequential pattern mining is an important task in data mining field with wide applications. In

real life, sequential pattern data are very popular, like customer purchase sequential patterns, medical

treatment sequential patterns, weblogs sequential patterns,... The main purpose of sequential pattern

mining is finding all subsequences that frequently occur in a sequence database.

Some well-known sequential pattern mining algorithms are AprioriAll [1], GSP [2], PrefixSpan

[3], SPADE [4], SPAM [5]. These algorithms only consider the occurrence frequency (support),

Hirate and Yamana [6] proposed an algorithm which considers the item interval between items. At

these frequencies-based algorithms, the downward closure property (or Apriori [1] property) plays a

fundamental role in identifying frequent sequence patterns. However, these algorithms only consider

the occurrence frequency of sequential patterns, regardless of their significance. To indicate the

significance of data items, each item can be assigned a weighted value. Some algorithms with weighted

items are MINWAL [7], WAR [8], WARM [9], FWARM [10], WFIM [11], WPrefixSpan [12].

In [13], a WIPrefixSpan algorithm is built for mining sequential pattern in ISDB. This algorithm

not only considers item interval, occurrence frequency but also the significance (weighted value) of

each item. Although WIPrefixSpan can extract weighted sequential patterns with item interval due to

c© 2018 Vietnam Academy of Science & Technology

mailto:huyduong@ioit.ac.vn

250 TRAN HUY DUONG

a minimum threshold wminsup and four constraints C1, C2, C3, C4 ; it’s really difficult to specify

an appropriate minimum threshold and to directly extract the most valuable patterns. Because there

are multiple factors which affect the result: the distribution of items and weights, density of database,

the lengths of the sequences,... Hence, with the same threshold, some datasets may produce millions

of patterns while others may produce nothing.

The traditional sequential pattern framework faces the same challenge. Therefore, some top-K

pattern mining algorithms were proposed in [14, 15, 16, 17], (itemset mining) and [18, 19, 20, 21, 22]

(sequential pattern mining) to find the highest frequency patterns. In the top-K frequent pattern

mining, instead of letting a user specify a threshold, the top-K pattern selection algorithms allow a

user to set the number of top-K high frequency patterns to be discovered. Those top-K frequent

pattern mining algorithms only interest in occurrence frequency, but not item interval and weights of

items. In fact, top-K sequential pattern mining with item interval and weight has many differences

with a classic top-K sequential pattern mining, thus brings more challenges. In order to address

those challenges, we propose a TopKWFP algorithm.

The remainder of the paper is organized as follows. Section 2 defines the problem of mining top-K

weighted sequential pattern mining with item interval. Section 3 details the TopKWFP algorithm.

Section 4 shows experimental results and evaluation. The conclusion is presented in Section 5.

2. PROBLEM STATEMENT

Let I = {i1, i2, ..., in} be a set of distinct items. Each item ij ∈ I is assigned a weight wj where

j = 1, ..., n. A sequence is an ordered list of itemsets denoted by S= 〈(t1,1, s1), (t1,2, s2), ..., (t1,m, sm)〉
with sj ⊆ I where 1 ≤ j ≤ m is an itemset which is called an element of sequence, tαβ is item

interval between sα and sβ . A sequence S is eliminated if it has only one item. An item can occur

at most once in an element of a sequence sj , but can occur multiple times in different elements of a

sequence S.

The size |S| of a sequence is the number of elements in the sequence S. The length l(S) of the

sequence S is the number of instances of items in S. An item interval sequence database (iSDB) =

{S1, S2, ..., Sm} is a set of tuples (iSID, S) where iSID is an identification of a sequence and Sk
is a sequence.

For example, Table 1 is an iSDB with 3 sequences, first sequence with iSID = 10 shows that

item a occurs first in the sequence, then item a, b, c occurs at the same time with item interval 1,

then item a, c occurs at the same time with item interval 3. Table 2 is weights of items.

Definition 1. Support, Normalized weight and Normalized weighted support of a sequence:

• The (absolute) support of a sequence α in a sequence database SDB is defined as the number

of sequences that contain α, and is denoted by support(α). In other words,

support(α) = |{s|α ⊆ s ∧ s ∈ SDB}|.

• Given a sequence α = 〈(t1,1, s1), (t1,2, s2), ..., (t1,m, sm)〉 where si is (xi1xi2...xi|si|), |si|
denotes the length of element si. The Normalized weight of the sequence α , denoted NW (α),

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 251

Table 1. An iSDB

iSID Sequence

10 < (0, a), (1, abc), (3, ac) >
20 < (0, ad), (3, c) >
30 < (0, aef), (2, ab) >

Table 2. Weights of items

Items Weight

a 0,9
b 0,75
c 0,8
d 0.85
e 0.75
f 0.7

is defined as follows

NW (α) =

∑m
i=1

∑|si|
j=1weight(xij)∑m
i=1 |si|

.

• We call the quantity

NWsupport(α) = NW (α) ∗ support(α)

the Normalized weighted support of sequence α.

For example, for α = 〈(0, a), (2, a)〉, we have

NWsupport(〈(0, a), (2, a)〉) =
0, 9 + 0, 9

2
∗ 2 = 1, 8.

Definition 2. Subsequence of another sequence.

A sequence α = 〈(t1,1, a1), (t1,2, a2), ..., (t1,n, an)〉 is called a subsequence of another sequence

β = 〈(t1,1, b1), (t1,2, b2), ..., (t1,m, bm)〉, and β is a supersequence of α, denoted as α ⊆ β , if there

exist integers 1 < j1 < j2 < ... < jn ≤ m such that a1 ⊆ bj1 , a2 ⊆ bj2 , ..., an ⊆ bjn . For example,

if α = 〈(ab), d〉, and β = 〈(abc), (de)〉, where a, b, c, d, and e are items, then α is a subsequence of

β and β is a supersequence of α.

Definition 3. Prefix and subfix of a sequence.

Suppose that all the items within an event are listed alphabetically. For example, instead of

listing the items in an event as, say, (bac), we list them as (abc) without loss of generality. Given a

sequence α = 〈e1, e2, ..., en〉, a sequence β = 〈e′1, e′2, ..., e′m〉(m ≤ n) is called a prefix of α if and

only if:

• e′i = ei for (i ≤ m− 1),

• e′m ⊆ em,

• all the frequent items in (em − e′m) are alphabetically after those in e′m.

Sequence γ = 〈e′′m, em+1, ..., en〉 is called the postfix of α with respect to prefix β. We also

denote α = β.γ. Note if β is not a subsequence of α, the postfix of α with respect to β is empty.

Definition 4. Item interval constraints.

Let 〈(t1,1, s1), (t1,2, s2), (t1,3, s3), ..., (t1,m, sm)〉 be an extracted interval extended sequence.

The four item interval constraints are defined as follows:

252 TRAN HUY DUONG

• C1: Let min interval be a minimum item interval between any two adjacent items, C1 is

defined as ti,i+1 ≥ min interval for all {i|1 ≤ i ≤ m− 1}.

• C2: Let max interval be a maximal item interval between any two adjacent items, C2 is

defined as ti,i+1 ≤ max interval for all {i|1 ≤ i ≤ m− 1}.

• C3: Let min whole interval be a minimum item interval between the head and tail of the

sequence, C3 is defined as t1,m ≥ min whole interval.

• C4: Let max whole interval be the maximal item interval between the head and tail of the

sequence, C4 is defined as t1,m ≤ max whole interval.

Definition 5. Candidate sequence pattern.

Given a support threshold wminsup. An α sequence is called candidate weighted sequence pattern

if it satisfies

Support(α) ∗MaxW ≥ wminsup and α satisfies C1, C2, C3, C4,

where MaxW is the maximum value of weights of the items in iSDB. Candidate sequence patterns

are built for the purpose of pruning the search space and still ensure downward closure property in

the mining item interval normalized weighted frequent sequential patterns.

Definition 6. Top-K item-interval weighted frequent sequential patterns.

A sequence t is called a top-K item-interval weighted frequent sequential patterns if there are less

than k sequences having normalized weighted support higher than NWSupport(t) and t satisfies

item interval constraints C1, C2, C3, C4. The optimum wminsup is denoted and defined as ε

= min{NWSupport(t)|t ∈ T} where T means the set of top-K item-interval weighted frequent

sequential patterns.

Given an item interval extended sequence database iSDB and an integer k, the problem of finding

the set of top-K item-interval weighted frequent sequential patterns is to discover all the sequential

patterns t which have NWSupport(t) ≥ ε and t satisfies item interval constraints C1, C2, C3, C4.

3. TopKWFP ALGORITHM

We introduced the problem of finding the set of top-K item-interval weighted frequent sequential

patterns in the previous section. In this section, we specify and present an efficient algorithm,

TopKWFP, for mining top-K item-interval weighted frequent sequential patterns. TopKWFP is based

on WIPrefixSpan [12] which uses a prefix sequence database and growth patterns approach. Firstly,

we present a basic TopKWFP algorithm with raising the weighted support threshold (wminsup)

strategy. Then, we add an efficient strategy to create the most promising patterns.

A. Raising minimum weighted threshold wminsup:

TopKWFP algorithm finds top-K item-interval weighted frequent sequential patterns which use

Prefixspan’s pattern-growth method. Firstly, wminsup is set to zero, then sequential patterns are

found by applying pattern-growth method. Whenever a pattern is found, it will be inserted into

an ordered-by-weighted-support list L. This list is used to maintain the top-K pattern on-the-fly.

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 253

Once there are k patterns in the list L, the internal wminsup variable is raised to the weighted

support of the pattern with the lowest weighted support in L. With this raising minimum weighted

threshold wminsup strategy, the TopKWFP algorithm’s search space is reduced. After k patterns

are found in list L and wminsup value is raised, the newly found pattern will be inserted to L if

it has weighted support value higher than wminsup and the patterns with weighted support lower

than new wminsup will be eliminated from L. The internal wminsup value is thereafter raised to

the weighted support of the new pattern with the lowest weighted support in L,... The TopKWFP

algorithm continues until there is no pattern found, then the algorithm is finished and output the

set of top-K item-interval weighted frequent sequential patterns. However, an algorithm simply

incorporating raising minimum weighted threshold strategy does not have good performance.

B. Generating the most promising candidates:

To improve the performance of TopKWFP, we have added a second strategy: Generating the

most promising candidates. It is to try to generate the most promising candidate sequential patterns

first. The rationale of this strategy is that if patterns with high support are found earlier, it allows

TopKWFP to raise its internal wminsup variable faster, and thus to prune a larger part of the search

space. To implement this strategy, TopKWFP uses an internal variable R to maintain at any time

the set of patterns that can be extended to generate candidates. TopKWFP then always extends

the pattern having the highest support first. It is noticed that all pattern in the R was ordered

by support instead of NWSupport, because R contains only candidate patterns but not frequent

sequence patterns.

The pseudo code of the TopKWFP algorithm is shown below:

Algorithm TopKWFP

Input : – Item interval extended sequence database iSDB

– Weight value of each item i W(i)

– Item interval constraint C1, C2, C3, C4

– a number k

Output : The set of top-K item interval weighted frequent sequential patterns.

1: Start

2: R = ∅;L = ∅;wminsup := 0;

3: Scan iSDB first time, count the support of each item i in iSDB, denoted as support(i),

and count the MaxW=Max{W (i)};
4: for each item i in iSDB do

5: α = 〈(0, i)〉;
6: if support(α) ∗MaxW ≥ wminsup then

7: R = R ∪ α;

8: end if

9: if support(α) ∗NW (α) ≥ wminsup then

10: SAVE(α,L, k, wminsup);

254 TRAN HUY DUONG

11: end if

12: end for

13: if k < number of all item i in iSDB then

14: Scan iSDB second time, eliminate all items i in iSDB don’t satisfy condition support(i)∗
MaxW ≥ wminsup;

15: end if

16: while ∃r ∈ R and support(r) ∗MaxW ≥ wminsup do

17: r = the highest Support value sequence in R;

18: Build r-projected database iSDB|r;
19: PROJECTION(iSDB|r,W (i), C1, C2, C3, C4, wminsup, k);

20: Remove r from R;

21: Remove from R all item s which support(s) ∗MaxW ≤ wminsup;

22: end while

23: Return L;

24: End

The PROJECTION procedure

1: procedure PROJECTION(iSDB|r,W (i), C1, C2, C3, C4, wminsup, k)

2: Scan iSDB|r to find all pairs of item (4t; i) that satisfy support(i)∗MaxW ≥ wminsup,

C1 and C2, with i is an item data and 4t is item interval between r and i;

3: for each (4t; i) do

4: r = 〈r, (4t; i)〉;
5: if r satisfies C4 then

6: R = R ∪ r;
7: if r satisfiesC3 and support(r)∗NW (r) ≥ wminsup then SAVE(r, L, k, wminsup);

8: end if

9: end if

10: end for

11: end procedure

The SAVE procedure

1: procedure SAVE (r, L, k, wminsup)

2: L = L ∪ {r};
3: if |L| > k then

4: if NWSupport(r) > wminsup then

5: while |L| > k and ∃s ∈ L | NWSupport(s) = wminsup do

6: REMOVE s from L;

7: end while

8: end if

9: Set wminsup to the lowest weighted support of patterns in L;

10: end if

11: end procedure

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 255

The TopKWFP algorithm first initializes the variables R and L as the empty set, and wminsup

to 0 (line 2). Then, iSDB is scanned first time to find all item i in iSDB and the MaxW value.

With each item i, create initial interval extended sequences α = 〈(0, i)〉 (line 5), then check condition

support(α) ∗MaxW ≥ wminsup and put the sequences satisfying that condition into R (line 6

to 8). We continue with checking condition support(α) ∗NW (α) ≥ wminsup, with each sequence

α satisfies the condition, call the SAVE procedure (line 9 to 11).

If there are more items in iSDB than k value, the wminsup will rise above zero, so we will

scan iSDB second time to eliminate all items which is not a candidate (line 13-15). After that,

a while loop is performed. It recursively gets the highest support sequential pattern (line 16-17),

then generates patterns by building a project database and call the PROJECTION procedure in

(line 18-19). After that, pattern r is removed from R as well as all other patterns which have

support(s)∗MaxW ≤ wminsup (line 20-21). The ideal of the while loop has been to always extend

the pattern having the highest support first because it is more likely to generate patterns having a

high weighted support and thus to allow to raise wminsup more quickly for pruning the search space.

The loop terminates when there is no more candidate in R with support(r) ∗MaxW ≥ wminsup.

At this moment, the set L contains the top-K item interval weighted sequential patterns (line 23).

The PROJECTION procedure scans projected database iSDB|r to generate candidates and add

to the R. Firstly, it scans project database iSDB|r to find all itemized interval pairs (Mt;i) that

satisfy support(i) ∗MaxW ≥ wminsup and constraints C1, C2 (line 2). Then, with each pattern

found, the procedure appends (Mt;i) to r to become a new pattern r = 〈r, (Mt;i)〉 (line 4). Next,

the procedure checks whether the new pattern satisfies constraint C4 or not (line 5). If it satisfies

C4, we consider it a candidate and add to set R (line 6). After that, the new pattern is checked

with constraint C3, if it satisfies C3 then the SAVE procedure is called to add it into L (line 7-9).

PROJECTION procedure checks whether the extracted frequent interval extended sequences satisfy

C3 or not, after they have been extracted with satisfying minimum support constraint, C1, C2, and

C4. This is because that we are not able to judge the satisfaction of constraint C3 before other

constraints. Although an interval extended sequence δ does not satisfy the constraint C3, some

supersets ε, which include δ as a subset, may satisfy the constraint C3. On the other hand, when a

candidate extracted sequence does not satisfy C3, it is not extracted as a result sequence.

The SAVE procedure raises wminsup and update the list L when a new weighted frequent

pattern r is found. The first step of SAVE is to add the pattern r to L (line 2). Then, if L contains

more than k patterns and the weighted support is higher than wminsup, patterns from L that have

exactly the weighted support equal to wminsup can be removed until only k patterns are kept (line

4 to 7). Finally, wminsup is raised to the weighted support of the pattern in L having the lowest

weighted support (line 8). By this simple scheme, the top-K pattens found are maintained in L.

4. EXPERIMENTAL RESULTS AND EVALUATION

In this session, we evaluate the performance of TopKWFP on a variety of datasets. According

to our study, there is no algorithm can solve the top-K item interval weighted frequent sequential

pattern problem, so we compare TopKWFP in 2 situations: use only raising minimum weighted thres-

256 TRAN HUY DUONG

hold wminsup strategy (TopKWFP1) and use both strategies raising minimum weighted threshold

wminsup and generating the most promising candidates (TopKWFP2).

In the general case, the complexity of the algorithm TopKWFP is exponential O(nL), where n

is the number of items in the dataset and L is the maximum length of the sequence in the whole

database.

Experiments were performed on a computer with a 7th generation Core i7 processor running Win-

dows 10 and 8 GB RAM. The TopKWFP algorithm was implemented in Java. All memory measure-

ments were done using the Java API. Experiments were carried on five real-life datasets having varied

characteristics and representing four different types of data (web click stream, text from books and

sign language utterances). These datasets are Bible, BMS-WebView1, FIFA, Leviathan, Sign. Table

3 summarizes their characteristics. All datasets were downloaded from SPMF datamining framework

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Table 3. Datasets’characteristics

Dataset Sequence
count

Distinct
item count

Avg. seq.
length (items)

Type of data

Bible 36369 13905 21.64 book

BMS-WebView1 59601 497 2.42 web click stream

FIFA 20450 2990 34.74 web click stream

Leviathan 5834 9025 33.81 book

All above datasets have no item interval and weight data, so we must generate item interval and

weight for each. Item interval is incrementally generated, two adjacent items have one item interval

distant. Weighted values are randomly generated in range [0.2;0.8].

In the first test, we ran the algorithm on each dataset with k varied from 1000 to 10000 to

evaluate the influence of k on the runtime and the memory usage. The four constraints were set as

C1=0; C2= 5; C3= 0; C4= 15. The results are shown in Figure 1 and Figure 2. It can be seen that

the TopKWFP2 is more efficient than TopKWFP1 in both runtime and memory usage aspect. The

algorithm also has good scalability in both cases, while increasing k value. By applying 2 strategies,

the performance of the algorithm has increased.

In the second test, we compare the TopKWFP algorithm which uses both strategies with the

WIPrefixSpan with optimum support (which is hard for the user to choose). We do that by first

running the TopKWFP algorithm to find the optimum support and then use this support as a

parameter for the WIPrefixSpan algorithm. The results are shown in Figure 3. We can see that

TopKWFP mines these datasets very efficiently and in most cases runs several times faster than

WIPrefixSpan. The reason of the better performance of TopKWFP is that TopKWFP uses generating

the most promising candidates. This strategy only chooses the most promising patterns (the highest

support patterns) to extend while WIPrefixSpan must extend all patterns in the search space.

http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 257

a) Bible

b) BMS-WebView1

c) Fifa

258 TRAN HUY DUONG

d) Levithan

e) Sign

Figure 1. Runtime on Bible, BMS-WebView1, Fifa, Levithan and Sign dataset

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 259

a) Bible

b) BMS-WebView1

c) Fifa

260 TRAN HUY DUONG

d) Levithan

e) Sign

Figure 2. Memory usage on Bible, BMS-WebView1, Fifa, Levithan and Sign dataset

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 261

a) Bible

b) BMS-WebView1

c) Fifa

262 TRAN HUY DUONG

d) Levithan

e) Sign

Figure 3. Comparison of WIPrefixSpan and TopKWFP runtime for Bible, BMS-WebView1,
Fifa, Levithan and Sign dataset

MINING TOP-K FREQUENT SEQUENTIAL PATTERN 263

5. CONCLUSIONS

We proposed TopKWFP, an algorithm to discover the top-K item-interval weighted frequent

sequential patterns having the highest weighted support, where k is set by the user. The algorithm

can solve 3 problems of real life world: first, it used the weight values assigned to each item to indicate

their significance; second, it extended the sequence with the item interval between items and last it

can discover the top-K sequential patterns without a minimum threshold.

The TopKWFP algorithm uses 2 strategies that reduced the search space and hence increase

the algorithm’s performance. Our experimental study shows that the proposed algorithm delivers

competitive performance and in many cases outperforms WIPrefixSpan, even when it is running with

the best tuned wminsup.

With the above comment, we can conclude that mining top-K item-interval weighted frequent

sequential patterns is practical and in many cases more preferable than the traditional minimum

support threshold based sequential pattern mining.

ACKNOWLEDGMENT

This work is sponsored by a research grant from IOIT (CS.18.05 and No.12/FIRST/2a/IoIT).

REFERENCES

[1] R. Agrawal, R. Srikant, “Mining sequential patterns,” in Proceedings of the International Confe-
rence on Data Engineering (ICDE), 1995.

[2] R. Agrawal, R. Srikant, “Mining sequential patterns: Generalizations and performance impro-
vements,” in Proceedings of the 5th International Conference on Extending Database Technology:
Advances in Database Technology, pp.1–17, 1996.

[3] J. Pei, J. Han, B.M. Asi, H. Pino,, “PrefixSpan: Mining sequential patterns efficiently by prefix-
projected pattern growth,” in Proceedings of the Seventeenth International Conference on Data
Engineering, 2001.

[4] M. Zaki, “SPADE: An efficient algorithm for mining frequent sequences,” Machine Learning,
vol. 40, pp.31–60, 2000.

[5] Ayres, J., Gehrke, J., Yiu, T. and Flannick, J, “Sequential pattern mining using bitmap repre-
sentation,” in Proc. of ACM SIGKDD’02, 2002.

[6] Yu Hirate, Hayato Yamana, “Generalized sequential pattern mining with item,” Journal of
Computers, vol. 1, no. 3, pp.51–60, 2006.

[7] C.H.Cai, A.W.Chee Fu, C.H.Cheng, and W.W.Kwong, “Mining association rules with weighted
items,” in Proceedings of the 1998 International Symposium on Database Engineering & Applica-
tions, Cardiff, Wales, 1998.

[8] W.Wang, J.Yang, and P.S.Yu, “Efficient mining of weighted association rules (WAR),” in Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2000.

264 TRAN HUY DUONG

[9] F. Tao, F. Murtagh, M. Farid, “Weighted association rule mining using weighted support and
significance framework,” in Proceedings of 9th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, vol. 12, no. 1, pp.234–778, 2002.

[10] M. S. Khan, M. Muyeba, F. Coenen, “Weighted association rule mining from binary and fuzzy
data,” in Proceedings of 8th Industrial Conference, ICDM 2008, 2008.

[11] U. Yun, J.J. Leggett, “WFIM: weighted frequent itemset mining with a weight range and a
minimum weight,” in 5th SIAM Int. Conf. on Data Mining, 2005.

[12] Janos Demetrovics, Vu Duc Thi, Tran Huy Duong, “An algorithm to mine normalized weigh-
ted sequential patterns using prefix-projected database,” Serdica Journal of Computing, Sofia,
Bulgarian Academy of Sciences, vol. 2, pp.105–122, 2015.

[13] Tran Huy Duong, Vu Duc Thi, “Algorithm mining normalized weighted frequent sequential
patterns with Time intervals,” Research, Development and Application on Information & Com-
munication Technology, vol. 2, pp.72–81, 2015.

[14] J. Wang and J. Han, TFP, “An efficient algorithm for mining top-K frequent closed itemsets,”
TKDE, vol. 17, pp.652–664, 2005.

[15] K. Chuang, J. Huang and M. Chen, “Mining top-K frequent patterns in the presence of the
memory constraint,” VLDB Journal, vol. 17, pp.1321–1344, 2008.

[16] Y. L. Cheung and A. W. Fu, “Mining frequent itemsets without support threshold: with and
without item constraints,” TKDE, vol. 16, pp.1052–1069, 2004.

[17] Sharda Khode, Sudhir Mohod, “Mining high utility itemsets using TKO and TKU to find top-K
high utility web access patterns,” in 2017 International Conference of Electronics, Communication
and Aerospace Technology (ICECA), Coimbatore, 2017.

[18] P. Tzvetkov, X. Yan and J. Han, “TSP: Mining top-K closed sequential patterns,” ICDM,
pp.347–354, 2003.

[19] Z. Zheng, L. Cao, Y. Song and W. Wei, “Efficiently mining top-K high utility sequential pat-
terns,” 2013 IEEE 13th International Conference on Data Mining, pp.1259–1264, 2013.

[20] Asima Jamil, Abdus Salam and Farhat Amin, “Performance evaluation of top-K sequential
mining methods on synthetic and real datasets,” International Journal of Advanced Computer
Research, vol. 7, no. 32, pp.176–184, 2017.

[21] Fournier-Viger P., Gomariz A., Gueniche T., Mwamikazi E., Thomas R, “TKS: Efficient mining
of top-K sequential patterns,” Springer Advanced Data Mining and Application, vol. 8346, pp.109–
120, 2013.

[22] Karishma B Hathi , Jatin R Ambasana, “Top K sequential pattern mining algorithm,” Interna-
tional Conference on Information Engineering, Management and Security, pp.115–120, 2015.

Received on August 29, 2018

Revised on October 22, 2018

	INTRODUCTION
	PROBLEM STATEMENT
	TopKWFP ALGORITHM
	EXPERIMENTAL RESULTS AND EVALUATION
	CONCLUSIONS

