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Abstract. Recently, picture fuzzy clustering (FC-PFS) has been introduced as a new computatio-

nal intelligence tool for various problems in knowledge discovery and pattern recognition. However,

an important question that was lacked in the related researches is examination of mathematical pro-

perties behind the picture fuzzy clustering algorithm such as the convergence, the boundary or the

convergence rate, etc. In this paper, we will prove that FC-PFS converges to at least one local

minimum. Analysis on the loss function is also considered.
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1. INTRODUCTION

One of the most efficient tools in pattern recogntion and knowledge discovery is fuzzy
clustering in which the uncertainty and vagueness of data can be handled sucessfully. Fuzzy
clustering, as its reminiscent names recalled, uses a membership function to assign for each
data elements in the original dataset. The decision of an appropriate cluster depends on
the membership values, that is to say, a greater one implies the inclusion. Fuzzy clustering
sucessfully handle the problem of crisp clustering in which a data element can belong to
many clusters at the same time [1, 2]. However, it was deployed on the traditional fuzzy set,
which shows some limitations in dealing with practical scenarios like voting [3].

A new extension of the fuzzy set called the Picture Fuzzy Set (PFS) was presented by
Cuong in [3, 4] to handle such the problem. A PFS is characterized by three membership
degrees: positive, neutral, and negative degrees. In the real case of voting applications,
‘positive’ refers to the support for a candidate, ‘negative’ in reverse shows the opposition,
and ‘neutral’ reflects the hesistant group who do not agree and disagree. There are many
other cases to demonstrate the usage and practical necessity of the PFS [5].

Picture Fuzzy Set has been applied to decision making problems as in the works of Wei
[6, 7, 8, 9, 10]. In these researches, the authors have applied picture aggregation opeartors
and picture fuzzy entropy in multi-attribute decision problems. Some new operators based
on the cosine function and their weighted variants have been utilized for recommendation
of products [8]. In [9], picture Bonferroni mean operators have been given in the view of
software suppliers. The 2-tuple linguistic picture operators were also examined in [10, 11].
Yang et al. [12] extended the notion of picture fuzzy soft set. Other decision making pro-
cedures in the picture fuzzy set can be retrieved in [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].
Wei [23] summarized some similarity measures in the picture fuzzy set. Indeed, Singh [24]
proposed correlation coefficients for picture fuzzy sets. Zhang [25] designed Picture Fuzzy
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Filters. Other researches regarding picture operators, picture fuzzy rules and database can
be found in [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

Picture fuzzy clustering (FC-PFS) is a generalization of the traditional fuzzy clustering
algorithm [38]. By adding a new membership to the fuzzy set to denote the vagueness
of prototype parameters, the FC-PFS has already covered situations that require human
opinions as in above. It gives precise results for clustering which has been proven through
numerous researches recently [39, 40, 41, 42, 43, 44, 45]. FC-PFS showed significant roles
in weather nowcasting from satellite image sequences [42], brain tumor segmentation [5],
recommender systems [40], and stock prediction [39].

However, to create a solid constructed basis for the algorithm, it is necessary to per-
form the theoretical analysis. Proving the convergence of picture fuzzy clustering is of an
important role in understanding the algorithm and how it is evolved. In this paper, the con-
vergence of the FC-PFS algorithm is proven and some properties of its such as the boundary
of the loss function are expanded. The similarities and differences between this algorithm
and other clustering methods are compared. Analysis on the loss function is also considered.

Section 2 recalls the general definition of the picture fuzzy set. The convergence ac-
companied with some propositions is proven followed by the Zangwill theorem in Section 3.
Section 4 validates the way to calculate the boundary of the loss function and describe the
changing of the loss function until convergence. The final section draws the conclusion and
delineates the future research directions.

2. PRELIMINARY

Definition 1. [3] A picture fuzzy set (PFS) E on the universe Y is

E = (y, µE(y), ηE(y), γE(y)‖y ∈ Y , (1)

where µE(y) ∈ [0, 1], ηE(y) ∈ [0, 1], and γE ∈ [0, 1] are the positive, neutral, and negative
memberships of y in Y satisfying

µE(y) + ηE(y) + γE(y) ≤ 1,∀y ∈ Y. (2)

Definition 2. [38] Assume Y is a dataset ofN points inR dimensions and µkj = µkj(y), ηkj =
ηkj(y), ξkj = ξkj(y), 1 ≤ j ≤ C, 1 ≤ k ≤ N, C is a number of clusters, Vj is the cluster
center j, 1 ≤ j ≤ C, m is fuzzifier, α is exponent coefficient. The picture fuzzy clustering
model is

Jm =
N∑
k=1

C∑
j=1

(µkj(2− ξkj))m‖Yk − Vj‖2 +
N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj)→ min, (3)

where
ξkj = 1− (µkj + ηkj + γkj), (4)

with constraints
µkj + ηkj + ξkj ≤ 1, (5)

µkj ∈ [0, 1], ηkj ∈ [0, 1], ξkj ∈ [0, 1], (6)
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C∑
j=1

(µkj(2− ξkj)) = 1, (7)

C∑
j=1

(ηkj +
ξkj
C

) = 1. (8)

Let us denote,

Uc $ {U = [µkj ] ∈ Rc×n : µkj satisfies (1) ∀i, k},

Nc $ {N = [ηkj ] ∈ Rc×n : ηkj satisfies (1) ∀i, k},

Zc $ {Z = [ξkj ] ∈ Rc×n : ξkj satisfies (1) ∀i, k}.

It was shown in [38] that (U∗, V ∗, N∗, Z∗) might be a local minimum of Jm if and only
if for any m > 1

µ∗kj =
1

C∑
i=1

(2− ξ∗kj)
(‖Yk − V ∗j ‖
‖Yk − V ∗i ‖

) 2
m−1

, (1 ≤ j ≤ C, 1 ≤ k ≤ N), (9)

η∗kj =
e−ξ

∗
kj

C∑
i=1

e−ξ
∗
ki

(
1− 1

C

C∑
i=1

ξ∗kj

)
, (1 ≤ j ≤ C, 1 ≤ k ≤ N), (10)

ξ∗kj = 1− (µ∗kj + η∗kj)− (1− (µ∗kj + η∗kj)
α)

1
α , (1 ≤ j ≤ C, 1 ≤ k ≤ N), (11)

V ∗j =

N∑
k=1

(µ∗kj(2− ξ∗kj))mYk

N∑
k=1

(µ∗kj(2− ξ∗kj))m
, (1 ≤ j ≤ C, 1 ≤ k ≤ N). (12)

The following describes the FC-PFS algorithm [38].

Picture Fuzzy Clustering algorithm
1. Input: Data Y with N elements; C is number of clusters, threshold ε; fuzzifier m;
exponent α; maxstep ≥ 0.
2. Initialize µ0kj ← random, η0kj ← random, ξ0kj ← random, (1 ≤ j ≤ C), (1 ≤ k ≤ N)
satisfying constraints (5-8).
3. For each iteration t, update µtkj , η

t
kj , ξ

t
kj , V

t
j following equations (9-12) respectively.

4. Until ‖µt − µt−1‖+ ‖ηt − ηt−1‖+ ‖ξt − ξt−1‖ < ε or h > maxstep, stop.
5. Output: matrices µ, η, ξ and centers V .
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3. CONVERGENCE OF PICTURE FUZZY CLUSTERING

In this section, we explore some propositions which ensure the convergence of FC-PFS.

Proposition 1. Let φ : Uc → R, φ(U) := Jm(U, V,N,Z), where V,N,Z are fixed. Then,
U∗ ∈Mfc is a strict local minimum of φ if and only if U∗ is calculated as in eq. (9).

Proof. Since µkj has two constrains in eqs. (4), (6), we consider the relaxed minimization
of φ(U) via Lagrange multipliers. Let λ = (λ1, λ2, ..., λn) be the multipliers, and L(U, λ) be
the Lagrangian

L(U, λ) =
N∑
k=1

C∑
j=1

(µkj(2− ξkj))m‖Yk − Vj‖2 +
N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj)

− λk

 C∑
j=1

(µkj(2− ξkj))− 1

 .

Then,

∂L(U, λ)

∂µkj
= mum−1kj (2− ξkj)m‖Yk − Vj‖2 − λk(2− ξkj) = 0 at U∗,

and calculate the second-order derivative of L(U, λ)

∂

∂µst

(
∂L(U, λ)

∂µkj

)
=

{
(m− 1)mµm−2kj (2− ξkj)m‖Yk − Vj‖2 if s = k, t = j

0 otherwise.

Now, substitute the updated formula of µkj into the second-order derivation of L(U, λ)
to calculate the Hessian matrix H(U∗). It follows that H(U) is a nonzero entries matrix,
whose diagonal elements are

αkj,kj = (m− 1)m(µ∗kj)
m−2(2− ξkj)m‖Yk − Vj‖2

= (m− 1)m(2− ξkj)m‖Yk − Vj‖2
1(

C∑
i=1

(2− ξkj)
(
‖Yk − Vj‖2

‖Yk − Vi‖2

) 2
m−1

)m−2
> 0

and αst,kj = 0 for s 6= k and t 6= j.

The Hessian of φ at U∗ has all positive eigenvalues which are αkj,kj , 1 ≤ k ≤ N, 1 ≤ j ≤ C.
It is sufficient to show that U∗ is a strict local minimum of φ. �

Next, we fix U ∈ Mc, N ∈ Nc, Z ∈ Zc and consider the minimization of Jm in variables
V = {Vi}.
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Proposition 2. Let ψ : RCS → R, ψ(V ) $ Jm(U, V,N,Z), where U,N,Z are fixed. Then,
V ∗ is a strict local minimum of ψ if and only if V ∗i , 1 ≤ i ≤ C is calculated via the updated
formula in eq. (12).

Proof. Since there is no constrains for V , in order to minimize ψ over RCS , it is necessary
to require 5Viψ(V ∗) to vanish for every i,

∂ψ(V )

∂Vj
=

N∑
k=1

(ukj(2− ξkj))m(−2Yk + 2Vj) = 0 at V ∗,

then take the second-order derivative,

∂

∂Vs

(
∂ψ(V )

∂Vj

)
=


N∑
k=1

(ukj(2− ξkj))m > 0 if s = j

0 otherwise.

The Hessian matrix of ψ(V ) at V ∗ has all positive eigenvalues. Therefore, V ∗ is sufficient
to be minimum point of ψ(V ). �

A similar way to prove that η∗ is sufficient to minimize Jm when U, V, Z are fixed in their
spaces.

Proposition 3. Let f : N → R $ Jm(U, V,N,Z) where U, V, Z are fixed. Then, N∗ is a
strict local minimum of f if and only if ηkj , 1 ≤ k ≤ n, 1 ≤ j ≤ C is calculated via eq. (10).

Proof. Since each ηkj has it own constrains in eq.(7), we consider the minimization of f(N)
via Lagrange multipliers obtained constrains. Let β = (β1, β2, ..., βn) be the multipliers, and
L(N, β) be the Lagrangian

L(N, β) =
N∑
k=1

C∑
j=1

(µkj(2− ξkj))m‖Yk − Vj‖2 +
N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj)

− βk

 C∑
j=1

(
ηkj +

ξkj
C

)
− 1

 .

Since N∗ is the root of equation system,

∂L(N, β)

∂ηkj
= ln ηkj + 1− βk + ξkj = 0,

and

∂

∂ηst

(
∂L(N, β)

∂ηkj

)
=


1

ηkj
> 0 if s = k; t = j

0 otherwise.

The Hessian matrix of L(N∗, β) at N∗ has all positive eigenvalues and N∗ also minimizes
f(N). �
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The updated formula for the neutral degree is h(ζkj) = 1−(µkj+ηkj)−(1−(µkj+ηkj)
α)

1
α ,

where h : Z → R which is based on the Yager’s operator. When the neutral and refusal de-
grees of each elements increase, the entropy decreases. When the update of centroids change
in minor variation, Jm may slowly increase to the convergence point.

Now, to show that the algorithm makes Jm converge, we use the Zangwill theorem below.

Proposition 4. [1] Let f : Df ∈ Rm → R and S = {y∗ ∈ Df : f(y∗) < f(y) ∀ y ∈
Bo(y∗, r)}. Let A : Df → Df be an iterative algorithm and yk+1 = E(yk); k = 0, 1, ...

If E is continuous on Df \S, g is a descent function for A,S and the iterative sequences
E(Yk) : k = 0, 1, 2, ...; y0 ∈ Df ⊂ K are contained in a compact set K ⊆ Df for arbitrary
y0 ∈ Df , then for each iterative sequence Yk generated by E, we have either Yk terminates
at a solution y∗ ∈ S or there exists a subsequence ykj ⊂ yk so that ykj → y∗ ∈ S.

To apply the Zangwill theorem, we need to show that Jm is a descent function and the
algorithm is continuous on [0, 1]4 \ S. Then, we only need to show that Jm is a descent
function. Now, let Pm be the algorithm to update the parameters in eqs. (9-12).

Proposition 5. Let

S = {(U∗, V ∗, N∗, Z∗) : Jm(U∗, V ∗, N∗, Z∗) <
Jm(U, V,N,Z),∀(U, V,N,Z) ∈ Bo((U∗, V ∗, N∗, Z∗), r)}.

Then Jm is descent function for Pm, S.

Proof. Since the norm function and the exponent function are continuous, we call the sum of
products of such functions as Jm. Obviously, Jm is also continuous on Mfc ×RCS . Suppose
(U, V,N,Z) /∈ S then

Jm(Pm(U, V,N,Z)) = Jm(P1 ◦ P2 ◦ P3 ◦ P4(U, V,N,Z))

= Jm(P1 ◦ P2 ◦ P3(U, V,N, h(Z)))

< Jm(P1 ◦ P2 ◦ P3(U, V,N,Z))

= Jm(P1 ◦ P2(U, V, f(N), Z))

< Jm(P1 ◦ P2(U, V,N,Z))

= Jm(P1(U,ψ(V ), N, Z))

< Jm(P1(U, V,N,Z))

= Jm(φ(U), V,N, Z)

< Jm(U, V,N,Z).

Hence Jm is a descent function. �

However, in some cases, Jm will slowly increase because of updating of η. Because
the difference between period centroids and the next centroids changes very small, it still
guarantees that Jm converges.
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4. SOME PROPERTIES

4.1. Property of the loss function

We consider the loss function

Jm =
N∑
k=1

C∑
j=1

(µkj(2− ξkj))m‖Yk − Vj‖2 +
N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj).

We also know that the first part J1 =

N∑
k=1

C∑
j=1

(µkj(2 − ξkj))m‖Yk − Vj‖2 converges to a

value called M . Now, we find the upper bound and lower bound of the second part.
Let

J2 =

N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj).

We see that

ηkj(ln ηkj + ξkj) ≤ ηkj(ln ηkj + 1− ηkj) ≤ 0.

Indeed, consider f(y) = y(ln y + 1− y) with y ∈ [0, 1]. Therefore,

f ′(y) = 2 + ln y − 2y.

f ′(y) = 0↔ y = 1 or y = −1

2
W

(
− 2

e2

)
.

From f(1) = 0 and f

(
−1

2
W

(
− 2

e2

))
< 0 we get f(y) ≤ 0, ∀y ∈ [0, 1].

Therefore, ηkj(ln ηkj + ξkj) ≤ 0 and it leads to J2 =

N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj) ≤ 0.

On the other hand,

ηkjξkj ≥ 0.

Let us consider

g(y) = y. ln y where y ∈ [0, 1],

we have

g′(y) = 1 + ln y,

g′(y) = 0↔ y =
1

e
,

and f

(
1

e

)
= −1

e
is the minimal value of this function.

We have

J2 =
N∑
k=1

C∑
j=1

ηkj(ln ηkj + ξkj) ≥
N∑
k=1

C∑
j=1

(
−1

e
+ 0

)
=
−1

e
×N × C.
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Figure 1. Loss function of Haberman dataset [46]

Figure 2. Loss function of Wdbc dataset [46]
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Figure 3. Loss function of Iris dataset [46]

Figure 4. Loss function of Glass dataset [46]
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Therefore, the upper bound of Jm is M , the lower bound is M − 1

e
×N × C.

In Fig.1, the loss function of Habamen data takes 6 iterations to converge to the local
minimum. Because of the update of η, it increases gradually from the second iteration but
still reaches the convergence.

The loss function of the Wdbc dataset in Fig.2 decreases slowly in each iteration and
converges at the 16th iteration. Because the initialization elements are random, the value
of the first iteration is also random. However, from the second step the value of J decre-
ases significantly and from the 8th step, the stability appears and the loss function slowly
converges.

From the 2nd iteration in Figs.3 and 4, the loss functions of Iris and Glass datasets
decrease but sometimes they increase slightly and converge to a stable point.

4.2. Property of centroid

We can see the updating of centroids in each iteration similar to the update of parameters
in Gradient Descent. From eq. (11), we have

V t+1
j =

N∑
k=1

(µtkj(2− ξtkj))mYk

N∑
k=1

(µtkj(2− ξtkj))m

= V t
j −

1
N∑
k=1

(µtkj(2− ξtkj))m
.

(
N∑
k=1

(µtkj(2− ξtkj))m(−2Yk + 2V t
j )

)

= V t
j − αtj .∇VjJ tm(V t

j ),

where αtj =
1

N∑
k=1

(µtkj(2− ξtkj))m
.

5. CONCLUSIONS

This paper presented some theoretical properties of FC-PFS and proved the convergence
of this algorithm. We have pointed out that this algorithm converges to at least local
minimum which guaranties to archive acceptable solutions. Specifically, Propositions 1 to 5
stated that the membership matrices and cluster centers converge if and only if their values
are computed by updated equations. Moreover, the objective function is descent in the
domain. Some properties of PF-PFS were also considered such as the boundary of the loss
function. This is significant in understanding the mechanism of the picture fuzzy clustering.

In the future, we will assess the maximum and minimum changes of the objective function
through interval steps and others. Relationship between picture fuzzy set and neutrosophic
set [47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] in terms of clustering algorithms will
also be our target.
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