
Ta.p ch́ı Tin ho. c và Diè̂u khiê’n ho. c, T.24, S.1 (2008), 3–11

ON THE DENSE FAMILIES OF DATABASE RELATIONS

VU DUC THI1, NGUYEN HOANG SON2

1Institute of Information Technology, VAST
2Department of Mathematics, College of Sciences, Hue University

Abstract. The relational data model was defined by Codd [3] in 1970. Functional dependencies and

minimal keys are very important concepts in the relational data model. The dense families of database

relations were introduced by Järvinen [5] (2001), who has characterized functional dependencies and

minimal keys of relations in terms of dense families. The aim of this paper is to continue investigating

some properties of dense families of database relations and their applications. We give necessary and

sufficient conditions for an arbitrary family to be R− dense. We prove that for a given relation R
the equality set ER is an R−dense family. We also propose an effective algorithm finding all minimal

keys of a given relation R. Finally, some related problems are also studied in this paper.

Tóm tắt. Mô h̀ınh dũ. liê.u quan hê. du.o.. c dè̂ xuất bo.’ i Codd [3] vào năm 1970. Phu. thuô.c hàm và

khoá tối tiê’u là nhũ.ng khái niê.m rất quan tro.ng trong mô h̀ınh dũ. liê.u quan hê.. Ho. trù mâ.t cu’a

quan hê. trong co. so.’ dũ. liê.u du.o.. c gió.i thiê.u bo.’ i Järvinen [5] (2001). Järvinen dă.c tru.ng phu. thuô.c

hàm và khoá tối tiê’u cu’a quan hê. theo quan diê’m ho. trù mâ.t. Mu.c tiêu bài báo là tiếp tu. c nghiên

cú.u mô.t số t́ınh chất cu’a ho. trù mâ.t cu’a quan hê., và ú.ng du.ng cu’a nó. Chúng tôi du.a ra mô.t số

diè̂u kiê.n cà̂n và du’ dê’ mô.t ho. bất kỳ là ho. R− trù mâ.t. Chúng tôi chú.ng minh rà̆ng vó.i mô.t quan

hê. cho tru.́o.c R tâ.p bà̆ng nhau ER là mô.t ho. R− trù mâ.t. Chúng tôi cũng du.a ra mô.t thuâ.t toán

hiê.u qua’ t̀ım tất ca’ các khoá tối tiê’u cu’a quan hê. cho tru.́o.c R. Cuối cùng mô.t số vấn dè̂ liên quan

cũng du.o.. c nghiên cú.u trong bài báo này.

1. INTRODUCTION

In this section, we begin recalling some main concepts of the theory of relational databases,

which can be found in [1, 6, 7].

Let U be a nonempty finite set of attributes (e.g. name, age etc). The elements of U will

be denoted by a, b, c, . . . , x, y, z, if an ordering on U is needed, by a1, . . . , an. A map dom

associates with its domain dom(a) each a ∈ U . A relation R on U is a subset of Cartesian

product
∏

a∈U dom(a).
We can think of a relation R on U as being a set of tuples: R = {h1, . . . , hm},

hi : U −→
⋃

a∈U

dom(a), hi(a) ∈ dom(a), i = 1, 2, . . . , m.

The concept of functional dependency between sets of attributes was introduced by Arm-

strong [1]. A functional dependency (FD for short) is a statement of form X → Y , where

X, Y ⊆ U . The FD X → Y holds in a relation R = {h1, . . . , hm} on U if

(∀hi, hj ∈ R)((∀a ∈ X)(hi(a) = hj(a)) ⇒ (∀b ∈ Y)(hi(b) = hj(b))).

4 VU DUC THI, NGUYEN HOANG SON

We also say that R satisfies the FD X → Y .

This means that the values of the X component of tuples uniquely determine the values

of the Y component.

Set FR be a family of all FDs that holds in R.

Let R be a relation on U and K ⊆ U . Then K is called a minimal key of R, if it satisfies

the following two conditions:

(K1) K → U ∈ FR,

(K2) 6 ∃K ′ ⊂ K such that K ′ → U ∈ FR.

The subset K which satisfies only (K1) is called a key of R.

It is clear that each tuple of a relation must be distinct. Hence, the values of a minimal

key can be used to identify tuples.

Note that a relation may have several minimal keys. Denote KR the set of all minimal

keys of R.

Example 1.1. ([5]) Let us consider the relation R on U = {SSN, LNAME, FNAME,

DEPT, AGE} as follows:

SNN LNAME FNAME DEPT AGE

422-11-2320 Benson Barbara Mathematics Young

533-69-1238 Ashly Dick Computer Science Old

489-22-1100 Benson Mary Mathematics Middle-aged

305-61-2345 Davidson Dick Computer Science Old

Table 1. Relation R

It is clear that {SNN} is a minimal key of R since two persons cannot have the same

value for SNN . Note that {LNAME, FNAME} and {LNAME, AGE} are also minimal

keys of R. Consequently, we have

KR = {{SNN}, {LNAME,FNAME}, {LNAME,AGE}}.

In practice, FDs and minimal keys are viewed as properties of schemes (a relation scheme

s is a pair (U, F), where U is a nonempty finite set of attributes and F is a set of FDs

on U); they should hold in very relation of that schemes. Furthermore, minimal keys and

dependencies are usually specified by database designers. But as in the previous example,

relations may have additional minimal keys which designers are not necessarily aware of.

Järvinen has characterized FDs and minimal keys of relations in terms of dense families, and

show that generating all minimal keys of a relation R can be reduced to generating all minimal

transversals of a simple hypergraph min{X : X ∈ D, X 6= U}, where D is any R−dense family
and X = U \X . Note that an R−dense family is a collection of subsets of U , which by applying

certain condition induces the set FR.

In this paper, we investigate the dense families of relations. Our paper is organized as

follows. In Section 2, some basic concepts and results about Armstrong axioms and hypergraph

theory are given. In section 3, we study some properties of dense families of database relations

and their applications. The final section is conclusion.

ON THE DENSE FAMILIES OF DATABASE RELATIONS 5

2. ARMSTRONG AXIOMS AND HYPERGRAPHS

In this section, we present first some related concepts about Armstrong axioms, which may

be found in [1, 5, 6, 7].

It is obvious that F = FR satisfies

(F1) X → X ∈ F,

(F2) (X → Y ∈ F, Y → Z ∈ F) ⇒ (X → Z ∈ F),

(F3) (X → Y ∈ F, X ⊆ V, W ⊆ Y) ⇒ (V → W ∈ F),

(F4) (X → Y ∈ F, V → W ∈ F) ⇒ (X ∪ V → Y ∪ W ∈ F).

A family of FDs satisfying (F1) - (F4) is called an f − family on U .
FR clearly is an f -family on U . It is known [1] that if F is an arbitraryf -family, then there

is a relation R on U such that FR = F .

Given a family F of FDs on U , there exists a unique minimal f -family F+ that contains

F . It can be seen that F+ contains all FDs, which can be derived from F by the rules (F1) -

(F4).

Denote X+
R = {a ∈ U : X → {a} ∈ FR}. X+

R is called the closure of X on R. It is obvious

that X → Y ∈ FR if and only if Y ⊆ X+
R .

Let D ⊆ P(U) be a family of subsets of U , where P(U) denotes the power set of U , that
is, the family of all subsets of U . We define a set FD on D as follows

FD = {X → Y : (∀A ∈ D)X ⊆ A ⇒ Y ⊆ A}.

Proposition 2.1. ([5]) If D is a family of subsets of a finite set U , then FD is an f− family

on U .

Next, we prove the following result.

Proposition 2.2. Let D1 and D2 be two families of subsets of U . If D1 ⊆ D2 then FD2
⊆

FD1
.

Proof. Suppose that X → Y ∈ FD2
. Let A ∈ D1 such that X ⊆ A. Since D1 ⊆ D2, we have

A ∈ D2. By the definition of FD2
, that is,

FD2
= {X → Y : (∀A ∈ D2)X ⊆ A ⇒ Y ⊆ A},

we have Y ⊆ A.

Consequently, X → Y ∈ FD1
.

The proposition is proved. �

Hypergraph theory (see, e.g., [2]) is an important subfield of discrete mathematics with

many relevant applications in both theoretical and applied computer science.

Now we introduce some basic concepts about hypergraphs which will be needed in the

sequel. The concepts and facts given in this section can be found in [2, 4, 6, 7].

Let U be a nonempty finite set and put P(U) for the family of all subsets of U . The family
H = {E1, E2, . . . , Em} ⊆ P (U) is called a hypergraph on U if Ei 6= ∅ holds for all i (in [2] it

is required that the union of Eis is U , in this paper we do not require this condition).

The elements of U are called vertices, and the sets E1, . . . , Em are the edges of the hyper-

graph H.

6 VU DUC THI, NGUYEN HOANG SON

A hypergraph H is called simple if it satisfies

∀Ei, Ej ∈ H : Ei ⊆ Ej ⇒ Ei = Ej.

It can be seen that KR is a simple hypergraph.

Let H be a hypergraph on U . Then min(H) denotes the set of minimal edges of H with

respect to set inclusion, i.e.,

min(H) = {Ei ∈ H : 6 ∃Ej ∈ H : Ej ⊂ Ei},

and max(H) denotes the set of maximal edges of H with respect to set inclusion, i.e.,

max(H) = {Ei ∈ H : 6 ∃Ej ∈ H : Ej ⊃ Ei}.

It is clear that, min(H) and max(H) are simple hypergraphs. Furthermore, min(H) and

max(H) are uniquely determined by H.

A set T ⊆ U is called a transversal of H (sometimes it is called hitting set) if it meets all

edges of H, i.e.,

∀E ∈ H : T ∩ E 6= ∅.

A transversal T of H is called minimal if no proper subset T ′ of T is a transversal.

The family of all minimal transversals of H is called the transversal hypergraph of H, and

denoted by Tr(H). Clearly, Tr(H) is a simple hypergraph.

Proposition 2.3. ([2]) Let H and G be two simple hypergraphs on U . Then H = Tr(G) if

and only if G = Tr(H).

Proposition 2.4. ([2]) Let H be a hypergraph on U . Then

Tr(H) = Tr(min(H)).

The following algorithm allows to finds the family of all minimal transversals of a given

hypergraph (by induction).

Algorithm 2.5 ([4])

Input: let H = {E1, . . . , Em} be a hypergraph on U .

Output: Tr(H).

Method:

Step 0. We set L1 := {{a} : a ∈ E1}. It is obvious that L1 = Tr({E1}).

Step q+1. (q < m) Assume that

Lq = Sq ∪ {B1, . . . , Btq},

where Bi ∩ Eq+1 = ∅, i = 1, . . . , tq and Sq = {A ∈ Lq : A ∩ Eq+1 6= ∅}.

ON THE DENSE FAMILIES OF DATABASE RELATIONS 7

For each i (i = 1, . . . , tq), construct the set {Bi ∪ {b} : b ∈ Eq+1}. Denote them by

Ai
1, . . . , A

i
ri
(i = 1, . . . , tq). Let

Lq+1 = Sq ∪ {Ai
p : A ∈ Sq ⇒ A 6⊂ Ai

p, 1 6 i 6 tq, 1 6 p 6 ri}.

Theorem 2.6.([4]) For every q (1 6 q 6 m), Lq = Tr({E1, . . . , Eq}), i.e., Lm = Tr(H).

It can be seen that the determination of Tr(H) based on our algorithm does not depend

on the order of E1, . . . , Em.

Remark 2.7.([4]) Denote Lq = Sq ∪{B1, . . . , Btq}, and let lq (1 6 q 6 m−1) be the number

of elements of Lq. It can be verified that the worst-case time complexity of our algorithm is

O(|U |2 ·
m−1
∑

q=0

tquq),

where l0 = t0 = 1 and

uq =

{

lq − tq, if lq > tq;

1, if lq = tq.

Clearly, in each step of our algorithm Lq is a simple hypergraph. It is known that the size

of arbitrary simple hypergraph on U cannot be greater than C
[n/2]
n , where n = |U |. C

[n/2]
n

is asymptotically equal to 2n+1/2/(π.n)1/2. From this, the worst-case time complexity of our
algorithm cannot be more than exponential in the number of attributes. In the case lq 6 lm
(q = 1, . . . , m − 1), it is easy to see that the time complexity of our algorithm is not greater

than O(|U |2 · |H| · |Tr(H)|2). Thus, in these cases this algorithm finds Tr(H) in polynomial

time in |U |, |H| and |Tr(H)|. Obviously, if the number of elements of H is small, then this

algorithm is very effective. It only requires polynomial time in |U |.
The following proposition is obvious.

Proposition 2.8. ([4]) The time complexity of finding Tr(H) of a given hypergraph H is (in

general) exponential in the number of elements of U .
Proposition 2.8 is still true for a simple hypergraph.

3. DENSE FAMILIES

In this section, we first investigate some new properties of dense families of database

relations. Note that the notion of dense family of a database relation is defined in [5], as
follows:

Let R be a relation on U . We say that a family D ⊆ P(U) of attribute sets is R − dense

(or dense in R) if FR = FD.

The problem is how to find dense families. Järvinen [5] guarantees the existence of at least

one dense family. In the sequel, we denote LFR
simply by LR, i.e.,

LR = {X+
R : X ⊆ U}.

Proposition 3.1. ([5]) The family LR is R− dense.

8 VU DUC THI, NGUYEN HOANG SON

Järvinen presents some fundamental properties of dense families in next proposition.

Proposition 3.2. ([5]) If D is R− dense, then the following conditions hold for all X, Y ⊆ U :

(1) D ⊆ LR.

(2) X+
R =

⋂

{A ∈ D : X ⊆ A}.

(3) X → Y ∈ FR if and only if (∀A ∈ D)X ⊆ A ⇒ Y ⊆ A.

Note that by Proposition 3.1 and Proposition 3.2 (1), LR is the greatest R− dense family.
Furthermore, Proposition 3.2 (3) implies that each R−dense generates the family LR.

In [5] Järvinen proved the following important result.

Theorem 3.3. ([5]) Let R be a relation on U . If D ⊆ P(U) is R−dense, then the following

conditions hold:

(1) K is a key of R if and only if it contains an element from each set in {A : A ∈ D, A 6=
U}.

(2) K is a minimal key of R if and only if it minimal with respect to the property of

containing an element from each set in {A : A ∈ D, A 6= U}.

Now we present another dense family of database relations.

Let R = {h1, . . . , hm} be a relation on U , and ER the equality set of R, i.e.,

ER = {Eij : 1 6 i < j 6 m},

where Eij = {a ∈ U : hi(a) = hj(a)}.

Proposition 3.4. ([6]) The equality set ER is R− dense.

It is easy to see that the dense family ER has at most m(m−1)
2 elements.

Let R = {h1, . . . , hm} be a relation on U , and NR be the nonequality set of R, i.e.,

NR = {Nij : 1 6 i < j 6 m},

where Nij = {a ∈ U : hi(a) 6= hj(a)}.

Let U be a finite set and P(U) be its power set. For every family D ⊆ P(U), the

complement family of D is the family D = {A : A ∈ D} on U .

In [6] we also proved the following important result.

Theorem 3.6. Let R be a relation on U . Then

(1) KR = Tr(min(ER)).

(2) KR = Tr(min(NR)).

Now we study some properties of dense families of database relations.

Theorem 3.7. If D is R− dense, then

min(D \ {∅}) = max(ER).

Proof. According to Theorem 3.6 (1), we have KR = Tr(min(ER)), or

KR = Tr(max(ER)). (1)

ON THE DENSE FAMILIES OF DATABASE RELATIONS 9

Because D is R− dense, and by Theorem 3.3, we have KR = Tr(D \ {∅}). Furthermore, we

also have

Tr(D \ {∅}) = Tr(min(D \ {∅})).

Hence

KR = Tr(min(D \ {∅})). (2)

Combining (1) and (2) gives

Tr(min(D \ {∅})) = Tr(max(ER)).

Since min(D \ {∅}) and max(ER) are simple hypergraphs, and according to Proposition 2.3

we have

min(D \ {∅}) = max(ER).

The theorem is proved. �

From Theorem 3.7, the following corollary is early derived.

Corollary 3.8. If D is R− dense, then

min(D \ {∅}) = min(NR).

In [7] we presented a necessary and sufficient condition for an arbitrary family D to be

R− dense.

Theorem 3.9. Let R be a relation, D ⊆ P(U) be a family of subsets of a U . Then D is R−
dense if and only if for every X ⊆ U :

LR(X) =

⋂

X⊆A
A if ∃A ∈ D : X ⊆ A,

U otherwise,

where LR(X) = {a ∈ U : X → {a} ∈ FR}.

Corollary 3.10. Let R be a relation on U , D ⊆ P (U) and U 6∈ D. Then

(1) D is R− dense if and only if D ∪ {U} is R−dense.

(2) ER ∪ {U} is R−dense.

Proof. (1) It is obvious from Theorem 3.9.

(2) The proof is immediate from Proposition 3.4 and (1).

The corollary is proved. �

We conclude this section by studying some applications of dense families of database

relations. Recall that in [7] we gave an effective application of Theorem 3.9, which is an

algorithm for finding a cover of FDs of a given relation. In [6] we presented another useful

application of Theorem 3.6 (1), which is an algorithm for finding all minimal keys of a given

relation R. In many cases our algorithm is more effective. In the same way as in [6], based

on Theorem 3.6 (2) we present the following algorithm for finding all minimal keys of a given

relation.

Algorithm 3.11. (AM-KEYS)

10 VU DUC THI, NGUYEN HOANG SON

Input: a relation R = {h1, . . . , hm} on U .

Output: KR.

Method:

Step 1. Construct the nonequality set

NR = {Nij : 1 6 i < j 6 m}

where Nij = {a ∈ U : hi(a) 6= hj(a)}.

Step 2. From NR compute the family min(NR) = {Nij ∈ NR : 6 ∃Npq ∈ NR : Nij ⊂ Npq}.

Step 3. By Algorithm 2.5 we construct the set Tr(min(NR)).

By Proposition 2.4, Algorithm 2.5 and Theorem 3.6 (2), we have KR = Tr(min(NR)). It can

be seen that the time complexity of our algorithm is the same time complexity of Algorithm

2.5. In many cases our algorithm is more effective (see Remark 2.7).

It can be seen that, if the number of elements of the nonequality set NR is constant, i.e.

|NR| 6 k for some constant k, then the time complexity of finding KR of a given relation R

is polynomial time [6].

Example 3.12. Let us consider the relation R on U presented in Table 1. Then we have

N12 = U, N13 = {SNN, FNAME,AGE}, N14 = U,

N23 = U, N24 = {SNN, LNAME},

N34 = U,

NR = {U, {SNN,FNAME,AGE}, {SNN, LNAME}}, and

min(NR) = {{SNN, FNAME,AGE}, {SNN, LNAME}}.

Consequently, Tr(min(NR)) = {{SNN}, {LNAME,FNAME}, {LNAME,AGE}}.

It is obvious that KR = {{SNN}, {LNAME,FNAME}, {LNAME,AGE}}.

4. CONCLUSION

In this paper, we have studied some new properties of dense families of database relations

and their applications.

Let R be a relation on U and D ⊆ P(U). We firstly studied some properties of dense

families of relation R. That is, we proved that if family D is R−dense, then min(D \ {∅}) =

max(ER) and min(D \ {∅}) = min(NR).

We presented some necessary and sufficient conditions for family D to be R− dense.

We also proved that for a given relation R the equality set ER is an R−dense family, whose

size is at most
m(m − 1)

2
, where m is the number of tuples in R.

Finally, we presented an effective algorithm for finding all minimal keys of a given relation

R. Some related problems are also studied.

ON THE DENSE FAMILIES OF DATABASE RELATIONS 11

REFERENCES

[1] W.W. Armstrong, Dependency structure of database relationship, Information Processing 74,

North-Holland Pub. Co. (1974) 580–583.

[2] C. Berge, Hypergraphs: combinatorics of finite sets, North - Holland, Amsterdam 1989.

[3] E.F. Codd, A relational model for large shared data banks, Communications of the ACM 13

(1970) 377–387.

[4] J. Demetrovics, V. D. Thi, Describing candidate keys by hypergraphs, Computers and Artificial

Intelligence 18 (2) (1999) 191–207.

[5] J. Järvinen, Dense families and key functions of database relation instances, in: Freivalds R.

(ed.), Fundamentals of Computation Theory, Proceedings of the 13th International Symposium,

Lecture Notes in Computer Science 2138 (Springer-Verlag, Heidelberg, 2001) 184–192.

[6] V.D. Thi, N. H. Son, Describing minimal keys by dense families of database relations, Vietnam

Journal of Computer Science and Cybernetics 21 (2) (2005) 130–136.

[7] V.D. Thi, N.H. Son, Some results related to dense families of database relations, Acta Cyber-
netica 17 (1) (2005) 173–182.

Received on March 13 - 2006

