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Abstract. The aim of this paper is to study convergence rates of the regularized solutions in

connection with the finite-dimensional approximations for the operator equation of Hammerstein

type x+F2F1(x) = f in reflexive Banach spaces under the perturbations for not only the operators

Fi, i = 1, 2, but also f . The conditions of convergence and convergence rates given in this paper for

a class of inverse-strongly monotone operators Fi, i = 1, 2, are much simpler than those in the past

papers.

Tóm tắt. Mu. c d́ıch cu’a bài báo này là nghiên cú.u tốc dô. hô. i tu. cu’a nghiê.m hiê.u chı’nh dã du.o.. c

xấp xı’ hũ.u ha.n chiè̂u cho phu.o.ng tr̀ınh toán tu.’ loa. i Hammerstein x + F2F1(x) = f trong không

gian Banach pha’n xa. vó.i nhiẽ̂u không chı’ có o.’ các toán tu.’ Fi, i = 1, 2 mà ca’ o.’ f . Diè̂u kiê.n hô. i tu.
và tốc dô. hô. i tu. trong bài báo này cho toán tu.’ ngu.o.. c do.n diê.u ma.nh Fi, i = 1, 2 là yếu ho.n nhiè̂u

so vó.i các kết qua’ tru.́o.c.

1. INTRODUCTION

Let X be a reflexive real Banach space, and X∗ be its dual which both are strictly convex.

For the sake of simplicity the norms of X and X∗ are denoted by the symbol ‖.‖. We write〈
x∗, x

〉
or
〈
x, x∗

〉
instead of x∗(x) for x∗ ∈ X∗ and x ∈ X . Concerning the space X , in

addition assume that it possesses the property: the weak convergence and convergence of

norms for any sequence follows its strong convergence. Let F1 : X → X∗ and F2 : X∗ → X

be monotone, in general nonlinear, bounded (i.e. image of any bounded subset is bounded)

and continuous operators.

Our main aim of this paper is to study a stable method of finding an approximative solution

for the equation of Hammerstein type

x+ F2F1(x) = f, f ∈ X. (1.1)

Usually instead of Fi, i = 1, 2, and f we know their monotone continuous approximations F hi
and fδ, such that

‖F h1 (x)− F1(x)‖ � hg(‖x‖) ∀x ∈ X,
‖F h2 (x∗)− F2(x∗)‖ � hg(‖x∗‖) ∀x∗ ∈ X∗,

g(t) �Mt+N, M,N � 0,
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where g(t) is a real nonegative, non-decreasing, bounded function (the image of a bounded set

is bounded) with g(0) = 0, and ‖fδ−f‖ � δ. Without additional conditions for the operators

Fi such as the strongly monotone property, equation (1.1) is ill-posed (see the example at the

end of the paper). To solve (1.1) we need to use stable methods. One of them is the operator

equation

x+ F h2,αF
h
1,α(x) = fδ (1.2)

(see [1], [2]), where F hi,α = F hi +αUi, Ui, i = 1, 2, are the normalized dual mappings of X and

X∗, respectively (see [9]), and α > 0 is the small parameter of regularization. For every α > 0

equation (1.2) has a unique solution xh,δα , and the sequence {xh,δα } converges to a solution x0
of (1.1) as (h + δ)/α, α → 0. Moreover, this solution xh,δα , for every fixed α > 0, depends

continuously on F hi , i = 1, 2 and fδ, the finite-dimensional problems

x+ F h2,α,nF
h
1,α,n(x) = fδ,n, x ∈ Xn, (1.3)

where F h2,α,n = PnF
h
2,αP

∗

n , F h1,α,n = P ∗nF
h
1,αPn, fδ,n = Pnfδ, Pn is a linear projection from X

onto its finite-dimensional subspace Xn such that Xn ⊂ Xn+1, Pnx→ x, as n→∞ for every

x ∈ X , and P ∗n is the dual of Pn with ‖Pn‖ � c̃ = constant, for all n, have a unique solution

xh,δα,n, and the sequence {xh,δα,n} converges to xh,δα , as n→∞, without additional conditions on

Fi, i = 1, 2. In the case of linearity for F2 and fδ = f for all δ > 0, the convergence rates for

the sequences {xh,δα } and {xh,δα,n} are given in the paper [3] provided the existence of bounded

inversion (I + F2F
′

1(x0))
−1, where I denotes the identity operator in X. It is not difficult to

verify that this condition can be replaced by the bounded inversion of (I + F ′2(x
∗

0)F
′

1(x0))
−1,

when F2 also is nonlinear, where x∗0 = F1(x0). The last requirement is equivalent to that

-1 is not an eigenvalue of the operator F ′2(x
∗

0)F
′

1(x0) and is used in studying a method of

collocation-type for nonlinear integral equations of Hammerstein type (see [6]). In general

case, i.e., when both the operators Fi, i = 1, 2, are nonlinear, it means that R, the range of

the operator I + F ′2(x
∗

0)F
′

1(x0), is the whole space X . It is natural to ask if we can estimate

the convergence rates for the sequences {xh,δα }, {xh,δα,n}, when R is not the whole space X . For

this purpose, only demanding that R contains a necessary element of X, the convergence rates

of {xh,δα } and {xh,δα,n} are estimated in [4], [5] on the base of the zero value of the derivatives

of higher order for F1 and F2 at x0 and x∗0, respectively. This result is formulated in the

following theorem.

Theorem 1.1. (see [4] or [5]). Let the following conditions hold:

(i) F1 is Fréchet differentiable at some neighbourhood U0 of x0 s1−1-times if s1 = [s1], the

integer part of s1, [s1]-times if s1 �= [s1], and F2 is Fréchet differentiable at some neighbourhood

V0 of x∗0 s2 − 1-times, if s2 = [s2], [s2]-times if s2 �= [s2],

(ii) there exists a constant L > 0 such that

‖F (k)1 (x0)− F (k)1 (y)‖ � L‖x0 − y‖, ∀ y ∈ U0,
‖F (k)2 (x∗0)− F

(k)
2 (y∗)‖ � L‖x∗0 − y∗‖, ∀ y∗ ∈ V0,

for F
(k)
i : k = si − 1 if si = [si], k = [si] if si �= [si], and if [si] � 3, then F

(2)
1 (x0) = ... =

F
(k)
1 (x0) = 0, and F

(2)
2 (x∗0) = ... = F

(k)
1 (x∗0) = 0,
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(iii) there exists an element x1 ∈ X such that

(
I + F ′2(x

∗

0)
∗F ′1(x0)

∗
)
x1 = F ′2(x

∗

0)
∗U1(x0)− U2(x∗0),

if s1 = [s1] then L‖x1‖ < m1s1!, and if s2 = [s2] then L‖F ′1(x0)∗x1 − U1(x0)‖ < m2s2!
Then, if α is chosen such that α ∼ (h+ ε)ρ, 0 < ρ < 1, we have

‖xω − x0‖ = O((h+ ε)θ),

θ = min {θ1,
1− ρ+ θ2
s1 − 1

},

θi = min {1− ρ
si

,
ρ

si
}, i = 1, 2.

In this paper, the convergence rates of {xh,δα } and {xh,δα,n} are established under much weaker

conditions on Fi, i = 1, 2. These are the assumptions that R contains some element of X , and

Fi, i = 1, 2, are inverse-strongly monotone, i.e.

〈F1(x)− F1(y), x− y〉 � m̃1‖F1(x)− F1(y)‖2, x, y ∈ X,
〈F2(x∗)− F2(y∗), x∗ − y∗〉 � m̃2‖F2(x∗)− F2(y∗)‖2, x∗, y∗ ∈ X∗,

(1.4)

where m̃i, i = 1, 2, are some positive constants. Note that in [7] the inverse-strongly monotone

property was used to estimate the convergence rates of the regularized solutions for ill-posed

variational inequalities.

Below, by “a ∼ b” we mean “a = O(b) and b = O(a)”.

2. MAIN RESULTS

Assume that the normalized dual mappings Ui, i = 1, 2, of the spaces X and X∗ satisfy

the following conditions (see [8])

〈
Ui(y

i
1)− Ui(yi2), yi1 − yi2

〉
� mi‖yi1 − yi2‖si , mi > 0, si � 2, (2.1)

‖Ui(yi1)− Ui(yi2)‖ � ci(Ri)‖yi1 − yi2‖νi , 0 < νi � 1, (2.2)

where yi1, y
i
2 ∈ X or X∗ on dependence of i = 1 or 2, respectively, and ci(Ri), Ri > 0, are

the positive increasing functions on Ri = max {‖yi1‖, ‖yi2‖}.
The following theorem answers the question on convergence rates for {xh,δα }.

Theorem 2.1. Assume that the following conditions hold:

(i) Fi, i = 1, 2, are inverse-strongly monotone and continuously Fréchet differentiable at

some neighbourhoods U of x0 and V of x∗0 , respectively, and

‖F1(x)− F1(x0)− F ′1(x0)(x− x0)‖ � τ1‖F1(x)− F1(x0)‖, ∀x ∈ U ,
‖F2(x∗)− F2(x∗0)− F ′2(x∗0)(x∗ − x∗0)‖ � τ2‖F2(x∗)− F2(x∗0)‖, ∀x∗ ∈ V,

where τi, i = 1, 2, are some positive constants,
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(ii) there exists an element x1 ∈ X such that

(
I + F ′2(x

∗

0)
∗F ′1(x0)

∗
)
x1 = F ′2(x

∗

0)
∗U1(x0)− U2(x∗0).

Then, if α is chosen such that α ∼ (h+ δ)ρ, 0 < ρ < 1, we have

‖xh,δα − x0‖ = O
(
(h+ δ)θ/s1), θ = min {ρ/2, 1− ρ}.

Proof. Set

A = m1‖xh,δα − x0‖s1 +m2‖xh,δ,∗α − x∗0‖s2 , xh,δ,∗α = F h1,α(xh,δα ).

It is easy to see that x0 is a solution of (1.1) iff z0 = [x0, x
∗

0] is a solution of the system of

following operator equations

F1(x)− x∗ = 0,

F2(x
∗) + x− f = 0.

Similarily, xh,δα is a regularized solution of the operator equation (1.2) iff zh,δα = [xh,δα , x
h,δ,∗
α ] is

a solution of the system of following equations

F h1 (x) + αU1(x)− x∗ = 0,

F h2 (x∗) + αU2(x
∗) + x− fδ = 0.

Consider the space Z = X ×X∗ with the norm ‖z‖2 = ‖x‖2 + ‖x∗‖2, z = [x, x∗], x ∈ X, and

x∗ ∈ X∗. Then, the two above systems of equations can be written, respectively, in form of

equations

A(z) = f,

Ahα(z) ≡ Ah(z) + αJ(z) = f δ,
(2.3)

where
A(z) = [F1(x), F2(x

∗)] + [−x∗, x],

Ah(z) = [F h1 (x), F h2 (x∗)] + [−x∗, x],

J(z) = [U1(x), U2(x
∗)],

f = [0, f ], f δ = [0, fδ].

(2.4)

It is easy to verify that A and Ah are the monotone operators from Z to Z∗ = X∗ ×X, and

the operator J is the normalized duality mapping of the space Z. Hence, from (2.1), (2.3),

(2.4) and the monotone property of Ah it implies that

A �〈J(zh,δα )− J(z0), z
h,δ
α − z0〉 � 〈J(z0), z0 − zh,δα 〉

+
1

α
[〈f δ − f, zh,δα − z0〉+ 〈A(z0)−Ah(z0), zh,δα − z0〉].

(2.5)

It is not difficult to verify that

‖Ah(z)−A(z)‖ �
√

2hg(‖z‖). (2.6)
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Further, from (1.4) it follows

〈A(zh,δα )−A(z0), z
h,δ
α − z0〉 = 〈F1(xh,δα )− xh,δ,∗α − (F1(x0)− x∗0), xh,δα − x0〉

+ 〈F2(xh,δ,∗α ) + xh,δα − (F2(x
∗

0) + x0), x
h,δ,∗
α − x∗0〉

= 〈F1(xh,δα )− F1(x0), xh,δα − x0〉+ 〈F2(xh,δ,∗α )− F2(x∗0), xh,δ,∗α − x∗0〉
� m̃1‖F1(xh,δα )− F1(x0)‖2 + m̃2‖F2(xh,δ,∗α )− F2(x∗0)‖2

� min{m̃1, m̃2}C2, C2 = ‖F1(xh,δα )− F1(x0)‖2 + ‖F2(xh,δ,∗α )− F2(x∗0)‖2.

On the other hand, from (2.3), (2.4)-(2.6) and the properties of A,Ah, J, g we have

〈A(zh,δα )−A(z0), z
h,δ
α − z0〉 � 〈f δ − f, zh,δα − z0〉

+ α〈J(z0), z0 − zh,δα 〉+ 〈A(zh,δα )−Ah(zh,δα ), zh,δα − z0〉,

and {zh,δα } is bounded, as (h+ δ)/α→ 0. Therefore,

C2 �
1

min{m̃1, m̃2}
[δ + α‖J(z0)‖+

√
2hg(‖zh,δα ‖)]‖zh,δα − z0‖.

Consequently, C � O(
√
h+ δ + α). Hence,

‖F1(xh,δα )− F1(x0)‖ � O(
√
h+ δ + α),

‖F2(xh,δ,∗α )− F2(x∗0)‖ � O(
√
h+ δ + α).

(2.7)

Now, we shall estimate the value 〈J(z0), z0 − zh,δα 〉. For this purpose, set x2 = U1(x0) −
F ′1(x0)

∗x1. From condition (ii) of the theorem it follows that x1 and x2 (∈ X∗) satisfy the

system of following equalities

F ′1(x0)
∗x1 + x2 = U1(x0),

F ′2(x
∗

0)
∗x2 − x1 = U2(x

∗

0).

By virtue of

〈J(z0), z0 − zh,δα 〉 = 〈U1(x0), x0 − xh,δα 〉+ 〈U2(x∗0), x∗0 − xh,δ,∗α 〉
=〈F ′1(x0)∗x1 + x2, x0 − xh,δα 〉+ 〈F ′2(x∗0)∗x2 − x1, x∗0 − xh,δ,∗α 〉
=〈xh,δ,∗α − x∗0 − F ′1(x0)(xh,δα − x0), x1〉

+ 〈x0 − xh,δα − F ′2(x∗0)(xh,δ,∗α − x∗0), x2〉
=〈F1(xh,δα )− F1(x0)− F ′1(x0)(xh,δα − x0), x1〉

+ α〈U1(xh,δα ), x1〉+ 〈F h1 (xh,δα )− F1(xh,δα ), x1〉
+ 〈F2(xh,δ,∗α )− F2(x∗0)− F ′2(x∗0)(xh,δ,∗α − x∗0), x2〉
+ 〈αU2(xh,δ,∗α ) + f − fδ, x2〉+ 〈F h2 (xh,δ,∗α )− F(xh,δ,∗α ), x2〉,

we have

〈J(z0), z0 − zh,δα 〉 � max{τ1‖x1‖, τ2‖x2‖} ×
(‖F1(xh,δα )− F1(x0)‖+ ‖F2(xh,δ,∗α )− F2(x∗0)‖) +O(h+ δ + α).
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Thus, for sufficiently small h, δ, α (h+ δ + α < 1) from (2.5)-(2.7) we have got

A � O((h+ δ)1−ρ) +O(
√
h+ δ + α),

It means that

‖xh,δα − x0‖ = O
(
(h+ δ)θ/s1).

Theorem is proved. �

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold, and α is chosen such that

α ∼ (h+ δ + γn)ρ, 0 < ρ < 1, where

γn = max{‖(I − Pn)x0‖, ‖(I − Pn)f‖, ‖(I − Pn)x1‖, ‖(I∗ − P ∗n)x∗0‖, ‖(I∗ − P ∗n)x2‖},

and I∗ denotes the identity operator in X∗. Then,

‖xh,δα,n − x0‖ = O
(
(h+ δ)η + γµn

)
,

η = min {1− ρ
s1

,
ρ

2s1
},

µ = min {η, ν1
s1
,
ν2
s1
}.

Proof. Set

B = m1‖xh,δα,n − x0,n‖s1 +m2‖xh,δ,∗α,n − x∗0,n‖s2 ,

with x0,n = Pnx0, x
h,δ,∗
α,n = F h1,α,n(xh,δα,n), and x∗0,n = P ∗nx

∗

0. It is easy to see that xh,δα,n is a

solution of (1.3) iff xh,δα,n and xh,δ,∗α,n are the solutions of the system of following equations

F h1,n(x) + αUn1 (x)− x∗ = 0,

F h2n(x∗) + αUn2 (x∗) + x− fδ,n = 0,

with Un1 = P ∗nU1Pn, U
n
2 = PnU2P

∗

n , F
h
1,n = P ∗nF

h
1 Pn, F

h
2,n = PnF

h
2 P

∗

n , and fδ,n = Pnfδ. As in

the proof of theorem 2.1, zh,δα,n := [xh,δα,n, x
h,δ,∗
α,n ] is the solution of the following operator equation

Ahα,n(z) ≡ Ahn(z) + αJn(z) = f δ,n, (2.8)

where
Ahn(z) = [F h1,n(x), F h2,n(x∗)] + [−x∗, x],

Jn(z) = [Un1 (x), Un2 (x∗)], f δ,n = [0, fδ,n].
(2.9)

The operatorsAhn andAn, defined byAn(z) = [F1,n(x), F2,n(x∗)]+[−x∗, x], F1,n = P ∗nF1Pn, F2,n =

PnF2P
∗

n , are the monotone operators, and act from Zn := Xn × X∗

n into Z∗n, and Jn is the

normalized duality mapping of the space Zn.

From (2.8) we obtain

An(zh,δα,n)−An(z0,n) + α[Jn(zh,δα,n)− Jn(z0,n)] = f δ,n +

An(zh,δα,n)−Ahn(zh,δα,n)−An(z0,n)− αJn(z0,n).
(2.10)
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Therefore, from (1.4) and the properties of the projections Pn, P
∗

n it implies that

〈An(zh,δα,n)−An(z0,n), zh,δα,n − z0,n〉 = 〈F1(xh,δα,n)− F1(x0,n), xh,δα,n − x0,n〉
+ 〈F2(xh,δ,∗α,n )− F2(x∗0,n), xh,δ,∗α,n − x∗0,n〉
� m̃1‖F1(xh,δα,n)− F1(x0,n)‖2 + m̃2‖F2(xh,δ,∗α,n )− F2(x∗0,n)‖2

� min{m̃1, m̃2}C2n, C2n = ‖F1(xh,δα,n)− F1(x0,n)‖2 + ‖F2(xh,δ,∗α,n )− F2(x∗0,n)‖2.

On the other hand, from (2.8), (2.9) we also obtain

Ahn(zh,δα,n)−Ahn(z0,n) + α[Jn(zh,δα,n)− Jn(z0,n)] = f δ,n

−Ahn(z0,n)− αJn(z0,n).
(2.11)

Hence, on the base of the property of J and (2.11) we can write

B �
1

α
〈f δ − f − αJ(z0,n), zh,δα,n − z0,n〉

+
1

α
〈A(z0)−Ah(z0,n), zh,δα,n − z0,n〉

�
1

α
[δ + ‖A(z0)−A(z0,n)‖+ hg(‖z0,n‖)]‖zh,δα,n − z0,n‖

+ 〈Jn(z0,n), z0,n − zh,δα,n〉.

(2.12)

Moreover, using the continously Fréchet differentiable property of F1, F2 and the definition of

γn we can also write

‖A(z0,n)−A(z0)‖ � (‖F1(x0,n)− F1(x0)‖2

+ ‖F2(x∗0,n)− F2(x∗0)‖2)1/2 +
√

2γn

� (max{c̃1, c̃2}+
√

2)γn,

where c̃1 = max0�t�1 ‖F ′1(x0 + t(x0,n − x0))‖ and c̃2 = max0�t�1 ‖F ′2(x∗0 + t(x∗0,n − x∗0))‖.
Consequently, {zh,δα,n} is bounded, when (h+ δ + γn)/α→ 0. By virtue of (2.10) we have

〈An(zh,δα,n)−An(z0,n), zh,δα,n − z0,n〉 � 〈f δ,n −An(z0,n), zh,δα,n − z0,n〉
+ 〈An(zh,δα,n)−Ahn(zh,δα,n)− αJn(z0,n), zh,δα,n − z0,n〉
� 〈f δ − f +A(z0)−A(z0,n), zh,δα,n − z0,n〉
+ 〈An(zh,δα,n)−Ahn(zh,δα,n)− αJ(z0,n), zh,δα,n − z0,n〉
� O(h+ δ + α+ γn)‖z0,n − zh,δα,n〉‖.

Therefore, C̃n � O(
√
h+ δ + α+ γn). Hence,

‖F1(xh,δα,n)− F1(x0,n)‖ � O(
√
h+ δ + α+ γn),

‖F2(xh,δ,∗α,n )− F2(x∗0,n)‖ � O(
√
h+ δ + α+ γn).
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Now, we obtain the esimation for 〈Jn(z0,n), z0,n − zh,δα,n〉. From (2.2), (2.8) and the condition

of the theorem we have got

〈Jn(z0,n), z0,n − zh,δα,n〉 = 〈J(z0,n), z0,n − zh,δα,n〉
= 〈J(z0,n)− J(z0), z0,n − zh,δα,n〉+ 〈J(z0), z0,n − zh,δα,n〉

� Cγνn‖zh,δα,n − z0,n‖+ 〈F ′1(x0)∗x1 + x2, x0,n − xh,δα,n〉
+ 〈F ′2(x∗0)∗x2 − x1, x∗0,n − xh,δ,∗α,n 〉

� Cγνn‖zh,δα,n − z0,n‖+ 〈x1, xh,δ,∗α,n − x∗0,n − F ′1(x0)(xh,δα,n − x0,n)〉
+ 〈x2, x0,n − xh,δα,n − F ′2(x∗0)(xh,δ,∗α,n − x∗0,n)〉,

where C is some positive constant, and ν = min{ν1, ν2}. Obviously,

〈x1, xh,δ,∗α,n − x∗0,n − F ′1(x0)(xh,δα,n − x0,n)〉 = 〈x1, F h1,n(xh,δα,n) + αUn1 (xh,δα,n)− x∗0,n〉
+ 〈x1,−F ′1(x0)(xh,δα,n − x0) + F ′1(x0)(x0,n − x0)〉

= 〈x1n,F1(xh,δα,n)− F1(x0)− F ′1(x0)(xh,δα,n − x0)〉
+ α〈x1, Un1 (xh,δα,n)〉+ 〈x1, F ′1(x0)(x0,n − x0)〉
+ 〈(I − Pn)x1,−F ′1(x0)(xh,δα,n − x0)〉+ 〈x1n, F h1 (xh,δα,n)− F1(xh,δα,n)〉

� τ1‖x1n‖‖F1(xh,δα,n)− F1(x0)‖+O(h+ α+ γn),

where x1n = Pnx
1. By the argument, we also obtain the estimate

〈x2, x0,n − xh,δα,n − F ′2(x∗0)(xh,δ,∗α,n − x∗0,n)〉 � τ2‖x2n‖‖F2(xh,δ,∗α,n )− F2(x∗0)‖
+O(h+ δ + α+ γn).

Therefore,

〈Jn(z0), z0 − zh,δα 〉 � O(γνn) +O(
√
h+ δ + γn + α).

Thus, from (2.12) and the properties of Ah, J it follows

B � O((h+ δ + γn)1−ρ + γνn +O((h+ δ + γn)ρ/2).

Consequently,

‖xh,δα,n − x0‖ = O
(
(h+ δ)η + γµn).

Theorem is proved. �

Example 1. Consider the simple example, when X ≡ X∗ = E
2, the Euclid space, and

F1 =

[
1 −1
1 0

]

, F2 =

[
0 −1
1 1

]

, x = (x1, x2).

It is easy to verify that 〈F1x, x〉 = x21 � 0, and 〈F2x, x〉 = x22 � 0∀x ∈ E2. It means that

Fi, i = 1, 2, are monotone. Equation (1.1) has the form 0x1 = f1, 2x1 = f2 with f = (f1, f2).

Obviously, this system of equations has a unique solution when f = (0, f2) for arbitrary f2.

When fδ = (f δ1 , f2) with f δ1 �= 0 equation (1.1) in this case there isn’t a solution. So, equation



58 NGUYEN BUONG, DANG THI HAI HA

(1.1) with the monotone operators F1, i = 1, 2, in general is ill-posed. On the other hand,

equation A(z) = f for z = (x1, x2, x
∗

1, x
∗

2) is the system of 4 linear equations with the matrix

A =






1 −1 −1 0
1 0 0 −1
1 0 0 −1
0 1 1 1




 .

having det A = 0. Consequently, the system of equations is also ill-posed.
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