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Abstract. The aim of this paper is to study convergence rates of the regularized solutions in
connection with the finite-dimensional approximations for the operator equation of Hammerstein
type  + FyoFy(x) = f in reflexive Banach spaces under the perturbations for not only the operators
F;,i =1,2, but also f. The conditions of convergence and convergence rates given in this paper for
a class of inverse-strongly monotone operators F;,7 = 1, 2, are much simpler than those in the past
papers.

Tém tdt. Muc dich cia bai bdo nay 13 nghién citu téc do hoi tu cda nghiém hiéu chinh da dwoc
xap xi hiru han chiéu cho phwong trinh toan tir loai Hammerstein « + FoF)(z) = f trong khong
gian Banach phdn xa véi nhiéu khéng chi ¢é & céc toan tir Fj, ¢ = 1,2 ma cd & f. Dieu kién hoi tu
va tdc do hoi tu trong bai bdo nay cho todn tir ngwoc don diéu manh F;, ¢ = 1,2 1 yéu hon nhiéu
so véi cde két qua trude.

1. INTRODUCTION

Let X be a reflexive real Banach space, and X™* be its dual which both are strictly convex.
For the sake of simplicity the norms of X and X* are denoted by the symbol ||.||. We write
<93*,93> or <x,x*> instead of z*(x) for z* € X* and z € X. Concerning the space X, in
addition assume that it possesses the property: the weak convergence and convergence of
norms for any sequence follows its strong convergence. Let F} : X — X* and F5 : X* — X
be monotone, in general nonlinear, bounded (i.e. image of any bounded subset is bounded)
and continuous operators.

Our main aim of this paper is to study a stable method of finding an approximative solution
for the equation of Hammerstein type

r+BF@)=f f ¢ X (1.1)

Usually instead of F;,7 = 1,2, and f we know their monotone continuous approximations Fih
and fg, such that
I1F(z) — Fi(2)]| < hg(|lz])) Vz e X,
IF5'(«*) — Fa(z*)|| < hg(||l=*|]) Va* € X7,
g(t) < Mt+ N, M,N >0,
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where g(t) is a real nonegative, non-decreasing, bounded function (the image of a bounded set
is bounded) with ¢g(0) = 0, and || f5s — f|| < 0. Without additional conditions for the operators
F; such as the strongly monotone property, equation (1.1) is ill-posed (see the example at the
end of the paper). To solve (1.1) we need to use stable methods. One of them is the operator
equation

z+ FP Fl' () = fs (1.2)

(see [1], [2]), where Fi”‘a = F' + aU;, U;,i = 1,2, are the normalized dual mappings of X and
X*, respectively (see [9]), and o > 0 is the small parameter of regularization. For every o > 0
) X . h,o h,o )
equation (1.2) has a unique solution z4°, and the sequence {x°} converges to a solution xg
of (1.1) as (h + ¢)/a,« — 0. Moreover, this solution ah? for every fixed a > 0, depends

continuously on Fih,i = 1,2 and fs, the finite-dimensional problems
T+ F2h,a,nF1}fa,n(x) = fé,na T c Xn7 (13)

where FJ! 'on = b R 0P F{fam = P;’L‘F{faPn, fsn = Pnfs, Py is a linear projection from X
onto its ﬁnlte dimensional subspace X, such that X,, C X, 41, Pox — x, as n — oo for every

x € X, and P} is the dual of P, with || P,|| < é = constant, for all n, have a unique solution
:BZ ‘;, and the sequence {xg’,n} converges to zl , as n — oo, without additional conditions on
F;, i =1, 2. In the case of linearity for I, and fs = f for all § > 0, the convergence rates for
the sequences {mg’é} and {xg‘;} are given in the paper [3] provided the existence of bounded
inversion (I + FyF](z0))~!, where I denotes the identity operator in X. It is not difficult to
verify that this condition can be replaced by the bounded inversion of (I + Fj(z)F;(z0)) L,
when F» also is nonlinear, where zf; = Fj(xp). The last requirement is equivalent to that
-1 is not an eigenvalue of the operator Fij(z{)Fj(zo) and is used in studying a method of
collocation-type for nonlinear integral equations of Hammerstein type (see [6]). In general
case, i.e., when both the operators Fj,i = 1,2, are nonlinear, it means that R, the range of
the operator I + Fj(x{)Fj(xo), is the whole space X. It is natural to ask if we can estimate
the convergence rates for the sequences {a:g } {xh 0 , when R is not the whole space X. For
this purpose, only demanding that R contains a necessary element of X, the convergence rates
of {z*} and {xﬁ%} are estimated in [4], [5] on the base of the zero value of the derivatives
of higher order for i and F at xo and zg, respectively. This result is formulated in the

following theorem.

Theorem 1.1. (see [4] or [5]). Let the following conditions hold:

(1) Fy is Fréchet differentiable at some neighbourhood Uy of xo s1 —1-times if s1 = [s1], the
integer part of s1, [s1]-times if s1 # [s1], and F» is Fréchet differentiable at some neighbourhood
Vo of xf sa — 1-times, if so = [s2], [s2]-times if s2 # [s2],

(17) there exists a constant L > 0 such that

1F (o) — F<’“<>||
I1ESD (25) — FSF ()|

for Fl-(k) s k=si—1ifs; = [si], k= [si] if si # [si], and if [s;] > 3, then Fl(Z)(a:o) =..=
F®(z0) =0, and F? (z3) = ... = FP(at) = 0,

< L|lzg —yl|, Yy € U,
< Lilzg — 9|, YV y* € Vo,
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(iii) there exists an element ' € X such that
(I + Fy(5)" Fi(z0)")x" = Fy(x5)"Ur(xo) — Ua(zp),

if s1 = [s1] then L||lzt|| < mys1!, and if s3 = [s2] then L||F](zo)*z' — U (xo)| < masa!
Then, if a is chosen such that o ~ (h+¢€)?, 0 < p < 1, we have

lzw — ol = O((h+¢)°),
. 1—p+6
6 = min {6, po—) 1

1—p p, .
DY i=1, 2
781}71 )

S

0; = min {

In this paper, the convergence rates of {xZ’J} and {xZ‘;} are established under much weaker
conditions on Fj,7 = 1,2. These are the assumptions that R contains some element of X, and
F;,i =1, 2, are inverse-strongly monotone, i.e.

(Fi(z) — Fi(y),z —y) = m||Fi(z) — FL)II°, z,y € X,

(Fap(z*) — Fa(y*), 2" —y*) = ma||Fa(a®) — Fa(y")II?, z*, 9" € X,

where m;,i = 1,2, are some positive constants. Note that in [7] the inverse-strongly monotone
property was used to estimate the convergence rates of the regularized solutions for ill-posed
variational inequalities.

Below, by “a ~ b” we mean “a = O(b) and b = O(a)”.

2. MAIN RESULTS

Assume that the normalized dual mappings U;, i = 1, 2, of the spaces X and X* satisfy
the following conditions (see [8])

(Ui(yh) — Ui(h), v — v) = mallyt — vbll*', mi >0, s; > 2, (2.1)

Ui (y1) = Us(wa)ll < ci(Ra)llys — wal™, 0 < <1, (2.2)

where i, y4 € X or X* on dependence of i = 1 or 2, respectively, and ¢;(R;), R; > 0, are
the positive increasing functions on R; = max {||y}]], [|lv3/ }-
The following theorem answers the question on convergence rates for {LIJZ"S .

Theorem 2.1. Assume that the following conditions hold:
(i) F;,i = 1,2, are inverse-strongly monotone and continuously Fréchet differentiable at
some neighbourhoods U of xo and V of xj , respectively, and

| Fi(z) — Fi(x0) — Fi(zo)(z — z0)|

| < m||Fi(z) — Fi(wo), Vxel,
| Fo(x*) — Fa(xp) — Fa(xp)(a™ — xp) | *

ol Fa(z*) — Fa(zg)ll, Va* €V,

VAR/A

where 1;,1 = 1,2, are some positive constants,
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(ii) there erists an element ' € X such that
(I + F3(xp)" Fi(w0)")a" = F3(x5) Ui (o) — Us(xp).-
Then, if a is chosen such that o ~ (h+ §)P, 0 < p < 1, we have

ek —aoll = O((h+8)*), 6=min {p/2,1 - p}.

Proof. Set

A=mlaly’ —xol* + mollal® — g2, ap™ = FP(al?).

It is easy to see that zg is a solution of (1.1) iff 29 = [z0, x{] is a solution of the system of
following operator equations
Fi(z) —2* =0,
FQ(LII*) +x—f=0.

[hé h,0,%7 -

Similarily, mgé is a regularized solution of the operator equation (1.2) iff P /0 T, x| s

a solution of the system of following equations

Fl(z) + aUi(z) — 2* = 0,
FMa*) + aUs(z*) +x — f5 = 0.
Consider the space Z = X x X* with the norm ||z|? = ||z||%? + ||z*|?, 2 = [z, 2*],z € X, and

x* € X*. Then, the two above systems of equations can be written, respectively, in form of
equations

A() =T,
Al() = A(2) + ad(5) = T, 23
where

A() = [Fi(@), Bo(a)] + [, 2],

_ h h/ %
A) = [Fh), e + [ 2], o
7(2) = [V (@), V()

|

f Oaf]a féz[ovfé]‘

It is easy to verify that A and A" are the monotone operators from Z to Z* = X* x X, and
the operator J is the normalized duality mapping of the space Z. Hence, from (2.1), (2.3),
(2.4) and the monotone property of A" it implies that
AT (R0) = T(20), 20 = 20) < (J(20), 20 — 207°)
1 - - (2.5)
+o{fs = F 20 — 20) + (A(z0) — A"(20), 2% — 20)].

It is not difficult to verify that

14" (2) = A(2) ]| < V2hg(]z]))- (2.6)



54 NGUYEN BUONG, DANG THI HAI HA

Further, from (1.4) it follows

(A(20°) = A(20), 2b° — 20) = (Fi(al®) — 2™ — (Fi(0) — 25), 2l — o)
(Fa(aly™) + aly® — (Fa(ag) + wo), x> — )

— (RL() — Fu(eo),alt® — 20) + (Bo(ah*) — Fyfat), 2h* — a3)

> 1 || Fy (2°) — F1(:100)||2 + g || Fy (2%%) — Fy(ah)||?

> min{imq, ma}C?,  C? = ||Fy(zl?) — Fi(zo)||* + | Fa(zh®*) — Fuy(ap)l|.

+

On the other hand, from (2.3), (2.4)-(2.6) and the properties of A, A", J, g we have
(A(zg’é) — A(20), 22’5 —z20) < (fs— 1, Zﬁ’é — 20)
+a(J(20), 20 — 2°) + (A(L) — A" (20), 22 — 20),
and {22’5} is bounded, as (h + J)/a — 0. Therefore,
min{my, ma}

Consequently, C' < O(vh + § + «). Hence,

[+ all T (20)| + v2hg(ll2a° ]ll26° — =o]l-

1F1(2%°) — Fa(ao)ll < OWR + 6+ a), @)
1F2(xl) = Fa(a5)l| < OWh+ 6 + ). '

Now, we shall estimate the value (J(zq),z0 — z2°). For this purpose, set z2 = Uj(zq) —
F{(z0)*z!. From condition (ii) of the theorem it follows that z! and x? (€ X*) satisfy the
system of following equalities

F{(mo)*xl + £L‘2 = Ul(mo),
}7’2/(:1:(”3)*3:2 — gl = Usa(zg)-

By virtue of

(J(20), 0—225>=<U1($0) o — 2p°) + <U2(96o) g — ")
=(Fj(zo ) at + 22wy — a0 4 (Fh(xh) a? — 2t xf — 20
—(xh®* — F1(<B0)( w0 — o), x")
+ <$o — a2l — Fy(ap) (2l — ), 2%)
—(Fi(x°) = Fi(zo) — F1(év0)( W — o), x")
+a(Ui(eh?),2") + (F(z°) — Fi(«l’),2")
+ (Fo(al™*) — Fa(af) — Fy(ap) (2™ — ap), 27)
+ (aUs(ef™) + f — f5,0%) + (F3 (20°") = Fag™), 2%,

we have

{J(20), 20 = Z"’5> < max{r |||, m2l|l2?||} x

(1Fy (25°) = Fa(zo)[| + | Fa(x®) — Fa(a5)ll) + O(h+ 6 + a).
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Thus, for sufficiently small h,d,a (h+d + o < 1) from (2.5)-(2.7) we have got
ASO(h+O)"") +OWVh+6+a),

It means that
lz® — 2ol = O((h+3)"*").

Theorem is proved. [ |

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold, and o is chosen such that
an~ (h+0+7)°, 0<p<1, where

o = max{||(I — Pa)zoll, [I(Z = Po) FII, | = Pr)z [, (1" = Py)all, 12" — Py)2?|},
and I'* denotes the identity operator in X*. Then,

s, — ol = O((h+8)" +4),

. 1=p p
7 = min { ,%ﬁ,
min 22
= min {n, 51’51}'

Proof. Set

B = mul|zg, — woull* +mallzis” — o 411,

. h,d,%
with zo, = Ppo, Tan = Flh,a’n

solution of (1.3) iff mg’f; and mg’%* are the solutions of the system of following equations

(;vg’f%), and zj,, = Ppzg. It is easy to see that xg’% is a

Flhn(x) + aU'(z) — 2" =0,
Fg,(2*) + U3 («*) + 2 — f5n =0,

with U" = P;ULP,, Uy = P,Us Py, F', = PiF}'P,, F}', = P Fy Py, and fs5,, = Pofs. Asin
hd . h,d  hGx

the proof of theorem 2.1, 24’ 1= [Ta'n, Taln | is the solution of the following operator equation
Al n(2) = Ab(2) + ™ (2) = Fsps (2.8)
where
A (2) = [Fl (@), By ()] + [, ],
J"(2) = [U1(2),U3(z")],  fsm = [0, fonl-
The operators A" and A,,, defined by A,,(2) = [Fi n(z), Fon(z*)]+[—2*, 2], Fin = PiF1 Py, Fopy =
P, F> Py, are the monotone operators, and act from Z,, := X,, x X} into Z;, and J" is the

normalized duality mapping of the space Z,.
From (2.8) we obtain

(2.9)

An(zgﬁ) — An(20,n) + a[J”(zgzg) = J"(200)] = 75,n +
An(20) = AR(205) = An(20) — aJ™(20,)-

a,n

(2.10)



56 NGUYEN BUONG, DANG THI HAI HA

Therefore, from (1.4) and the properties of the projections P,,, P;' it implies that

(An(200) = An(z0) 20 — 20) = (FL(xlh) = Fi(@o,n), 2, — To.n)
+ (Ba(atn’) — Fa(a ), e — ,0)
> | Fi(g)) — F1($0n)\\2+m2HF2( o) = Fa(ag )|
>mln{m1=m2} m o Cn =l Fi(ens) — Filzon)l? + | Fa(eln”) — Ba(zf )l
On the other hand, from (2.8), (2.9) we also obtain

An(zain) — AR (200) + alT"(200) = T (20)] = fsn

(2.11)
— Al (20.) — @™ (20,1)-
Hence, on the base of the property of J and (2.11) we can write
1 h,o
E(f& - f - OéJ(Zo TL)? Zan Z()’n>
1
+ - A - Ah n)s 272 - n
= (A(20) (20,n); Zan — Z0,n) (2.12)
1

< [0+ [[A(20) = ACzon) | + hg(llz0.nID]ll250 = 200l

+ <Jn(z0,n)a 20,n — Z%

Moreover, using the continously Fréchet differentiable property of Fi, Fo and the definition of
Yo, We can also write

I A(20.) — A(20)|l < ([|F1(zon) — Fizo)|?
+ | Fa(x,) — Pa(ap) )2 + V2
< (max{ér, &} + V2)yn,

where & = maxoce<t [|[F{(wo + t(zon — 20))|| and & = maxoc< [|1F3(af + (25, — 25))|-
Consequently, {z79} is bounded, when (h + 6 4+ 7,)/a — 0. By virtue of (2.10) we have

(A n(z n ) An (20, n)s Zi - Z0,n> < <7(5,n - An(zo,n)a 2332 - Zo,n>

+ (An(2d) — AR (D) — ad™(20m), 20 — 20n)
< (fs— f + A(z0) — A(Zo n)s 200 = Z0n)

+ (An(2d) — AR (D) — ad (20), 200 — 20m)
<O(h+ 6 +a+ %)Hzo,n — za3n>||.

Therefore, C,, < O(vh+ 6 + a+ ,). Hence,

I1Fy(2]3) — Fi(zon)ll < O(VR 16 +at ),
1By (zh) — Fa(wg, )l < O(VA+ 0+ & + ).
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Now, we obtain the esimation for (J"(z0.), 2z0.n — 2%). From (2.2), (2.8) and the condition
of the theorem we have got

<Jn(’z07n)a 20,n — R n> = (J(Zom), 20,n — Zij)
J(z

= (J(20n) = J(20), 20m — Ze) + (J(20), 20 — 25
SO0 = zomll + (Fi(w0) " + 22, w0 — &)
(F2($3)*372 ol 2l — ren’)
< Opllzln — 2ol + (@t 2l — 25, — Fi (o) (), — z0.0))
+ (22, «TOn—xh _F2($0)($h5*_$0n)>

where C' is some positive constant, and v = min{vy, v2}. Obviously,

(@, alt — ah, — Fi(20) (2, — wom)) = (2, Y (20) + aUT (2l0,) — 5.,)
+ (@', —F] (o) (z9, — x0) + F{(x0)(x0,n — 0))
= (zp, Fa(afy ) Fy(wo) — Fi(wo)(xly, — 0))
+a<$ UP(ld) + (2! =F1($o)($o,n—$o)>
+ (I = P)at, —Fl(wo) (a5, — z0)) + (2}, F(a5) — F1(a™9))
< nllzpll1FL(=s,) — Fl(xo)\\+0(h+a+7n)

where z1 = P,2!. By the argument, we also obtain the estimate
(@, xo. — 2y, — Fy(ap) (xly* — 8.0)) < mellef ||| Fa(2™) — Fa(ap)|
+O(h+6+ a+ ).
Therefore,

(J™(20), 20 — 21°) < O() + O(Vh+ 5+ + ).
Thus, from (2.12) and the properties of A", .J it follows
B<O((h+38+7)" "+ 77+ O((h+ 5+ 7)),

Consequently,
2y, — ol = O((h+8)" + ).

Theorem is proved. [ |

Example 1. Consider the simple example, when X = X* = E2, the Euclid space, and

1 -1
1 0

0 —1

FIZ 7F2: 1 1],$:(ZL‘1,ZI)2).

It is easy to verify that (Fiz,z) = 22 > 0, and (Fyr,x) = z3 > 0V € E2. It means that
F;,i = 1,2, are monotone. Equation (1.1) has the form 0z1 = f1, 2z = fo with f = (f1, f2).
Obviously, this system of equations has a unique solution when f = (0, fy) for arbitrary fo.
When f5 = ( ff , f2) with ff # 0 equation (1.1) in this case there isn’t a solution. So, equation
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(1.1) with the monotone operators Fi,i = 1,2, in general is ill-posed. On the other hand,
equation A(z) = f for z = (x1,x9, 23, 23) is the system of 4 linear equations with the matrix

1 -1 -1 0
1 0 0 -1
A= 1 0 0 -1
0 1 1 1

having det A = 0. Consequently, the system of equations is also ill-posed.
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