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Abstract. Evolutionary computation (EC) has been a fascinating branch of computation inspired

by a natural phenomenal of evolution. EC enables computer scientists to design effective algorithms

dealing with difficult problems. This paper focuses on a special class problem called multi-objective

optimization problems and evolutionary algorithms designed for it. We will overview the development

of multi-objective evolutionary algorithms (MOEAs) over the years and problem difficulties and then

indicate the open problems in this area. Our chief goal is to provide readers with reference material

in the area of multi-objective evolutionary algorithms.
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1. INTRODUCTION

Evolutionary algorithms (EAs) [3, 28, 40] have emerged as major heuristic search para-
digms. With the usage of a population for the search in each iteration, EAs are naturally
suitable for solving multi-objective problems, which often have multiple conflicting objec-
tives. They have attracted significant attention from the research community over the last 30
years. We can observe this fact by the number of publications produced over time [13, 16, 17].
Obviously, in these problems, there is no single solution that is the best when measured on
all objectives (note that the terms solution, individual and point are used interchangeably
in this paper). Instead we usually find several trade-off solutions (called the Pareto optimal
set (POS) to honor Vilfredo Pareto [44], or Pareto optimal front (POF) for the image of
the vectors corresponding to these solutions). In that sense, the search for an optimal solu-
tion has fundamentally changed from what we see in the case of single-objective problems.
The task of solving multi-objective optimization problems (MOPs) is called multi-objective
optimization. An example is given in Figure 1 where we are considering a MOP, such as
design, scheduling, or investment problems addressing two objectives: low cost and high
performance.

Users practically need only one solution from the set of optimal tradeoff solutions. There-
fore, solving MOPs can be seen as the combination of both searching and decision making
processes [31]. There is a large set of techniques being proposed over years for MOPs. Gen-
erally speaking, there are four main approaches in the literature [42]. The first one does not
use preference information (called no-preference). These methods solve a problem and give
a solution directly to the decision maker. The second one is to find all possible solutions of
the non-dominated set and to then use the user preference to determine the most suitable
one (called decision making after search, or posterior). Meanwhile, the third approach is to
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Figure 1. There are several trad-off optimal solutions (black dots) satisfying the problem of
cost-performance

use preference before the optimization process; and hence it will result in only one solution
at the end (called decision making before search, or priori). With this approach, the bias
(from the user preference) is imposed all the time. The fourth approach (called decision
making during search, or interactive) is to hybridize the second and third ones in which
human decision-making is periodically used to refine the obtained trade-off solutions and
thus to guide the search. In general, the second one is mostly preferred within the research
community since it is less subjective than the other two.

This paper is dedicated to make an overview of multi-objective evolutionary algorithms
(MOEAs) and then pinpoints a number of research open issues and problem difficulties.
Therefore, it is organized as follows: the second section is for the common concepts and
notations in multi-objective optimization using evolutionary algorithms. It is followed by de-
scriptions of traditional multi-objective algorithms as well as MOEAs (the third and fourth
sections respectively). The fifth and sixth sections are dedicated to the performance assess-
ment and research issues. The paper is concluded in Section 7.

2. BACKGROUND

This section will define some common concepts that have been widely used in the liter-
ature as well as in this paper. Interested readers might refer to books of [15, 19, 23, 42, 10]
for a more detailed description. Note that for evolutionary multi-objective optimization, in
addition to the decision variable space (phenotype), we have the decision space or search
space (genotype), while also the objectives form another space, called the objective space.
However, this paper uses a continuous representation, so there is no distinction between
genotype/phenotype. Therefore, the two spaces are identical.

Mathematically, in a k -objective optimization problem, a vector function
−→
f (−→x ) of k

objectives is defined as

−→
f (−→x ) =


f1(
−→x )

f2(
−→x )
...

fk(−→x )

 , (1)
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in which −→x is a vector of decision variables in the n-dimensional space Rn; n and k are not
necessarily the same. A solution is assigned a vector −→x and therefore the corresponding

objective vector
−→
f . Therefore, a general MOP is defined as follows

min fi(
−→x )|−→x ∈ D, (2)

where i = 1, 2, ..., k and D ⊆ Rn, called the feasible search region. All solutions (including
optimal solutions) that belong to D are called feasible solutions.

In general, when dealing with MOPs, a solution x1 is said to dominate x2 if x1 is better
than x2 when measured on all objectives. If x1 does not dominate x2 and x2 also does not
dominate x1, they are said to be non-dominated. If we use � between x1 and x2 as x1 � x2
to denote that x1 dominates x2 and � between two scalars a and b, as a � b to denote that
a is better than b (similarly, a � b to denote that a is worse than b, and a 7 b to denote
that a is not worse than b), then the dominance concept is formally defined as follows.

Definition 1. x1 � x2 if the following conditions are held:
1. fj(x1) 7 fj(x2), ∀j ∈ [1, 2, ..., k];
2. ∃j ∈ [1, 2, ..., k] in which fj(x1) � fj(x2).

The concept defined in Definition 1 is sometimes referred to as weak dominance. For
the strict dominance concept, solution x1 must be strictly better than x2 in all objectives.
However, this paper follows the weak dominance concept as defined in Definition 1. Further,
the relation between individuals is called the dominance relation.

Generally, there are several properties of binary relations that are related to the domi-
nance relation; and they are listed as follows:

• Irreflexive: From Definition 1, clearly a solution does not dominate itself. Therefore,
the dominance relation is not reflexive (or is irreflexive).

• Asymmetric: The dominance relation is asymmetric since x1 � x2 does not imply x2
� x1.

• Antisymmetric: The dominance relation is asymmetric, therefore it is not antisym-
metric (recall that this property requires that if x1 � x2 and x2 � x1 then x1 =
x2).

• Transitive: From Definition 1, we can see that if x1 � x2 and x2 � x3 then x1 � x3.
Therefore, the dominance relation is transitive.

Definition 2. A binary relation R is called

• partially ordered if it is reflexive, antisymmetric and transitive,

• strictly partially ordered if it is asymmetric and transitive.

Clearly, the dominance relation is a strict partial order relation (see Definition 2) since
it is not reflexive and not antisymmetric. This is an important finding and it has been used
in considering theoretical aspects of multi-objective optimization [23].

In dealing with MOPs, EAs use a population (set) of individuals during the optimization
process. At the end, we usually have a set of individuals where no one individual is better
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than any other one in the set. This set is an approximation of the real optimal solutions for
the problem.

In general, if an individual in a population is not dominated by any other individual in
the population, it is called a non-dominated individual. All non-dominated individuals in a
population form the non-dominated set (as formally described in Definition 3). Note that
these definitions are equivalent to that from [19].

Definition 3. A set S is said to be the non-dominated set of a population P if the following
conditions are held:

1. S ⊆ P ;
2. ∀s ∈ S,@x ∈ P |x � s.

When the set P represents the entire search space, the set of non-dominated solutions
S is called the global Pareto optimal set. If P represents a sub-space, S will be called the
local Pareto optimal set. There is only one global Pareto optimal set, but there could be
multiple local ones. However, in general, we simply refer to the global Pareto optimal set
as the Pareto optimal set (POS). Although there are several conditions established in the
literature for optimality [23, 42], however, for practical black-box optimization problems,
these conditions generally can not be verified easily.

Finally, it is worthwhile to mention here two special objective vectors (assuming that the
problem is minimization) that are related to the Pareto optimal set (see [23], p. 34). For
the sake of simplicity, these vectors are also called ‘solutions’

• Ideal solution: This represents the lower bound of each objective in the Pareto optimal
set. It can be obtained by optimizing each objective individually in the entire feasible
objective space.

• Nadir solution: This contains all the upper bound of each objective in the Pareto
optimal set. Obtaining the Nadir solution over the Pareto optimal set is not an easy
task. One of the common approaches is to estimate the Nadir point by a pay-off table
based on the Ideal solution.

3. TRADITIONAL MULTI-OBJECTIVE ALGORITHMS

We use the term ‘traditional ’ in this context to differentiate such methods from evolution-
ary ones. There is a handful of traditional methods, such as the method of global criterion,
weighted-sum [18, 42], ε-constraint [29], weighted metric [42], and goal programming [50].
This section will only summarize several approaches that represent for different categories.

3.1. No-preference methods

There is no preference for the decision maker when receiving the solution of the optimiza-
tion process. They can make the choice to accept or reject it. For this, the no-preference
methods are suitable in the case that the decision maker does not have specific assumptions
on the solution. The method of global criterion [42, 61] can be used to demonstrate this
class of methods.

For this method, MOPs are transformed into single objective optimization problems by
minimizing the distance between some reference points and the feasible objective region.
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In the simplest form (using Lp-metrics), the reference point is the ideal solution and the
problem is represented as follows

minimize

( k∑
i=1

|fi(x)− z∗i |p
) 1

p

, (3)

where z∗ is the ideal vector, and k is the number of objectives.
When p = ∞, it is called a Tchebycheff problem with a Tchebycheff metric and is

presented as follows

minimize max
i=1,..,k

|fi(x)− z∗i |. (4)

From the equation, one can see that the obtained solutions depend very much on the
choice of the p’s value. Also, at the end the method will only give one solution to the decision
maker.

3.2. Posteriori methods

For posteriori methods, a set of Pareto optimal solutions is presented to the decision
maker and the most suitable one will be selected based on the decision maker’s preference.
Here, we overview the two most popular approaches: weighted sum and ε-constraint.

For the weighted-sum method, all the objectives are combined into a single objective by
using a weight vector. The problem in Eq. 2 is now transformed as in Eq. 5.

min f(−→x ) = w1f1(
−→x ) + w2f2(

−→x ) + ...+ wkfk(−→x )|−→x ∈ D, (5)

where i = 1, 2, ..., k and D ⊆ Rn.
The weight vector is usually normalized such that

∑
wi = 1.

Although the weighted-sum method is simple and easy to use, there are two inherent
problems. Firstly, there is the difficulty of selecting the weights in order to deal with scaling
problems since the objectives usually have different magnitudes. Therefore, when combining
them together, it is easy to cause biases when searching for trade-off solutions. Secondly,
the performance of the method is heavily dependent on the shape of POF. Consequently, it
cannot find all the optimal solutions for problems that have a non-convex POF.

To overcome the difficulty of non-convexity, the method of ε-constraint has been intro-
duced, where only one objective is optimized while tranforming the others into constraints.
The problem in Eq. 2 is now transformed as in Eq. 6. Again, the problem is now transformed
into a single objective one

min fj(
−→x )|−→x ∈ D, (6)

subject to fi(
−→x ) ≤ εi where i = 1, 2, ..., k, i 6= j and D ⊆ Rn.

In this method, the ε vector is determined and uses the boundary (upper bound in the
case of minimization) for all objectives i. For a given ε vector, this method will find an
optimal solution by optimizing objective j. By changing ε, we will obtain a set of optimal
solutions. Although, this method alleviates the difficulty of non-convexity, it still has to face
the problem of selecting appropriate values for the ε vector, since it might be that case that
for a given ε vector, there does not exist any feasible solution.
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3.3. Priori methods

For these methods, the decision maker is requested to indicate his/her assumption about
the preferences before starting the optimization process. Therefore, the issue is how to
quantify the preference and incorporate it into the problem before the optimization process.
Here, one obvious method is the weighted-sum where the weights can be used to represent
the decision maker’s preference.

However, here the methods of lexicographic ordering and goal programming [24, 33, 42]
are used to demonstrate the use of priori preference. For a lexicographic method, the decision
maker is asked to arrange the objective functions by relying on their absolute importance.
The optimization process is performed individually on each objective following the order of
importance. After optimizing with the most important objective (the first objective), if only
one solution is returned, it is the optimal solution. Otherwise, the optimization will continue
with the second objective and with a new constraint on the obtained solutions from the first
objective. This loop might continue to the last objective.

For the method of goal programming, aspiration levels of the objective functions will be
specified by the decision maker. Optimizing the objective function with a aspiration level is
seen as a goal to be achieved. In its simplest form, goal programming can be stated as below

minimization

k∑
i=1

|fi(x)− zi|, (7)

where z is the vector indicating the aspiration levels. A more general formulation of this
equation can be derived by replacing |fi(x)− zi| by |fi(x)− zi|p.

3.4. Interactive methods

We are now looking at a special class called interactive methods. The decision maker is
allowed to interact with the optimization program (or an analyst). In general, the interaction
can be described step-by-step as follows (see [42]):

• Step 1: Find an initial feasible solution;

• Step 2: Interact with the decision maker, and;

• Step 3: Obtain a new solution (or a set of new solutions). If the new solution (or
one of them) or one of the previous solutions is acceptable to the decision maker, stop.
Otherwise, go to Step 2.

With the interaction between the program and the decision maker, as indicated in [42],
many weaknesses from the above approaches can be alleviated. To date, there are many
approaches using an interactive style, namely, GDF [27], Tchebycheff method [50] (pp. 419-
450), Reference point method [59], NIMBUS [41]. Recently, interactive methods have also
been incorporated with MOEAs (see [2] for an example). Here we use the reference direction
approach to demonstrate this class of the methods. The approach is described as follows:

• Step 1: Present the decision maker information of the problem such as the ideal
solution;
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• Step 2: Request the decision maker to specify a reference point z;

• Step 3: Minimize the achievement function (an example is given in Eq. 8) and obtain
a Pareto optimal solution x and the corresponding z. Present z to the decision maker

minimize max
i=1,..,k

[wi(fi(x)− zi)]; (8)

• Step 4: Calculate a number of k other Pareto optimal solutions by minimizing the
achievement function with perturbed reference points: z(i) = z+dei, where d = ‖z−z‖
and ei is the ith unit vector for i = 1, .., k;

• Step 5: Present the alternatives to the decision maker. If he/she finds one of the k+1
solutions satisfied, the corresponding x is the final solution. Otherwise, go to Step 3.

From the above basic steps, it appears that the approach is very simple and practical.
The preference is incorporated into the achievement function and therefore the problem
becomes single objective. The perturbation of the reference point gives the decision maker
more understanding of the Pareto optimal set.

4. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

4.1. Overview

Multi-objective evolutionary algorithms (MOEAs) have been around for a while. They
are considered as a class of stochastic optimization techniques. Similar to other optimization
algorithms, MOEAs are designed to find Pareto optimal solutions for a particular prob-
lem, but differ by using a population-based approach. This paper focuses on the class of
dominance-based MOEAs. Although it is possible of not using dominance relation when
designing MOEAs, such as VEGA [48], the majority of existing MOEAs employ the concept
of dominance in their courses of action.

The optimization mechanism of MOEAs is quite similar with that of EAs, except for
the use of the dominance relation (fitness assignment). In more detail, at each iteration,
the objective values are calculated for every individual and are then used to determine the
dominance relationships within the population, in order to select potentially better solutions
for the production of the offspring population. This population might be combined with
the parent population to produce the population for the next generation. Further, the
existence of the objective space might give MOEAs the flexibility to apply some conventional
supportive techniques such as niching.

Generally, MOEAs have to deal with two major inherent issues [19]: (1) how to get close
to the Pareto optimal front. This is not an easy task, because converging to the POF is a
stochastic process. (2) how to keep diversity among the solutions in the obtained set. These
two issues have become common criteria for most current algorithmic performance compar-
isons [67]. A diverse set of solutions will give more options for decision makers, designers,
etc. However, working on a set of solutions instead of only one, makes the measurement of
the convergence of a MOEA harder, since the closeness of one individual to the optima does
not act as a measure for the entire set.
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Table 1. The common framework for multi-objective optimization evolutionary algorithms

Step 1: Initialize a population P ;
Step 2: (optional):Select elitist solutions from P to create/update an external set FP
(For non-elitism algorithms, FP is empty);
Step 3: Create a mating pool from one or both of P and FP ;
Step 4: Perform reproduction based on the pool to create the next generation P;
Step 5: Possibly combine FP into P ;
Step 6: Go to step 2 if the termination condition is not satisfied.

To date, many MOEAs have been developed. Generally speaking, there are several ways
to classify MOEAs. However, this paper follows the one used in [13] where they are classified
into two broad categories including elitism and non-elitism1

4.2. Non-elitism approach

This approach does not explicitly keep the best solutions when it does selecting individ-
uals for the next generation from the current population [19]. Instead, selected individuals
from the current generation are used to exclusively generate solutions for the next generation
by crossover and mutation operators as in EAs. The only difference from conventional EAs
is that they use the dominance relation when assessing solutions. Instances of this category
include MOGA [25], NPGA [32] and NSGA [19].

The authors in [13] classify all algorithms using this approach as instances of the first
generation of MOEAs which implies simplicity. Although MOEAs are different from each
other, the common steps of these algorithms can be summarized as shown below (Table 1).
Note that steps 2 and 5 are used for elitism approaches that will be summarized in the next
sub-section.

4.3. Elitism approach

In EC, elitism is a concept of preserving the best individuals from generation to genera-
tion. By this way, the system never loses the best individuals found during the optimization
process. Elitism was used at quite an early stage of evolutionary computing (see [22]) for an
example); and to date, it has been used widely with EAs. Elitism can be done by placing
one or more of the best individuals directly into the population for the next generations, or
by comparing the offspring individual with its parents and then the offspring will only be
considered if it is better than the parent [51].

In the domain of evolutionary multi-objective optimization, elitist MOEAs usually (but
not necessarily) employ a concept of an external set (the archive) to store the non-dominated
solutions after each generation. In general, when using the archive, there are two important
aspects as follows:

• How to get the archive and the main population interacted? This is about how we use
the archive during the optimization process; for example, one such way is to combine

1In [13], the author used the first and second generations of MOEAs. However, the classification actually
relied on elitism
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the archive with the current population to form the population for the next generation
as in [65].

• How to update the archive? This is about the methodology to build the archive,
one such method is by using the neighborhood relationship between individuals using
crowded dominance [20], clustering [65], or geographical grid [39], while another method
is by controlling the size of the archive through truncation when the number of non-
dominated individuals are over a predefined threshold.

Obviously, the current archive might then be a part of the next generation; however, the
way to integrate this archive may be different from one algorithm to another. In general,
with elitism, the best individuals in each generation are always preserved, and this helps
the algorithms to get closer to the POF; a proof of convergence for MOEAs using elitism
can be found in [46]. By implementing elitism, the algorithmic design of MOEAs becomes
diverse with dominance ranking[20], decomposition[62], direction[9]; and hence resutls in
many algorithms to date. Algorithms such as PAES [39], SPEA2 [65], PDE [1], NSGA-II
[20], MOPSO [14], MOEA/D [62], NSGA-III [21], and DMEA[9] are typical examples of this
category.

4.4. Selected MOEAs

This section will summarize several approaches in the literature. These approaches are
selected since they are the current state-of-the-art algorithms and have been widely used in
the field.

4.4.1. Non-dominated sorting genetic algorithms version 2 (NSGA-II)

NSGA-II is considered as an elitism algorithm [19, 20] with a special elitism-preservation
operation. Note that NSGA-II does not use an explicit archive; a population is used to store
both elitist and non-elitist solutions for the next generation. However, for consistency, it is
still considered as an archive. Firstly, the archive size is set equal to the initial population size.
The current archive is then determined based on the combination of the current population
and the previous archive. To do this, NSGA-II uses dominance ranking to classify the
population into a number of layers, such that the first layer is the non-dominated set in the
population, the second layer is the non-dominated set in the population with the first layer
removed, the third layer is the non-dominated set in the population with the first and second
layers removed and so on. The archive is created based on the order of ranking layers: the
best rank being selected first. If the number of individuals in the archive is smaller than
the population size, the next layer will be taken into account and so forth. If adding a
layer makes the number of individuals in the archive exceed the initial population size, a
truncation operator is applied to that layer using crowding distance.

The crowding distance D of a solution x is calculated as follows: the population is
sorted according to each objective to find adjacent solutions to x ; boundary solutions are
assigned infinite values; the average of the differences between the adjacent solutions in each
objective is calculated; the truncation operator removes the individual with the smallest
crowding distance.
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D(x) =
M∑

m=1

F
Imx +1
m − F Imx −1

m

Fmax
m − Fmin

m

(9)

in which, F is the vector of objective values, and Imx returns the sorted index of solution x,
according to objective mth.

An offspring population of the same size as the initial population is then created from the
archive, by using crowded tournament selection, crossover, and mutation operators. Crowded
tournament selection is a traditional tournament selection method, but when two solutions
have the same rank, it uses the crowding distance to break the tie.

4.4.2. Strength pareto evolutionary algorithm 2 (SPEA2)

SPEA2 is actually the elitist version of ‘The Strength Pareto Evolution Algorithm’ -
SPEA [67]. For it, the initial population, representation and evolutionary operators are
standard: uniform distribution, binary representation, binary tournament selection, single-
point crossover, and bit-flip mutation. However, the distinctive feature of SPEA2 lies in the
elitism-preserved operation.

An external set (archive) is employed for storing primarily non-dominated solutions. It
is then combined with the current population to form the next archive that is then used to
create offspring for the next generation. The size of the archive is fixed. It can be set to
be equal to the population size. Therefore, there exist two special situations when filling
solutions in the archive. If the number of non-dominated solutions is smaller than the archive
size, other dominated solutions taken from the remainder part of the population are filled
in. This selection is carried out according to a fitness value, specifically defined for SPEA.
That is the individual fitness value defined for a solution x, is the total of the SPEA-defined
strengths of solutions which dominate x, plus a density value.

The second situation happens when the number of non-dominated solutions is over the
archive size. In this case, a truncation operator is applied. For that operator, the solution
which has the smallest distance to the other solutions will be removed from the set. If
solutions have the same minimum distance, the second nearest distance will be considered,
and so forth. This is called the k-th nearest distance rule.

4.4.3. Direction-based multi-objective evolutionary algorithm (DMEA)

For DMEA [9], two types of directions are used including convergence direction (from
a dominated solution to a non-dominated one) and spreading direction (between two non-
dominated solutions) for generation of offspring along those directions. We call them as
directions of improvement. A population of solutions is maintained and evolved over time
under the guidance of directions of improvement. Further, an archive is maintained over time.
This archive is not only used for contributing elite solutions for the next generation, but also
for deriving the directions. In order to fill the populations of the next generation as well as
the archive, DMEA gets solutions from the combined population (resulted from combining
the current archive and the offspring). For the next generation, the non-dominated solutions
using niching information in the decision space is filled in the first half of the population, while
the other half is filled by using a weighted-sum technique for all remaining solutions in the
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combined population. The archive needs to be updated and the selection of non-dominated
solutions for updating is also assisted by a niching mechanism, in which neighborhoods of
rays in objective space serve as niches. These rays originate from the current estimate of the
ideal point and emit uniformly into the hyper-quadrant that contains the current POF.

4.4.4. A multi-objective evolutionary algorithm based on decomposition(MOEA/D)

The authors proposed a new multi-objective evolutionary algorithm based on decompo-
sition [62]. Basically, MOEA/D explicitly decomposes the MOP into N scalar optimization
subproblems. A population of solutions is evolved in order to solve these subproblems si-
multaneously. The current population is composed of the best solution found so far (i.e.
since the start of the run of the algorithm) for each subproblem. In this way, the elitism
is preserved. MOEA/D defines the neighborhood relations among these subproblems based
on the distances between their aggregation coefficient vectors.The optimal solutions to two
neighboring subproblems should be very similar. Note that each subproblem (i.e., scalar ag-
gregation function) is optimized in MOEA/D by using information only from its neighboring
subproblems.

5. PERFORMANCE ASSESSMENTS

It is commonsense that performance metrics are usually used to compare algorithms in
order to form an understanding of which one is better and in what aspects. However, it
is hard to define a concise definition of algorithmic performance, especially in the case of
MOEAs. In general, when doing comparisons, a number of criteria are employed [67]:

• How close the obtained non-dominated set is to the Pareto optimal front?

• How good is the distribution of solutions within the set (in most cases, uniform)?

• How spreading is the obtained non-dominated front? i.e., for each objective, a wide
range of values should be covered by the non-dominated solutions.

Based on these criteria, a number of performance metrics has been developed. There
have been a number of efforts to develop platforms for performance assessments including
most popular metrics such as the PISA system [4]. This section will provide a summary of
the most popular ones of these metrics.

5.1. Metrics evaluating closeness to POF

The first obvious metric is the error rate, ER, introduced by Veldhuizen [55]. It is
calculated by the percentage of solutions that are not in POF

ER =

∑N
i=1 ei
N

, (10)

where N is the size of the obtained set and ei = 1 if the solution i is not in the POF,
otherwise ei = 0. The smaller the ER, the better the convergence to the POF. However, this
metric does not work in the case when all the solutions of two compared sets are not in the
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POFs. In this case, a threshold is employed, such that if the distance from a solution i to
the POF is greater than the threshold, ei = 1, otherwise ei = 0.

The second metric is the generation distance, GD, which is the average distance from the
set of solutions found by evolution to POF [55]

GD =

√∑N
i=1 d

2
i

N
, (11)

where di is the Euclidean distance (in objective space) from solution i to the nearest solution
in POF. If there is a large fluctuation in the distance values, it is also necessary to calcu-
late the variance of the metric. Finally, the objective values should be normalized before
calculating the distance.

5.2. Metrics evaluating diversity among obtained non-dominated solutions

The spread metric is also an important one in performance comparisons. One of its
instances is introduced by Schott [49], called the spacing method

S =

√
1
N

∑N
i=1(d− di)2

d
, (12)

where di = minj=1−>N
∑M

m=1 |f im − f jm| and fm is the mth objective function. N is the
population size and M is the number of objectives. The interpretation of this metric is that
the smaller the value of S, the better the distribution in the set. For some problems, this
metric might be correlated with the number of obtained solutions. In general, this metric
focuses on the distribution of the Pareto optimal set, not the extent of the spread.

In [20], the authors proposed another method to alleviate the problem of the above
spacing method. The spread of a set of non-dominated solutions is calculated as follows

∆ =

∑M
i=1 d

e
i +

∑N
i=1 |di − d|∑M

i=1 d
e
i +Nd

, (13)

where di can be any distance measure between neighboring solutions and d is the mean
value of these distances. dei is the distance between extreme solutions of the obtained non-
dominated set and the true Pareto optimal set. ∆ ranges from 0 to 1. If it is close to 1, the
spread is bad.

5.3. Metrics evaluating both closeness and diversity

Note that all of the above metrics focus on a single criterion only. This section summarizes
the others that take into account both closeness and diversity. The first one is the inverse
generation distance (IGD). Given the obtained solution set P , the first-norm equation for
IGD is as follows

IGD =

∑N
i=1 di
N

, (14)

where di is the Euclidean distance (in objective space) from solution i in POS to the nearest
solution in P , and N is the size of POS. In order to get a good value for IGD (ideally zero),
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P needs to cover all parts of POS. Note that this method only focuses on the solution that
is closest to the solution in POS indicating that a solution in P might not take part in this
calculation.

The second one is the hyper-volume ratio [66], one of the most widely accepted by the
research community of MOEAs. To calculate the hyper-volume, an area of objective space
covered by the obtained POF is measured, called the hyper-area. Note that calculating the
hyper-volume is a time-consuming process (although recently several attempts have been
given to speed up this process [57, 58]). In general, for two sets of solutions, whichever has
the greater value of hyper-volume will be the best. However, when using hyper-volume it
is sometime difficult to understand the quality of the obtained POF in comparison with the
true POF.

As recommended in [15, 55], it is considered better to use the hyper-volume ratio, HR,
that is measured by the ratio between the hypervolumes of hyperareas covered by the ob-
tained POF and the true POF, called H1 and H2 respectively. HR is calculated as in Eq. 15.
For this metric, the greater the value of HR, the better the convergence that the algorithm
has

HR =
H1

H2
. (15)

It is important to define the reference point for the calculation of the hyper-volume
(for example, it can be the origin [55]). However, generally it is dependent on the area of
the objective space that is visited by all comparing algorithms. In this paper, as suggested
elsewhere [19], the reference point is the one associated with all the worst values of objectives
found by all the algorithms under investigation.

The third metric uses a statistical comparison method. It was first introduced by Fonesca
and Fleming [26]. For experiments of MOEAs, which generate a large set of solutions, this
metric is often the most suitable, as their data can easily be assessed by statistical methods.
Knowles and Corne [38] modified this metric and instead of drawing parallel lines, all lines
originate from the origin. The basic idea is described with an example as follows: suppose
that two algorithms (A1, A2 ) result in two non-dominated sets: P1 and P2. The lines that
join the solutions in P1 and P2 are called attainment surfaces. The comparison is carried
out in the objective space. In order to do the comparison, a number of lines are drawn from
the origin (assuming a minimization problem), such that they intersect with the surfaces.
The comparison is then individually done for each sampling line to determine which one
outperforms the other. Each intersection line will then yield to a number of intersection
points. In this case, statistical tests are necessary to determine the percentage an algorithm
outperformed the other in each section. For both of these methods, the final results are two
numbers that show the percentage of the space where each algorithm outperforms the other.

5.4. Statistical testing

Because of the stochastic nature, we cannot rely on the results obtained by MOEAs and
from only one run tested on a particular problem. Therefore, it is necessary that every
algorithm involved in the comparison needs to be tested on the problem for a number of
independent runs (equivalent to using different random seeds, i.e 30 runs). By applying the
above metrics (except the one using attainment surfaces), at the end, a set of numerical
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values was obtained for each algorithm. All comparisons will be done on these sets. This
helps to reduce the effect of randomness. Further, statistical tests need to be carried out on
the results from these runs in order to make fair comparisons and judgments. An amount of
30 runs was employed across all experiments since it is commonly used in the literature of
evolutionary multi-objective optimization [14, 52, 67].

From the statistical point of view, there are a number of concepts that can be used
to compare the sets, including the mean, standard deviation, and median. However, the
confidence on using these concepts in comparison is questionable. In general, the final
decision on the performance of algorithms will be made after completing a statistical testing.
Among a diverse collection of testing methods, the paired two-sample t-test [47] is quite
popular. The null hypothesis is the equality of the two sets. The significant level is always
set at 0.05. Thus, if the confident interval achieved from a test is greater or equal to 95%,
the difference between the two sets is considered to be significant.

6. RESEARCH ISSUES AND PROBLEM DIFFICULTIES

Research in the area of MOEAs has attracted lots of attention and has been very fruitful.
However, still we have rooms to improve and implement new algorithms. Here, we try to
briefly overview all major research issues in design an evolutionary multi-objective search.

• Representation: Representing the problem’s solution is the center of the optimization
story. For MOEAs, it decides how we design crossover and mutation operators. The
volume of the search space is dependent on the solution’s representation. It also is
the foundation for other concepts to be stemmed from such as genotype-phenotype
mapping, redundancy, or causality [45]. Further, the representation should be suitable
for the nature of the problems which might have variables in the discrete, real-valued
or mixed formats. A recent example can be seen in Shayan et al. [36].

• Fitness assignment: Fitness is a measure of how good a solution is within a pop-
ulation. In single-objective optimization problems, it can be easily derived from the
solution’s objective values. However, in the case of multi-objective ones, the rela-
tion between solutions is not totally ordered. Therefore, fitness assignment is not
straightforward as in single objective any more (such as using the objective value). For
example, NSGA-II takes into account both the dominance-based rank of solutions and
their crowding distance when considering their fitness.

• Population diversity: MOEAs are usually expected to return a set of trade-off
solutions. Therefore, diversity is essential for them. Further, as EAs, the lost of
diversity can make MOEAs easily get trapped in local POFs. An example of keeping
diversity can be seen as the use of fitness sharing (see NSGA [19] or DMEA [9].

• Elitism: As shown above, elitism is an important aspect of developing MOEAs. The
questions of how to apply and how to exploit elitism are always essential in design of
multi-objective searches. A detailed discussion was given in Bui et al [8] for the usage
of elitism in the context of MOEAs.
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• Population sizing: For EAs, setting an appropriate population size is very critical.
Although, population sizing is relatively related to the problem scale, there is no uni-
versal definition over the area of evolutionary computation. However, there exist a
number of work have been done for genetic algorithms as well as for MOEAs in certain
situations.

Further, there have been a number of possible challenges that MOEAs might face in
solving MOPs. By recognizing these challenges, the algorithmic designs will be benefited
accordingly. Note that there are several problem difficulties for conventional optimization
that do not matter to MOEAs, such as convexity, concavity, discontinuity, or differentiability.
Although they are not always separated, but for the purpose of reference materials, they can
be categorized as follows:

• Multi-modality: Problems with multi-modality usually have multiple local optima.
This causes the algorithm to become easily attracted to a basin associated with a local
optima. This causes one of the major issues that faces the application of optimization
algorithms to many real life problems. Solving these problems is the main objective of
a class of optimization algorithms called global optimization [53]. In multi-objective
optimization, multi-modality of a problem is understood in the sense that the problem
has many local Pareto optimal fronts and only one global POF.

• Dynamic and uncertain environments: The world is not static; in fact it is chang-
ing from time to time with different levels and at almost all aspects. That is why
dynamism happening on many real-world optimization problems, such as timetabling,
routing, or path-planning [11]. For a detailed example, we can consider the problem
of school timetabling. Since changes of class room, or the absence of teachers can
happen at any time, the school timetabling system need to be well aware and adaptive
in order to be able to deal with these changes. In general, there are several aspects
when dealing with dynamic environments including the frequency of change and the
severity of change [5]. Further, the changes might also come form the uncertainly of
decision maker [6].

Regarding noisy environments, a noise effect is inevitable in many real-world problems.
Sources of noise can vary depending on the way data is obtained such as the sensors,
and actuators, or because of the stochastic elements pertaining in some problems such
as multi-agent simulations. In the presence of noise, the optimization process might be
misled by including inferior solutions. If the distribution of noise is symmetric around
zero, such population-based approaches as evolutionary algorithms can maintain well
their progress since the population acts as a noise filter [7, 43].

• Scalability: This challenge has a long history associated with optimization. Origi-
nally, it was considered in the decision space, where by increasing the number of vari-
ables, the search space became larger, more complicated and more vulnerable to the
effect of numerical rounding errors [56, 64]. With the development of multi-objective
optimization, scalability is also considered in the objective space with more than two
objectives [30, 34, 37, 63], which we call many-objective optimization.

• Expensive objective-value evaluation: Each objective-value evaluation will take
a large amount of time. So this difficulty does not cause errors in approaching the
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optima. However, it sometimes makes the optimization process become impossible,
since it has to spend too much time on objective evaluation efforts. Here, we mention
two popular approaches, which have been using estimated objective functions [35] and
employing distributed computation [12, 54].

Note that these challenges are main themes in the research community of evolutionary
computation in both theoretical and experimental senses. The consideration of these aspects
reveals a key rule that the success of an algorithm is heavily dependent on the study of the
search problems with regards to the no-free lunch theorem [60].

7. CONCLUSION

This paper provided an overview of different aspects of evolutionary multi-objective op-
timization including mathematical foundations, design, and performance assessment. It is
worthwhile to note that the popular contribution in this area is centered around the algorith-
mic design of a new MOEA for a particular class of problems. With a special characteristic
of using populations for searching, MOEAs have been a main research stream in evolution-
ary computation over the last three decades with a large volume of publications, dedicated
highquality journals, and textbooks. They have been applied to solve effectively real world
problems ranging from mechanical design and network design to planning and scheduling.
However, there are still many problems opened for further investigation and analysis includ-
ing issues in algorithmic design and application domains. Hence, the paper is expected to
serve the wide audience of researchers a reference source.
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