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�

Abstract. In this paper we study a boundary value problem for a nonlinear biharmonic equation,

which models a bending plate on nonlinear elastic foundation. We propose a new approach to ex-

istence and uniqueness and numerical solution of the problem. It is based on the reduction of the

problem to finding fixed point of a nonlinear operator for the nonlinear term. The result is that

under some easily verified conditions we have established the existence and uniqueness of a solu-

tion and the convergence of an iterative method for the solution. The positivity of the solution and

the monotony of iterations are also considered. Some examples demonstrate the applicability of the

obtained theoretical results and the efficiency of the iterative method.

Keywords. Nonlinear biharmonic boundary value problem, Existence and uniqueness of solution,

Iterative method, Numerical solution.

1. INTRODUCTION

In this paper we study the following nonlinear biharmonic boundary value problem (BVP)

∆2u = f(x, u,∆u), x ∈ Ω,

u = 0, ∆u = 0, x ∈ Γ,
(1)

where Ω is a connected bounded domain in R2, with a smooth boundary Γ, ∆ is the Laplace operator.

We assume that f(x, u, v) is a function continuous in a bounded domain, which will be indicated

later. The problem (1) describes the static deflection of an elastic bending plate with hinged edges

rested on nonlinear foundation.

For the one dimension case, the problem is of the form

u(4)(x) = f(x, u(x), u′′(x)), 0 < x < 1,

u(0) = u(1), u′′(0) = u′′(1) = 0.

∗The paper is an extended version of the report Dang Quang A, Truong Ha Hai, Computational method
for a fourth order nonlinear elliptic boundary value problem presented at 2016 3rd National Foundation for
Science and Technology Development Conference on Information and Computer Science (NICS), Da Nang,
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Although there are a lot of papers concerned with this simply supported beam problem, recently it

still attracts attention from some authors (see e.g. [2, 4, 9] and the references therein).

A particular case of the problem (1) in the multidimensional case, namely, the problem

∆2u+ c∆u = f(x, u), x ∈ Ω,

u = 0, ∆u = 0, x ∈ Γ,
(2)

has been studied in many works. Below we mention some of them.

The first is an early paper of Dunninger [7], where by the maximum principle he established the

uniqueness of a solution of the problem. After this work in 2007 Liu and Wang [11] by a variant

version of Mountain Pass Theorem proved the existence of nontrivial solution of the problem in the

case c = 0 provided that the function f(x, t) satisfies the following hypotheses:

(H1) f(x, t) ∈ C(Ω× R); f(x, t) ≡ 0, ∀x ∈ Ω, t ≤ 0; f(x, t) ≥ 0,∀x ∈ Ω, t > 0;

(H2) lim
t→0+

f(x, t)

t
= p(x), lim

t→+∞

f(x, t)

t
= l, (0 < l ≤ +∞) uniformly a.e. x ∈ Ω, where

0 ≤ p(x) ∈ L∞(Ω), ‖p(x)‖∞ < Λ1 and Λ1 is the first eigenvalue of (∆2, H2(Ω) ∩H1
0 (Ω)).

Under the same (H1), modified (H2) and some other conditions posed on the function f(x, t) in

[1] An and Liu established the existence of nontrivial solution of the problem (2) for c < λ1, where λ1

is the first eigenvalue of −∆ in H1
0 (Ω). In a very recent work [8], Hu and Wang added to the above

hypotheses (H1) and (H2), where Λ1 now is the first eigenvalue of (∆2 + c∆, H2(Ω)∩H1
0 (Ω)), the

following hypothesis:

(H3) For a.e. x ∈ Ω,
f(x, t)

t
is nondecreasing with respect to t > 0.

Under the conditions (H1)-(H3) they studied the existence of a nontrivial solution to problem

(2) in dependence if 0 < l < Λ1, Λ1 < l ≤ ∞ or l = Λ1. Similar results were also obtained

if replacing the hypotheses (H1) and (H3) by

(H1’) f(x, t) ∈ C(Ω× R); f(x, 0) = 0, ∀x ∈ Ω; f(x, t)t ≥ 0, ∀(x, t) ∈ Ω× R;

(H3’) For a.e. x ∈ Ω,
f(x, t)

t
is nondecreasing with respect to t > 0 and decreasing with respect to

t < 0.

Recently an interesting result of existence of sign-changing solutions as well as positive and

negative solutions to the problem (2) was obtained in [10] under some restrictions of the hypotheses

(H1) and (H2).

It should be emphasized that the existence results of solutions of the problem (2) for both cases

c = 0 and c 6= 0 were established by the variational method. These results are of pure theoretical

character and there are not examples of existing solutions. The question of finding solutions is not

considered in the above mentioned works [1, 7, 8, 10, 11] and references therein.

Except for the variational method for studying the existence of solutions of nonlinear boundary

value problems there is an another effective method for establishing the existence and uniqueness of

solutions. This is the method of upper and lower solutions. The use of this method for fourth order
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elliptic boundary value problems was due to Pao in [12]. In this work, for the problem more general

than (1), namely, for the problem

∆(a(x)∆u) = f(x, u,∆u), x ∈ Ω,

α1(x)
∂u

∂ν
+ β1(x)u = h1(x), α2(x)

∂(a∆u)

∂ν
+ β2(x)(a∆u) = h2(x), x ∈ Γ,

(3)

by the method of upper and lower solutions Pao proved the existence and uniqueness of a solution

of the problem under the assumptions that the function f(x, u, v) satisfies the Lipschitz conditions

in u, v and the monotony property in u in a sector defined by the upper and lower solutions, and

some other conditions concerned with a(x) and the partial derivatives of f(x, u, v). In a next work

[13] for solving the problem (3) numerically Pao transformed the problem into a coupled system of u
and v = −a∆u and applied the standard difference approximation to this system. Some monotone

iterative schemes such as Picard, Gauss-Seidel and Jacobi iterations, which converge monotonically

to a unique solution of the system of difference equations, were proposed. The further development

of this monotone technique was obtained in Wang’s works [17, 18, 19, 20], where some examples for

illustrating effectiveness of iterative schemes, were presented.

Differently from the above mentioned methods, in the present paper, we use the approach devel-

oped by ourselves recently in [4, 5, 6] for boundary value problems for fourth order nonlinear ordinary

differential equations. This approach originates from the work [3] of the first author in 2006 when

considering the problem for linear biharmonic type equation with Neumann boundary conditions. By

this approach we reduce the problem (1) to an operator equation for the nonlinear term and prove

that under some simple conditions, the operator is a contraction mapping. Due to this result, the

existence and uniqueness of a solution and the convergence of the iterative method are established.

The realization of the iterative method leads to a sequence of BVPs for the Poisson equation, which

are easily solved by available efficient numerical algorithms. Some examples demonstrate the appli-

cability of the approach and the efficiency of the iterative method, in which difference schemes of

second and fourth order of accuracy are used. The advantages of the proposed method in comparison

with the recent known Wang’s method [19, 20] are shown.

2. EXISTENCE AND UNIQUENESS RESULTS

To investigate the problem (1) we shall reduce it to an operator equation as follows.

For functions ϕ(x) ∈ C(Ω) consider the nonlinear operator defined by

(Aϕ)(x) = f(x, u(x),∆u(x)), (4)

where u(x) is the solution of the problem

∆2u = ϕ(x), x ∈ Ω,

u = ∆u = 0, x ∈ Γ.
(5)

Proposition 1. Function ϕ(x) is a solution of the operator equation

Aϕ = ϕ, (6)

i.e., ϕ(x) is a fixed point of the operator A defined by (4)-(5) if and only if the function u(x)
being the solution of the boundary value problem (5) solves the problem (1).
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Proof. Suppose ϕ ∈ C(Ω) is a solution of the operator equation (6) with A defined by (4). Then,

it is easy to see that, the solution u(x) of the problem (5) also is the solution of the problem (1).

Conversely, if a function u(x) is the solution of the problem (1), then the function ϕ defined by

ϕ(x) = f(x, u(x),∆u(x)),

satisfies the operator equation (6). Thus, the proposition is proved. �

According to the above proposition, the solution of the problem (1) is reduced to fixed point

problem for the operator A defined by (4), (5).

Now we study properties of operator A. First we prove the following

Lemma 1. For the solution of the BVP

−∆u = f(x), x ∈ Ω,

u = 0, x ∈ Γ

there holds the estimate
‖u‖ ≤ CΩ‖f‖, (7)

where ‖u‖ = maxx∈Ω̄ |u(x)|, CΩ =
R2

4
and R is the radius of the circle containing the domain

Ω.
If Ω is the unit square then

‖u‖ ≤
1

8
‖f‖. (8)

Proof. In the domain Ω consider the function

v(x) =
1

4
‖f‖(R2 − x2

1 − x2
2).

It is easy to calculate

−∆v = ‖f‖, x ∈ Ω.

Taking into account that 0 = |u(x)| ≤ |v(x)| on Γ, by the maximum principle for the Poisson

equation (see e.g. [14] ) we have

|u(x)| ≤ |v(x)|, x ∈ Ω. (9)

Since

0 ≤ v(x) ≤ 1

4
‖f‖R2 = CΩ‖f‖

from (9) we obtain (7).

In the particular case if the domain Ω is the unit square we can choose R =
√

2, and consequently

we obtain (8). The lemma is proved. �

Now for each positive number M denote

DM = {(x, u, v)| x ∈ Ω, |u| ≤ C2
ΩM, |v| ≤ CΩM}

and denote by B[O,M ] the closed ball of the radius M in C(Ω̄), i.e.

B[O,M ] = {ϕ ∈ C(Ω̄)| ‖ϕ‖ ≤M}.

Theorem 1. Assume that there exist numbers M,L1, L2 ≥ 0 such that
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1.

|f(x, u, v)| ≤M, ∀(x, u, v) ∈ DM . (10)

2.

|f(x, u2, v2)−f(x, u1, v1)| ≤ L1|u2−u1|+L2|v2−v1|, ∀(x, ui, vi) ∈ DM , i = 1, 2. (11)

3.

q := (L2 + CΩL1)CΩ < 1. (12)

Then the BVP (1) possesses a unique solution u(x) ∈ C(Ω̄), for which there holds the estimate
‖u‖ ≤ C2

ΩM.

Proof. In order to prove the theorem we shall show that the operator A defined by (4), (5) maps

B[O,M ] into itself and is a contraction mapping. Then from the contraction mapping principle it

follows the existence and uniqueness of fixed point ϕ of the operatorA, which according to Proposition

1 generates a unique solution of the original problem.

Indeed, for any ϕ ∈ B[O,M ], we decompose the problem (5) into the couple of second order

problems

∆v = ϕ, x ∈ Ω,

v = 0, x ∈ Γ,

∆u = v, x ∈ Ω,

u = 0, x ∈ Γ.

By Lemma 1 we have the following estimates for the solutions of these problems

‖v‖ ≤ CΩ ‖ϕ‖ ≤ CΩM,

‖u‖ ≤ CΩ‖v‖ ≤ C2
ΩM.

Consequently, when x ∈ Ω we have (x, u, v) ∈ DM . Therefore, from the assumption (10) of the

theorem it follows that ‖Aϕ‖ ≤M, i.e., Aϕ ∈ B[O,M ].

Next, we show that A is a contraction operator in B[O,M ]. Indeed, for any ϕ1, ϕ2 ∈ B[O,M ]
denote by v1, u1; v2, u2 the solutions of the problems

∆vi = ϕi, x ∈ Ω,

vi = 0, x ∈ Γ,
(13)

∆ui = vi, x ∈ Ω,

ui = 0, x ∈ Γ, (i = 1, 2).
(14)

As above, by Lemma 1, it follows that (x, ui, vi) ∈ DM (i = 1, 2) for any x ∈ Ω. From (13), (14)
we have

∆(v2 − v1) = ϕ2 − ϕ1, x ∈ Ω,

v2 − v1 = 0, x ∈ Γ,
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∆(u2 − u1) = v2 − v1, x ∈ Ω,

u2 − u1 = 0, x ∈ Γ.

Therefore, using the Lipschitz condition (11) and Lemma 1 we obtain

|Aϕ2 −Aϕ1| = |f(x, u2, v2)− f(x, u1, v1)|
≤ L1|u2 − u1|+ L2|v2 − v1|
≤ L1C

2
Ω‖ϕ2 − ϕ1‖+ L2CΩ‖ϕ2 − ϕ1‖

= (L1CΩ + L2)CΩ‖ϕ2 − ϕ1‖.

Hence,

‖Aϕ2 −Aϕ1‖ ≤ q‖ϕ2 − ϕ1‖,

where q is defined by (12).

Therefore, if q < 1 then operator A is a contraction operator in B[O,M ]. By the contraction

principle the operator equation (6) has a unique solution ϕ ∈ B[O,M ]. Hence, the problem (1) has

a unique solution u(x) satisfying the estimate ‖u‖ ≤ C2
ΩM. The theorem is proved. �

Now consider a particular case of Theorem 1.

Denote

D+
M = {(x, u, v)| x ∈ Ω, 0 ≤ u ≤ C2

ΩM,−CΩM ≤ v ≤ 0}.

Theorem 2. Assume that there exist numbers M,L1, L2 ≥ 0 such that

1.
0 ≤ f(x, u, v) ≤M, ∀(x, u, v) ∈ D+

M .

2.

|f(x, u2, v2)− f(x, u1, v1)| ≤ L1|u2 − u1|+ L2|v2 − v1|, ∀(x, ui, vi) ∈ D+
M , i = 1, 2.

3.
q := (L2 + CΩL1)CΩ < 1.

Then the BVP (1) possesses a unique positive solution u(x) ∈ C(Ω̄), for which there holds the
estimate 0 ≤ u(x) ≤ C2

ΩM.
Proof. The proof of the theorem is the same as of Theorem 1 with the replacement of the ball

B[O,M ] by the strip

SM = {ϕ ∈ C(Ω̄)| 0 ≤ ϕ(x) ≤M}.

�

3. ITERATIVE METHOD AND ITS NUMERICAL REALIZATIONS

Consider the following iterative process for finding fixed point ϕ of the operator A and simulta-

neously for finding the solution of the original boundary value problem u:

1. Given an initial approximation ϕ0 ∈ B[O,M ], for example,

ϕ0(x) = f(x, 0, 0), x ∈ Ω. (15)
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2. Knowing ϕk in Ω (k = 0, 1, ...) solve sequentially two Poisson problems

∆vk = ϕk, x ∈ Ω,

vk = 0, x ∈ Γ,
(16)

∆uk = vk, x ∈ Ω,

uk = 0, x ∈ Γ.
(17)

3. Update the new approximation

ϕk+1 = f(x, uk, vk). (18)

Theorem 3. Suppose that the assumptions of Theorem 1 (or Theorem 2) hold. Then the
above iterative method converges and there holds the estimate

||uk − u|| ≤ C2
Ω

qk

(1− q)
‖ϕ1 − ϕ0‖, (19)

where u is the exact solution of the problem (1) and q is given by (12).

Proof. Having in mind that the proposed iterative method is the successive iteration process for

the fixed point of the operator A with the initial approximation from B[O,M ], we conclude that it

converges with the rate of geometric progression and there is the estimate

||ϕk − ϕ|| ≤
qk

1− q
||ϕ1 − ϕ0||.

In combination with the estimate ‖uk − u‖ ≤ C2
Ω‖ϕk − ϕ‖, which is easily obtained with the help

of Lemma 1 we come to (19), and the theorem is proved. �

Below we study some properties of the iterations generated by the iterative process (15)-(18). For

this purpose we need a simple comparison lemma, which is a corollary from the maximum principle

(see e.g. [14]).

Lemma 2. Let ui(x) be the solutions of the problems

∆ui = fi(x), x ∈ Ω,

ui = 0, x ∈ Γ, (i = 1, 2).

If f1(x) ≤ f2(x), x ∈ Ω then u1(x) ≥ u2(x), x ∈ Ω.

Theorem 4. (Monotony) Assume that all the conditions of Theorem 1 (or Theorem 2) are
satisfied. In addition, we assume that the function f(x, u, v) is increasing in u and decreasing

in v for any (x, u, v) ∈ DM . Then, if ϕ
(1)
0 , ϕ

(2)
0 ∈ B[O,M ] are initial approximations and

ϕ
(1)
0 (x) ≤ ϕ(2)

0 (x) for any x ∈ Ω then the sequences u
(1)
k , u

(2)
k generated by the iterative process

satisfy the relation

u
(1)
k (x) ≤ u(2)

k (x), k = 0, 1, ..., x ∈ Ω. (20)
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Proof. First we show that (20) is valid for k = 0. Indeed, since

∆v
(i)
0 = ϕ

(i)
0 , x ∈ Ω,

v
(i)
0 = 0, x ∈ Γ (i = 1, 2)

and ϕ
(1)
0 (x) ≤ ϕ

(2)
0 (x), by Lemma 2 we have v

(1)
0 (x) ≥ v

(2)
0 (x). Consequently, once again, by the

lemma we have u
(1)
0 (x) ≤ u(2)

0 (x).

Now using the assumption that the function f(x, u, v) is increasing in u and decreasing in v we have

ϕ
(1)
1 (x) = f(x, u

(1)
0 , v

(1)
0 ) ≤ f(x, u

(2)
0 , v

(1)
0 ) ≤ f(x, u

(2)
0 , v

(2)
0 ) = ϕ

(2)
1 (x).

Repeating the above argument we obtain u
(1)
1 (x) ≤ u(2)

1 (x) and in general u
(1)
k (x) ≤ u(2)

k (x). Thus,

the theorem is proved. �

Corollary 1. Denote
ϕmin = min

(x,u,v)∈DM

f(x, u, v),

ϕmax = max
(x,u,v)∈DM

f(x, u, v).

Under the assumptions of Theorem 4, if starting from ϕ0 = ϕmin we obtain the increasing
sequence uk(x), inversely, starting from ϕ0 = ϕmax we obtain the decreasing sequence ûk(x),
both of them converge to the exact solution u(x) of the problem and uk(x) ≤ u(x) ≤ ûk(x).

Theorem 5. (Lower and supper solutions) Suppose ϕmin ≤ 0, ϕmax ≥ 0. Then, the function
α(x) = u(x) obtained from the problems

∆v = ϕmin, x ∈ Ω,

v = 0, x ∈ Γ,

∆u = v, x ∈ Ω,

u = 0, x ∈ Γ,

is a lower solution of the problem (1), and the function β(x) = u(x) obtained from the problems

∆v = ϕmax, x ∈ Ω,

v = 0, x ∈ Γ,

∆u = v, x ∈ Ω,

u = 0, x ∈ Γ,

is an upper solution of the problem (1). Here the lower and upper solutions are understood in
the sense of [17].

To numerically realize the above iterative method we denote the set of interior nodes and the

set of boundary nodes of the grid covering the domain Ω by ωh and γh, respectively. We shall use

difference schemes of second and fourth order of accuracy for solving second order boundary value

problems (16)-(17) at each iteration.

For simplicity we consider the problem in the unit square

Ω = {(x1, x2), 0 ≤ xi ≤ 1, i = 1, 2}
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and cover it by the uniform grid

ωh = {(x1i = ih1, x2j = jh2), i = 0, 1, ..., N ; j = 0, 1, ...,M},

where h1 = 1/N, h2 = 1/M.
On this grid the Laplace operator ∆ is discretized by the central difference operator Λ, defined as

follows for grid functions z(x1, x2) (see [15])

Λz = (Λ1 + Λ2)z,

Λ1z = zx1x1 =
z(x1 + h1, x2)− 2z(x1, x2) + z(x1 − h1, x2)

h2
1

,

Λ2z = zx2x2 =
z(x1, x2 + h2)− 2z(x1, x2) + z(x1, x2 − h2)

h2
2

.

Below we consider two discrete versions of the iterative method (15)-(18).

The first version using the difference scheme of second order of accuracy (see [15]) has the form

of Method DIM2.

Method DIM2

1. Given

ϕh
0(x) = f(x, 0, 0), x ∈ ωh. (21)

2. Knowing ϕh
k in ωh (k = 0, 1, ...) solve consecutively two problems

Λvhk = ϕh
k , x ∈ ωh,

vhk = 0, x ∈ γh,
(22)

Λuhk = vhk , x ∈ ωh,

uhk = 0, x ∈ γh.
(23)

3. Update the new approximation

ϕh
k+1 = f(x, uhk , v

h
k ), x ∈ ωh, (24)

where the superscript h associated with continuous functions means grid approximations for

the continuous functions on the grid ω̄h = ωh + γh.

When using the difference scheme of fourth order of accuracy (see [15, Sect. 4.5]) the discrete version

of the iterative method (15)-(18) has the form of Method DIM4.

Method DIM4

1. Given

ϕh
0(x) = f(x, 0, 0), x ∈ ωh. (25)

2. Knowing ϕh
k in ωh (k = 0, 1, ...) solve consecutively two problems

Λ∗vhk = ϕh
k
∗
, x ∈ ωh,

vk
h = 0, x ∈ γh,

(26)
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Λ∗uhk = vhk
∗
, x ∈ ωh,

uhk = 0, x ∈ γh,
(27)

where the sign “*” associated with the difference operator Λ and grid functions are defined as

follows

Λ∗w = Λw +
h2

1 + h2
2

12
Λ1Λ2w,

ψ∗ = ψ +
h2

1

12
Λ1ψ +

h2
2

12
Λ2ψ.

3. Update the new approximation

ϕh
k+1 = f(x, uhk , v

h
k ), x ∈ ωh. (28)

We shall consider some examples for the problem (1) in unit square. On this domain uniform grids of

33×33 and 65×65 nodes are used. The resulting systems of grid equations are solved by the method

of cyclic reduction [16, Chapt. 3]. The iterative process (21)-(24) will be carried out until e(m) =
‖uhm−uhm−1‖ ≤ 10−16. Here the norm of grid function wh is defined as ‖wh‖ = maxx∈ω̄h

|wh(x)|.

4. EXAMPLES

We shall consider some examples for demonstrating the applicability of the existence results in

Section 2. and the efficiency of the iterative method in the previous section. In Examples 1 and 2

exact solutions are known, and in other examples exact solutions are not known. Examples 1 and 2

are taken from [19] and [20], where the standard second order central difference approximation for

the operator ∆ is used. Therefore, for them we use the methods DIM2 and DIM4 for the aim of

comparing convergence of DIM2 with Wang’s methods. For other examples we use the method DIM4.

Example 1. (Problem 1 in [19] ) Consider the boundary value problem

∆2u = σu/(1 + u) + p(x, y), (x, y) ∈ Ω,

u = 0, ∆u = 0, (x, y) ∈ ∂Ω,
(29)

where Ω = {(x, y); 0 < x < 1, 0 < y < 1}, k > 0 is an arbitrary constant, σ is a positive constant

and p(x, y) is the function

p(x, y) = k

(
4π4 − σ

1 + k sinπx sinπy

)
sinπx sinπy.

It is easy to check that the function u(x, y) = k sinπx sinπy is an exact solution of (29).

For this problem we have

f = f(x, y, u, v) =
σu

1 + u
+ p(x, y).

When 0 < σ < 4π4 we can take M = σ + k(4π4 − σ

1 + k
). Then in the domain

D+
M = {(x, y, u)| (x, y) ∈ Ω, 0 ≤ u ≤M/64},

the conditions of Theorem 2 are satisfied with L1 = σ, L2 = 0. So, q = σ/64. Consequently, the

problem has a unique positive solution and the iterative process (15)-(18) converges as a geometric
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Table 1. The convergence of the iterative method for Example 1 on the uniform grid of 65×65 nodes

k σ = 1 σ = 5
m error m1 error1 m error m1 error1

1 7 4.0205e-4 7 3.2280e-8 9 4.0350e-4 9 3.2397e-8
2 7 8.0375e-4 7 6.4533e-8 8 8.0527e-4 8 6.4655e-8
4 6 0.0016 6 1.2903e-7 7 0.0016 8 1.2914e-7
10 6 0.0040 6 3.2253e-7 6 0.0040 7 3.2260e-7
15 6 0.0060 6 4.8378e-7 6 0.0060 6 4.8383e-7
30 5 0.0121 5 9.6754e-7 6 0.0121 6 9.6757e-7

progression with ratio q if 0 < σ < 64. Clearly, this convergence is independent of the constant k in

the expression of p(x, y). Remark that in [19] the range of σ for the convergence of Wang’s iterative

methods is not shown.

It should be noticed that the problem (29) is the problem (2) with c = 0 and the right-hand

side f(x, u) = σu/(1 + u) + p(x), x ∈ Ω. Obviously, f(x, u) does not satisfy any of the three

hypotheses (H1)-(H3) in Introduction. Therefore, An and Liu [1] cannot guarantee the existence of

nontrivial solution of the problem, meanwhile our Theorem 2 confirms that the problem has a unique

positive solution.

We performed numerical experiments for the discrete iterative process (21)-(24) on various grids

for different values of the constants k and σ. The results of the experiments are given in Table 1,

where m is the number of iterations, error = ‖u−uhm‖ computed by Method DIM2 (21)-(24); m1
is the number of iterations, error1 = ‖u − uhm1‖ computed by Method DIM4 (25)-(28), u is the

exact solution of the problem computed on grid points.

From Table 1 we see that the iterative method on discrete level (21)-(24) and (25)-(28) converges

very fast, and the accuracy of the approximate solution compared with the exact solution on the grid

decreases if the constant k increases and does not depend on σ. This can be explained that the

magnitude of the exact solution increases with k, and this implies the decrease of the accuracy of

difference approximation for the Laplacian.

In order to compare the convergence rate of our iterative method with the Wang’s fastest method

in [19] we show the graph of the errors e(m) in Figure 1 and Figure 2. In these figures the fastest

Wang’s method means the Picard method, which is the fastest one among the three methods used:

Picard method, Gauss-Seidel method and Jacobi method (see [19, 20]). From these figures it is seen

that our method is much faster than Wang’s fastest method.

Example 2. (Problem 2 in [20]) Consider the boundary value problem

∆2u = σ(x, y)∆u/(1 + u) + p(x, y), (x, y) ∈ Ω,

u = 0, ∆u = 0, (x, y) ∈ Γ,
(30)

where k > 0 is arbitrary, σ(x, y) is a sign-changing continuous function and p(x, y) is a nonnegative

continuous function

p(x, y) = 2π2k

(
2π2 +

σ(x, y)

1 + k sinπx sinπy

)
sinπx sinπy.
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Figure 1. The errors e(m) of our Method DIM2 (left) vs. the Wang’s fastest method (right) in
Example 1 for k = 1, σ = 2π2
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Figure 2. The errors e(m) of our Method DIM2 (left) vs. the Wang’s fastest method (right) in
Example 1 for k = 1, σ = 12π2

For this problem the function u(x, y) = k sinπx sinπy is the exact solution and

f(x, y, u, v) =
σ(x, y)v

1 + u
+ p(x, y).

Let σ(x, y) = cosπx cosπy. Then for each fixed k it is possible to choose M , such that 0 ≤
f(x, y, u, v) ≤M in the domain

D+
M = {(x, y, u, v)| 0 ≤ x, y ≤ 1, 0 ≤ u ≤ M

64
,−M

8
≤ v ≤ 0}.

Namely,
16

7
π2k(2π2 + 1) ≤ M ≤ 16π2k(2π2 − 1). Additionally, if M < 447 then by Theorem 2

the problem (30) has a unique positive solution and the iterative method (15)-(18) converges as the

geometric progression with ratio q =
M

512
+

1

8
. This is guaranteed for 0 < k < 0.95.

We performed numerical experiments for the discrete iterative method (21)-(24) on various grids

for different values of k. The results of the experiments are presented in Table 2.

From Table 2 it is seen that the convergence of the iterative method (21)-(24) for Example 2 is

fast and almost independent of the grid sizes and the values of k, even for large k. This phenomenon

is not surprise because Theorem 3 gives only sufficient conditions for convergence. As in Example
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Table 2. The convergence of the iterative method for Example 2

k Grid 33× 33 Grid 65× 65
m error m1 error1 m error m1 error1

0.1 8 1.6078e-4 8 5.1580e-8 8 4.0169e-4 8 3.2252e-9
0.4 9 6.4313e-4 9 2.0632e-7 9 1.6068e-4 10 1.2901e-8
1 8 0.0016 9 5.1580e-7 9 4.0169e-4 9 3.2251e-8
2 9 0.0032 9 1.0316e-6 8 8.0337e-4 9 6.4502e-8
3 8 0.0048 9 1.5474e-6 8 0.0012 9 9.6753e-8
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Figure 3. The errors e(m) of our Method DIM2 (left) vs. the Wang’s fastest method (right) in
Example 2 for k = 0.1.
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Figure 4. The errors e(m) of our Method DIM2 (left) vs. the Wang’s fastest method (right) in
Example 2 for k = 0.4.

1 the accuracy of the approximate solution compared with the exact solution on the grids decreases

when the constant k increases.

In order to compare the convergence rate of our iterative method with the Wang’s fastest method

in [20] we present the graph of the errors e(m) in Figure 3 and Figure 4. From this figure it is seen

that our method is much faster than Wang’s method.

Example 3. (The example in [17]) Consider the boundary value problem

∆2u = f(x, y, u,∆u), (x, y) ∈ Ω,

u = 0, ∆u = 0, (x, y) ∈ Γ,



EXISTENCE RESULTS AND ITERATIVE METHOD 321

0 5 10 15 20 25
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

m−axis

e(
m

)−
ax

is

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m−axis

r(
m

)−
ax

is

Figure 5. The errors e(m) and the ratios r(m) in Example 3

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

2.5

x 10
−3

xy

u(
x,

y)

Figure 6. The approximate solution in Example 3

where

f(x, y, u, v) = 5v + σ(x, y)u4 + sinπx sinπy.

In this example the exact solution is not known. If the function σ(x, y) oscillates in the interval

[−1; 1] we can take M = 3, so that in the domain DM all the conditions of Theorem 1 are satisfied

with L1 = 0.0005, L2 = 5, q = 0.6250. Therefore, the problem has a unique solution, meanwhile,

it is easy to verify that Hu and Wang [8] cannot guarantee the existence of nontrivial solution of

the problem. Further, by Theorem 2 the iterative process (15)-(18) converges as the geometric

progression with ratio q. The results of convergence for the case σ(x, y) = cosπx cosπy are given

in Figure 5, where r(m) = e(m)/e(m − 1) and the graph of the obtained approximate solution is

depicted in Figure 6.

From Figure 5 we see that the actual ratio r(m) ≈ 0.25, which is much less than the theoretical

estimated ratio q = 0.6250 of the geometric progression.

Example 4. Consider the boundary value problem (1) with the exponential nonlinearity

f(x, y, u,∆u) = eu.

For this example we take M = 1.2. It is easy to verify that in D+
M all the conditions of Theorem 2

are satisfied with L1 = 1.0189, L2 = 0, q = 0.0159. Therefore, the problem has a unique positive
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Figure 7. The errors e(m) and the ratios r(m) in Example 4
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Figure 8. The approximate solution in Example 4

solution, meanwhile An and Liu [1] cannot guarantee the existence of nontrivial solution since it is

easy to see that the hypotheses (H1)-(H3) are not satisfied. By Theorem 3 the iterative process

(15)-(18) converges as the geometric progression with ratio q. The results of convergence are given

in Figure 7 and the graph of the obtained approximate solution is depicted in Figure 8.

From Figure 7 we see that the actual ratio r(m) ≈ 0.0026, which is much less than the theoretical

estimated ratio q = 0.0159 of the geometric progression.

Notice that in the case if f(x, y, u,∆u) = e∆u taking M = 1.5 and using Theorem 2 we also

conclude that the problem (1) has a unique positive solution.

5. CONCLUSIONS

In this paper, we have proposed a novel approach to a nonlinear biharmonic boundary value

problem. The essence of it is the reduction of the problem to a nonlinear operator equation for

the right-hand side function. Under some simple conditions we have proved that this operator is

a contraction operator. As a result, the existence and uniqueness of a solution of the problem is

established and the convergence of an iterative method is proved. Some properties of the solution
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and the iterations are also studied. The applicability of the theoretical results and the efficiency of

the iterative method are demonstrated on some examples. The advantages of our method over the

Wang’s methods in convergence rate are shown on these examples.

In the future we shall develop the method to other boundary value problems for fourth order ordi-

nary and partial differential equations including the problems with nonlinear and periodic boundary

conditions.
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