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Abstract. In this paper we present the convergence and convergence rate for regularization solutions

in connection with the finite-dimensional approximation for ill-posed vector optimization of convex

functionals in reflexive Banach space. Convergence rates of its regularized solutions are obtained on

the base of choosing the regularization parameter a priory as well as a posteriori by the modified

generalized discrepancy principle. Finally, an application of these results for convex optimization

problem with inequality constraints is shown.

Tóm tắt. Trong bài báo này chúng tôi tr̀ınh bày su.. hô. i tu. và tốc dô. hô. i tu. cu’a nghiê.m hiê.u chı’nh

trong xấp xı’ hũ.u ha.n chiè̂u cho bài toán cu.. c tri. da mu. c tiêu các phiếm hàm lồi trong không gian

Banach pha’n xa. . Tốc dô. hô. i tu. cu’a nghiê.m hiê.u chı’nh nhâ.n du.o.. c du.. a trên viê.c cho.n tham số hiê.u

chı’nh tru.́o.c hoă.c sau bằng nguyên lý dô. lê.ch suy rô.ng o.’ da.ng ca’i biên. Cuối cùng là mô. t ú.ng du. ng

cu’a các kết qua’ da.t du.o.. c cho bài toán cu.. c tri. lồi vó.i ràng buô. c bất dă’ ng thú.c.

1. INTRODUCTION

Let X be a real reflexive Banach space preserved a property that X and X∗ are strictly

convex, and weak convergence and convergence of norms of any sequence in X imply its strong

convergence, where X∗ denotes the dual space of X . For the sake of simplicity, the norms

of X and X∗ are denoted by the symbol ‖.‖. The symbol 〈x∗, x〉 denotes the value of the

linear continuous functional x∗ ∈ X∗ at the point x ∈ X. Let ϕj(x), j = 0, 1, ..., N , be the

weakly lower semicontinuous proper convex functionals on X that are assumed to be Gâteaux

differentiable with the hemicontinuous derivatives Aj(x) at x ∈ X.

In [6], one of the authors has considered a problem of vector optimization: find an element

u ∈ X such that

ϕj(u) = inf
x∈X
ϕj(x), ∀j = 0, 1, ..., N. (1.1)

Set

Qj =
{
x̂ ∈ X : ϕj(x̂) = inf

x∈X
ϕj(x)

}
, j = 0, 1, ..., N, Q =

N⋂

j=0

Qj.

It is well know that Qj coincides with the set of solutions of the following operator equation

Aj(x) = θ, (1.2)

and is a closed convex subset in X (see [11]). We suppose that Q �= ∅, and θ /∈ Q, where θ is

the zero element of X (or X∗).
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In [6] it is showed the existence and uniqueness of the solution xhα of the operator equation

N∑

j=0

αλjAhj (x) + αU(x) = θ, (1.3)

λ0 = 0 < λj < λj+1 < 1, j = 1, 2, ..., N − 1,

where α > 0 is the small parameter of regularization, U is the normalized duality mapping of

X , i.e., U : X → X∗ satisfies the condition

〈U(x), x〉 = ‖x‖2, ‖U(x)‖ = ‖x‖,

Ahj are the hemicontinuous monotone approximations for Aj in the forms

‖Aj(x)−A
h
j (x)‖ � hg(‖x‖), ∀x ∈ X, (1.4)

with level h→ 0, and g(t) is a bounded (the image of the bounded set is bounded) nonnegative

function, t � 0.

Clairly, the convergence and convergence rates of the sequence xhα to u depend on the

choice of α = α(h). In [6], one has showed that the parameter α can be chosen by the

modified generalized discrepancy principle, i.e., α = α(h) is constructed on the basis of the

following equation

ρ(α) = hpα−q, p, q > 0, (1.5)

where ρ(α) = α(a0 + t(α)), the function t(α) = ‖xhα‖ depends continuously on α � α0 > 0,

a0 is some positive constant.

In computation the finite-demensional approximation for (1.3) is the important problem.

As usualy, it can be aproximated by the following equation

N∑

j=0

αλjAhnj (x) + αUn(x) = θ, x ∈ Xn, (1.6)

where Ahnj = P ∗nA
h
jPn, U

n = P ∗nUPn and Pn : X −→ Xn the linear projection from X onto

Xn, Xn is the finite-dimensional subspace of X, P
∗
n is the conjugate of Pn,

Xn ⊂ Xn+1, ∀n, Pnx −→ x, ∀x ∈ X.

Without loss of generality, suppose that ‖Pn‖ = 1 (see [11]).

As for (1.3), equation (1.6) has also an unique solution xhα,n, and for every fixed α > 0 the

sequence {xhα,n} converges to x
h
α, the solution of (1.3), as n→∞ (see [11]).

The natural problem is to ask whether the sequence {xhα,n} converges to u as α, h→ 0 and

n →∞, and how fast it converges, where u is an element in Q. The purpose of this paper is

to answer these questions.

We assume, in addition, that U satisfies the condition

〈U(x)− U(y), x− y〉 � mU‖x− y‖
s, mU > 0, s � 2, ∀x, y ∈ X. (1.7)

Set

γn(x) = ‖(I − Pn)x‖, x ∈ Q,

where I denotes the identity operator in X.
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Hereafter the symbols ⇀ and → indicate weak convergence and convergence in norm,

respectively, while the notation a ∼ b is meant a = O(b) and b = O(a).

2. MAIN RESULT

The convergence of {xhα,n} to u is determined by the following theorem.

Theorem 1. If h/α and γn(x)/α → 0, as α → 0 and n → ∞, then the sequence xhα,n
converges to u.

Proof. For x ∈ Q,xn = Pnx, it follows from (1.6) that
N∑

j=0

αλj 〈Ahnj (xhα,n), x
h
α,n − x

n〉+ α〈Un(xhα,n)− U
n(xn), xhα,n − x

n〉 = α〈Un(xn), xn − xhα,n〉.

Therefore, on the basis of (1.2), (1.7) and the monotonicity of Ahnj = P ∗nA
h
jPn, and PnPn = Pn

we have

αmU‖x
h
α,n − x

n‖s � α〈U(xhα,n)− U(xn), xhα,n − x
n〉 = α〈Un(xhα,n)− U

n(xn), xhα,n − x
n〉

=

N∑

j=0

αλj 〈Ahnj (xhα,n), x
n − xhα,n〉+ α〈Un(xn), xn − xhα,n〉

�

N∑

j=0

αλj〈Ahnj (xn), xn − xhα,n〉+ α〈Un(xn), xn − xhα,n〉

=

N∑

j=0

αλj 〈Ahj (x
n)−Aj(x

n) +Aj(x
n)−Aj(x), x

n − xhα,n〉+ α〈U(xn), xn − xhα,n〉. (2.1)

On the other hand, by using (1.4) and

‖Aj(x
n)−Aj(x)‖ � Kγn(x),

where K is some positive constant depending only on x, it follows from (2.1) that

mU‖x
h
α,n−x

n‖s �
1

α

[
(N + 1)

(
hg(‖xn‖)+Kγn(x)

)]
‖xn−xhα,n‖+ 〈U(xn), xn−xhα,n〉. (2.2)

Because of h/α, γn(x)/α → 0 as α → 0, n → ∞ and s � 2, this inequality gives us the

boundedness of the sequence {xhα,n}. Then, there exists a subsequence of the sequence {x
h
α,n}

converging weakly to x̂ in X . Without loss of generality, we assume that xhα,n ⇀ x̂ as

h, h/α → 0 and n →∞. First, we prove that x̂ ∈ Q0. Indeed, by virtue of the monotonicity

of Ahnj = P ∗nA
h
jPn, U

n = P ∗nUPn and (1.6) we have

〈Ahn0 (Pnx), Pnx− x
h
α,n〉 � 〈A

hn
0 (xhα,n), Pnx− x

h
α,n〉

=

N∑

j=1

αλj 〈Ahnj (xhα,n), x
h
α,n − Pnx〉+ α〈Un(xhα,n), x

h
α,n − Pnx〉

�

N∑

j=1

αλj 〈Ahnj (Pnx), x
h
α,n − Pnx〉+ α〈Un(Pnx), x

h
α,n − Pnx〉, ∀x ∈ X.
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Because of PnPn = Pn, so the last inequality has form

〈Ah0(Pnx), Pnx− x
h
α,n〉 �

N∑

j=1

αλj〈Ahj (Pnx), x
h
α,n − Pnx〉+ α〈U(Pnx), x

h
α,n − Pnx〉, ∀x ∈ X.

By letting h, α→ 0 and n→∞ in this inequality we obtain

〈A0(x), x− x̂〉 � 0, ∀x ∈ X.

Consequently, x̂ ∈ Q0 (see [11]). Now, we shall prove that x̂ ∈ Qj , j = 1, 2, ..., N . Indeed, by

(1.6) and making use of the monotonicity of Ahnj and Un, it follows that

αλ1〈Ahn1 (xhα,n),x
h
α,n − Pnx〉+

N∑

j=2

αλj 〈Ahnj (xhα,n), x
h
α,n − Pnx〉+ α〈Un(xhα,n), x

h
α,n − Pnx〉

= αλ0〈Ahn0 (xhα,n), Pnx− x
h
α,n〉 � 〈A

hn
0 (Pnx), Pnx− x

h
α,n〉

= 〈Ah0(Pnx)−A0(Pnx) +A0(Pnx)−A0(x), Pnx− x
h
α,n〉, ∀x ∈ Q0.

Therefore,

〈Ah1(Pnx), x
h
α,n − Pnx〉+

N∑

j=2

αλj−λ1〈Ahj (Pnx), x
h
α,n − Pnx〉+ α1−λ1〈U(Pnx), x

h
α,n − Pnx〉

�
1

α

[

hα1−λ1g(‖Pnx‖) +Kγn(x)

]

‖Pnx− x
h
α,n‖, ∀x ∈ Q0.

After passing h, α→ 0 and n→∞, we obtain

〈A1(x), x̂− x〉 � 0, ∀x ∈ Q0.

Thus, x̂ is a local minimizer for ϕ1 on S0 (see [9]). Since S0 ∩ S1 �= ∅, then x̂ is also a global

minimizer for ϕ1, i.e., x̂ ∈ S1.

Set Q̃i = ∩ik=0Qk. Then, Q̃i is also closed convex, and Q̃i �= ∅.

Now, suppose that we have proved x̂ ∈ Q̃i and we need to show that x̂ belongs to Qi+1.

Again, by virtue of (1.6) for x ∈ Q̃i, we can write

〈Ahni+1(x
h
α,n), x

h
α,n − Pnx〉+

N∑

j=i+2

αλj−λi+1〈Ahnj (xhα,n), x
h
α,n − Pnx〉

+ α1−λi+1〈Un(xhα,n), x
h
α,n − Pnx〉 =

i∑

k=0

αλk−λi+1〈Ahnk (xhα,n), Pnx− x
h
α,n〉

�
1

α

i∑

k=0

αλk+1−λi+1〈Ahk(Pnx)−Ak(Pnx) +Ak(Pnx)−Ak(x), Pnx− x
h
α,n〉

�
1

α
(i+ 1)

(
hg(‖Pnx‖) +Kγn(x)

)
‖Pn(x)− x

h
α,n‖.

Therefore,
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〈Ahi+1(Pnx), x
h
α,n − Pnx〉+

N∑

j=i+2

αλj−λi+1〈Ahj (Pnx), x
h
α,n − Pnx〉

+α1−λi+1〈U(Pnx), x
h
α,n − Pnx〉 �

hg(‖Pnx‖) +Kγn(x)

α
(N + 1)‖Pnx− x

h
α,n‖.

By letting h, α→ 0 and n→∞, we have

〈Ai+1(x), x̂− x〉 � 0, ∀x ∈ Q̃i.

As a result, x̂ ∈ Qi+1.

On the other hand, it follows from (2.2) that

〈U(x), x− x̂〉 � 0, ∀x ∈ Q.

Since Qj is closed convex, Q is also closed convex. Replacing x by tx̂+ (1− t)x, t ∈ (0, 1) in

the last inequality, and dividing by (1− t) and letting t to 1, we obtain

〈U(x̂), x− x̂〉 � 0, ∀x ∈ Q.

Hence ‖x̂‖ � ‖x‖, ∀x ∈ Q. Because of the convexity and the closedness of Q, and the strictly

convexity of X we deduce that x̂ = u. So, all sequence {xhα,n} converges weakly to u. Set

xn = un = Pnu in (2.2) we deduce that the sequence {x
h
α,n} converges strongly to u as h→ 0

and n→∞. The proof is complete. �

In the following, we consider the finite-dimensional variant of the generalized discrepancy

principle for the choice α̃ = α(h, n) so that xhα̃,n converges to u, as h, α→ 0 and n→∞.

Note that, the generalized discrepancy principle for parameter choice is presented first in

[8] for the linear ill-posed problems. For the nonlinear ill-posed equation involving a monotone

operator in Banach space the use of a discrepancy principle to estimate the rate of convergence

of the regularized solutions was considered in [5]. In [4] the convergence rates of regularized

solutions of ill-posed variational inequalities under arbitrary perturbative operators were in-

vestigated when the regularization parameter was chosen arbitrarily such that α ∼ (δ + ε)p,

0 < p < 1. In this paper, we consider the modified generalized discrepancy principle for

selecting α̃ in connection with the finite-dimensional and obtain the rates of convergence for

the regularized solutions in this case.

The parameter α(h, n) can be chosen by

α(a0 + ‖xhα,n‖) = hpα−q, p, q > 0 (2.3)

for each h > 0 and n. It is not difficult to verify that ρn(α) = α(a0 + ‖xhα,n‖) possesses all

properties as well as ρ(α) does, and

lim
α→+∞

αqρn(α) = +∞, lim
α→+0

αqρn(α) = 0.

To find α by (2.3) is very complex. So, we consider the following rule.

The rule. Choose α̃ = α(h, n) � α0 := (c1h + c2γn)
p, ci > 1, i = 1, 2, 0 < p < 1 such that

the following inequalities

α̃1+q(a0 + ‖xhα̃,n‖) � d1h
p,

α̃1+q(a0 + ‖xhα̃,n‖) � d2h
p, d2 � d1 > 1,
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hold.

In addition, assume that U satisfies the following condition

‖U(x)− U(y)‖ � C(R)‖x− y‖ν , 0 < ν � 1, (2.4)

where C(R), R > 0, is a positive increasing function on R = max{‖x‖, ‖y‖} (see [10]).

Set

γn = max
x∈Q

{γn(x)}.

Lemma 1.

lim
h→0
n→∞

α(h, n) = 0.

Proof. Obviously, it follows from the rule that

α(h, n) � d
1/(1+q)
2

(
a0 + ‖xhα(h,n),n‖

)−1/(1+q)
hp/(1+q)

� d
1/(q+1)
2 a

−1/(1+q)
0 hp/(1+q).

�

Lemma 2. If 0 < p < 1 then

lim
h→0
n→∞

h+ γn
α(h, n)

= 0.

Proof. Obviously using the rule we get

h+ γn
α(h, n)

�
c1h+ c2γn

(c1h+ c2γn)p
= (c1h+ c2γn)

1−p → 0

as h→ 0 and n→∞. �

Now, let xhα̃,n be the solution of (1.6) with α = α̃. By the argument in the proof of

Theorem 1, we obtain the following result.

Theorem 2. The sequence xhα̃,n converges to u as h→ 0 and n→∞.

The next theorem shows the convergence rates of {xhα̃,n} to u as h→ 0 and n→∞.

Theorem 3. Assume that the following conditions hold:

(i) A0 is continuously Frchet differentiable, and satifies the condition

‖A0(x)−A
′

0(u)(x− u)‖ � τ‖A0(x)‖, ∀u ∈ Q,

where τ is a positive constant, and x belongs to some neighbourhood of Q;

(ii) Ah(Xn) are contained in X
∗
n for sufficiently large n and small h;

(iii) there exists an element z ∈ X such that A′0(u)
∗z = U(u);

(vi) the parameter α̃ = α(h, n) is chosen by the rule.

Then, we have

‖xhα̃,n − u‖ = O
(
(h+ γn)

η1 + γη2n
)
,

η1 = min

{
1− p

s− 1
,
µ1p

s(1 + q)

}

, η2 = min

{
1

s
,
ν

s− 1

}

.
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Proof. Replacing xn by un = Pnu in (2.2) we obtain

mU‖x
h
α̃,n − u

n‖s �
1

α̃

[

(N + 1)hg(‖un‖) +Kγn

]

‖un − xhα̃,n‖

+〈U(un) + U(u)− U(u), un − xhα̃,n〉. (2.5)

By (2.4) it follows that

〈U(un)− U(u), un − xhα̃,n〉 � C(R̃)‖un − u‖ν‖un − xhα̃,n‖ � C(R̃)γνn‖u
n − xhα̃,n‖, (2.6)

where R̃ > ‖u‖.

On the other hand, using conditions (i), (ii), (iii) of the theorem we can write

〈U(u), un − xhα̃,n〉 = 〈U(u), un − u〉+ 〈z,A′0(u)(u− x
h
α̃,n)〉 � R̃γn + ‖z‖(τ + 1)‖A0(x

h
α̃,n)‖

� R̃γn + ‖z‖(τ + 1)
[
hg(‖xhα̃,n‖) + ‖Ah0(xhα̃,n)‖

]

� R̃γn + ‖z‖(τ + 1)

[
N∑

j=1

α̃λj‖Ahj (x
h
α̃,n)‖+ α̃‖xhα̃,n‖+ hg(‖xhα̃,n‖)

]

. (2.7)

Combining (2.6) and (2.7) inequality (2.5) has form

mU‖x
h
α̃,n − u

n‖s �
1

α̃

[
(N + 1)hg(‖un‖) +Kγn

]
‖un − xhα̃,n‖+ C(R̃)γνn‖u

n − xhα̃,n‖

+R̃γn + ‖z‖(τ + 1)

[
N∑

j=1

α̃λj‖Ahj (x
h
α̃,n)‖+ α̃‖xhα̃,n‖+ hg(‖xhα̃,n‖)

]

. (2.8)

On the other hand, making use of the rule and the boundedness of {xhα̃,n} it implies that

α̃ = α(h, n) � (c1h+ c2γn)
p,

α̃ = α(h, n) � C1h
p/(1+q), C1 > 0,

α̃ = α(h, n) � 1,

for sufficiently small h and large n.

Consequently, in view of (2.8) it follows that

mU‖x
h
α̃,n − u

n‖ �

[
(N + 1)hg(‖un‖) +Kγn

(c1h+ c2γn)p
+ C(R̃)γνn

]

‖un − xhα̃,n‖

+ R̃γn + C2(h+ γn)
λ1p/(1+q)

� C̃1

[
(h+ γn)

1−p + γνn
]
‖un − xhα̃,n‖+ C̃2γn + C̃3(h+ γn)

λ1p/(1+q),

C2 and C̃i, i = 1, 2, 3 are the positive constants.
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Using the implication

a, b, c � 0, p1 > q1, a
p1 � baq1 + c⇒ ap1 = O

(
bp1/(p1−q1) + c

)

we obtain

‖xhα̃,n − u
n‖ = O

(
(h+ γn)

η1 + γη2n
)
.

Thus,

‖xhα̃,n − u‖ = O
(
(h+ γn)

η1 + γη2n
)
,

which completes the proof. �

Remarks. If α̃ = α(h, n) is chosen a priori such that α̃ ∼ (h + γn)
η, 0 < η < 1, then

inequality (2.8) has the form

mU‖x
h
α̃,n − u

n‖ � C1

[

(h+ γn)
1−η + γνn

]

‖un − xhα̃,n‖+ C2γn +C3(h+ γn)
λ1η,

where Ci, i = 1, 2, 3 are the positive constants.

Therefore,

‖xhα̃,n − u
n‖ = O

(
(h+ γn)

θ1 + γθ2n
)
,

whence,

‖xhα̃,n − u‖ = O
(
(h+ γn)

θ1 + γθ2n
)
,

θ1 = min

{
1− η

s− 1
,
λ1η

s

}

, θ2 = min

{
1

s
,
ν

s− 1

}

.

3. AN APPLICATION

In this section we consider a constrained optimization problem:

inf
x∈X
fN(x) (3.1)

subject to

fj(x) � 0, j = 0, ..., N − 1, (3.2)

where f0, f1, ..., fN are weakly lower semicontinuous and properly convex functionals on X

that are assumed to be Gteaux differentiable at x ∈ X.

Set

Qj = {x ∈ X : fj(x) � 0}, j = 0, ..., N − 1. (3.3)

Obviously, Qj is the closed convex subset of X , j = 0, ..., N − 1.

Define

ϕN(x) = fN(x), ϕj(x) = max{0, fj(x)}, j = 0, ..., N − 1. (3.4)

Evidently, ϕj are also convex functionals on X and

Qj = {x̄ ∈ X : ϕj(x̄) = inf
x∈X
ϕj(x)}, 0, 1, ..., N.

So, x̄ is a solution of the problem:

ϕj(x̄) = inf
x∈X
ϕj(x), ∀j = 0, 1, ..., N.
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