
Journal of Computer Science and Cybernetics, V.34, N.1 (2018), 49–61

DOI 10.15625/1813-9663/34/1/11027

PASSIVITY BASED ON ENERGY TANK FOR CARTESIAN
IMPEDANCE CONTROL OF DLR SPACE ROBOTS WITH

FLOATING BASE AND ELASTIC JOINTS

LE TIEN LUC

German Aerospace Center (DLR), Institute of Robotics and Mechatronics

Luc.Le-Tien@dlr.de

�

Abstract. This paper presents a control structure for orbital servicing mission of CEASAR robotic

arm developed by German Aerospace Center (DLR). In order to reduce mass the CEASAR arm

is equipped with Harmonic-Drives with high ratio which unfortunately lead to high joint elasticity

and high motor friction and have to be considered in controller design for successful manipulator

in-orbit operations. Therefore, in this control structure, for high tracking control a cascaded position

controller based on state feedback control structure with observer-based friction compensation and

for safe interaction control with the environment a Cartesian impedance controller is used, which is
designed based on using energy tank method to ensure passivity of the controlled system. The

proposed control methods are very efficient and practicable. Furthermore, they are very robust with

dynamic parameter uncertainties, coupling dynamics, and can simultaneously provide good results in

term of the position accuracy and dynamic behavior. Simulation results validate practical effciency

of the controllers.

Keywords. Impedance control, floating base robots, space robots, flexible joint robots.

1. INTRODUCTION

In recent years the use of robots in space has become more and more of interest. With
increasing capability of sophisticated autonomy, the robot can be used in such applications
as
• Exploration of distant planets,
• Orbital servicing/repair in low earth orbit or geostationary earth orbit,
• De-orbiting of failed satellites,
• Constructions of heavy structures (e.g. Space Station, Planetary Bases). . .
In this paper the control issues of a space robotic arm for orbital servicing missions are

considered. Since lightweight and a high load/weight ratio are essential for space robotics,
the design of the robot can be optimized by using Harmonic-Drive gear with high gear ratio
to reduce robot weight [1, 2]. But, high gear ratio causes high motor friction and high joint
elasticity, which on the other hand are challenging problems for the robot control. So, for
control design the robot is modeled as a redundant free-flying base robot with flexible joints.

In the designed missions the space robot is expected to achieve various tasks, such as
capturing a target, constructing a large structure and autonomously maintaining on-orbit
systems.
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Figure 1. Target scenario of the space robot

In order to allow safe dynamic interaction between the robot and its working environment,
a Cartesian impedance controller is needed to reach an interactive behavior with a mass-
spring-damper-like disturbance response via active control.

In fixed-base robotic systems, the dynamic interaction between the robot’s operational
space motions and forces was addressed in the operational Space [3, 4]. The control of
free- flying robots for space applications was introduced in [5, 6]. Furthermore, in order to
consider uncertainties of the robot parameters or varying parameters, an adaptive control
scheme was introduced in [7].

In case of the redundant robot Cartesian impedance control in task space has to take
null-space effects into account [4]. The redundant degree of freedom (DOF) can be used to
execute several independent tasks while following a strict hierarchy.

Furthermore, in [8] a Cartesian mass matrix is used for control design instead of desired
one. But the system passivity could not be ensured for time-varying control gains. In [9]
a Cartesian impedance control was introduced based on the concept of energy tank [10,
11], which can be applied to reproduce time-varying stiffness and therefore ensure stable
behavior.

In this paper Cartesian impedance control based on energy tank for free-flying base robots
with elastic joints is addressed for space applications. It should fulfil the requirements of
space missions and must be robust enough for implementation.

The paper is organized as follows. Section 2 introduces the dynamic robot model. In
Section 3 the control goal for Cartesian impedance control is defined. Section 4 presents the
control design for Cartesian impedance controller based on energy tank. The stability of the
controlled system is analyzed. Finally, the obtained performance is verified by simulations
reported in Section 5.
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2. MODELING ROBOT DYNAMICS

Let us consider a redundant space robot with 7 DOF (n = 7). The design with 7 joints
has some advantages:
• Increased working area,
• Increased obstacle avoidance capabilities,
• Some redundancy in case of a joint failure.
For control design, the robot is modeled as a flexible joint robot with free-flying base.

This robot is equipped with motor position sensors and link torque sensors, which can be
used for control. The simplified dynamics of this space robot can be described by

u = Bθ̈ + τ + τf , (1)

[
−Fb
τ

]
+

[
JTb
JT

]
Fext = Ms (xb, q)

[
ẍb
q̈

]
+ Cs (xb, q, ẋb, q̇)

[
ẋb
q̇

]
, (2)

τ = K (θ − q) . (3)

Therein, xb ∈ R6, q ∈ Rn and θ ∈ Rn are the base, link and motor positions, respectively.
u ∈ Rn, τf ∈ Rn present the motor torque and the friction torque. The transmission torque
between motor and link dynamics τ ∈ Rn is modeled as a linear function of the motor and
the link position with the diagonal and positive definite joint stiffness matrix K ∈ Rn×n and
can be measured by strain gauge based torque sensors. Fb, Fext ∈ R6 represent the extern
force torque acting on the base and the end-effector (TCP), respectively. Jb (xb, q) ∈ R6×6,
J (xb, q) ∈ R6×n are the Jacobian matrices related to the base, and to the arm.

Furthermore, the motor inertia matrix B ∈ Rn×n is diagonal and positive definite.
Ms (xb, q) ∈ Rn×n, Cs (xb, q) ∈ Rn×n are the mass and the centrifugal/Coriolis matrix,
respectively, and Ms can be rewritten as

Ms =

[
Mb Mc

MT
c M

]
with


Mb ∈ R6×6

Mc ∈ R6×n

M ∈ Rn×n.
(4)

Finally, in order to facilitate the controller design and the stability analysis, the following
four assumptions are needed.

P.1: The mass matrix Ms(xb, q) ∈ Rn×n is symmetric and positive definite and

Ms(xb, q) = Ms (xb, q)T ≥ 0.

P.2: The Cartesian mass matrix Λ (xb, q) is positive definite and symmetric

Iλmin ≤ Λ ≤ Iλmax

with λmin, λmax being maximal and minimal eigenvalues of Λ (xb, q) .

P.3: For space robots the maximal joint velocity is limited and it yields

−Iγmax ≤ Λ̇ ≤ Iγmax with γmax > 0.
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P.4: In the following it is assumed that total linear and angular momentum is zero

H = Mbẋb + Mcq̇,

which describes the resulting disturbance motion of the base when there is joint motion
q̇ in the manipulator arm, can be neglected. It is noted that this motion can be actively
compensated by satellite.

Figure 2. Robot control structure

3. CONTROL GOAL

In the following it is assumed that the position and orientation of the manipulator’s end-
effector is defined by x = f(xb, q) ∈ R6, where f(xb, q) represents the forward kinematics of
the manipulator and is known. Then, let us define the Cartesian position errors as

ex = x− xd. (5)

The goal of the impedance Cartesian control is to achieve the dynamic behavior of the
end-effector like a mass-spring-damper system in present of the external force and torque
Fext

Λ (xb, q) ëx +Dc (xb, q) ėx +Kc (xb, q) ex = Fext (6)

with Λ (xb, q), Dc (xb, q), Kc (xb, q) ∈ R6×6 being the Cartesian mass matrix of the robot,
the control damping matrix and the control stiffness matrix, respectively.
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In order to achieve good dynamic behavior the control damping matrix Dc and the control
stiffness matrix Kc in (6) are computed online depending on ex = Fext the Cartesian mass
matrix Λ (xb, q) .

So, for a given positive definite, symmetric matrix Λ (xb, q) , matrices P (xb, q) , Q (xb, q) ∈
R6×6 can be found so that Λ = PQ. By choosing matrices{

Dc (xb, q) = 2P (xb, q)DξKωQ (xb, q)
Kc (xb, q) = P (xb, q)K

2
ωQ (xb, q)

(7)

with positive definite and diagonal constant matrices Dξ(Dξ = diag (ξi) with 0 < ξ ≤ 1)
and Kω, the matrices Dc (xb, q) and Kc (xb, q) are positive definite and symmetric as well.
If ξi = 1 the closed-loop system has six real poles, otherwise six complex poles. Obviously,
(P.2) leads to {

Dcmin ≤ Dc (xb, q) ≤ Dcmax

Kcmin ≤ Kc (xb, q) ≤ Kcmax .
(8)

Now, the system can be decoupled by choosing a new coordinate exq = Qex. It leads to six
decoupled mass-spring-damper subsystems with the desired damping and stiffness behavior

ëxq + 2DξKω ėxp +K2
ωexp. (9)

It is noticed that in this control law the control gain Dc (xb, q) and Kc (xb, q) vary with
time. Therefore, it cannot ensure passivity of the pair {ė, Fext} with respect to the closed-
loop system (6) and the storage function

V =
1

2
ėTx (xb, q)ėx +

1

2
eTxKc(xb, q)ex. (10)

4. PROPOSED CARTESIAN IMPEDANCE CONTROL

In order to eliminate the friction effects and reduce the motor inertia, the Cartesian im-
pedance control is designed by using a cascaded structure [7] consisting of a torque controller
as inner control loop and a Cartesian impedance controller as outer control loop in Figure
2. In this control structure the Cartesian impedance controller computes the desired link
torque for the torque controller.

4.1. Torque controller

Let us define the desired link torque as τd. Then, for a given desired torque vector τd, a
torque controller [10, 11]

u = KT (τd − τ)−KS τ̇ + τd + τf , (11)

with positive definite and diagonal control matrices KT ,KSKT ,KS can stabilize the tor-
que dynamics around the equilibrium point τ = τd. The friction effects τf are preferably
compensated by using observer-based friction compensation [14].

The singular perturbation theory leads to the following link dynamics, with the assump-
tion of no external forces/toques on the base (Fb = 0)



54 LE TIEN LUC

[
0
τd

]
+

[
JTb
JT

]
Fext = Mgs (xb, q)

[
ẍb
q̈

]
+ Cs (xb, q, ẋb, q̇)

[
ẋb
q̇

]
(12)

with

Mgs =

[
Mb Mc

MT
c

(
M + (I +KT )−1B

) ] . (13)

In case of the redundant manipulator, it is well known that some motions of the joints
are embedded in the null space of the manipulator’s Jacobian matrix J(q), which do not
affect the end-effector position and orientation. Therefore, the desired torque is proposed as

τd = JTFc +Nτn (13a)

with Fc ∈ Rn being the desired Cartesian impedance force. τn ∈ Rn is an arbitrary genera-
lized joint torque of the manipulator, which is projected to the null space of JT through the
projection matrix N (xb, q) ∈ Rn×n.

In this paper we assume that the null space behavior is characterized in joint space by
a desired positive definite stiffness Kn and a desired positive definite damping Dn as well
as an equilibrium position qn. So, the desired nullspace torque can be computed by a joint
level PD controller and chosen as

τn = Kn (qn − q)−Dnq̇. (14)

In the following the desired Cartesian impedance torque Fc can be computed to realize
the closed-loop dynamics (6).

4.2. Cartesian impedance control design

Let us define

Js =

[
I 0
0 J

]
and Ns =

[
0
N

]
. (15)

Hereby, I and 0 denote the appropriate identity matrix and zero matrix.

By inserting (13), (15) into (11) the robot dynamics (11) can be rewritten as

JTs

[
−Fb + JTb Fext
Fc + Fext

]
+Nsτn = Mgs (xb, q)

[
ẍb
q̈

]
+ Cs

[
ẋb
q̇

]
. (16)

From the definition of the generalized Jacobian Js in (15), the general velocity vector in
Cartesian coordinates xs = [xbx]T can be written as[

ẋb
ẋ

]
= J

[
ẋb
q̇

]
(17)

which yields the relevant mapping between general joint and general Cartesian acceleration
of the complete system’s dynamics
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[
ẍb
ẍ

]
= Js

[
ẍb
q̈

]
+ J̇s

[
ẋb
q̇

]
. (18)

By pre-multiplying (16) with (JsM
−1
gs ) and using (18) one can obtain the relationship

between the general Cartesian acceleration and the Cartesian commanded force Fc.[
JTb Fext
Fc + Fext

]
+ JsM

−1
gs Nsτn = Λs

[
ẍb
ẍ

]
+ Φs (19)

with 
Λs (xb, q) =

(
JsM

−1
gs J

T
s

)−1 ≡ [ Λb Λc
ΛTc Λ

]
Φs (xb, q, ẋb, q̇) =

(
JsM

−1
gs Cs − J̇s

)[ ẋb
q̇

]
≡
[

Φs1

Φs2

]
.

(20)

By using definitions (13) and (15) it follows

JsM
−1
gs Nsτn =

[
−M−1b McM

−1
σ N

JM−1σ N

]
τn (21)

with

Mσ =
(
M + (I +KT )−1B

)
−MT

c M−1b Mc. (22)

For the dynamic consistency of the null space, the projection matrix N should be chosen
so that JM−1σ N = 0. In [4] this was proposed by

N (xb, q) =
(
I − JTΛσJM

−1
σ

)
. (23)

with Λσ being an equivalent Cartesian mass matrix of the manipulator and defined by

Λσ (xb, q) =
(
JM−1σ JT

)−1
. (24)

It is noticed that outside of the singular configuration of the manipulator the matrix Λσ
and the respective matrix Λs are full rank and invertible.

For the chosen N in (23), the general Cartesian dynamics (19) is reduced into

[
−Fb + JTb Fext
Fc + Fext

]
−
[

M−1b McM
−1
σ Nτn

0

]
=

[
Λb Λc
ΛTc Λ

] [
ẍb
ẍ

]
+

[
Φs1

Φs2

]
. (25)

By canceling out the base acceleration ẍb in (25) one becomes the equation of robot
motion in Cartesian space

Fc + ΨFext = Λσẍ− ΛTc Λ−1b M−1b McM
−1
σ Nτn − ΛTc Λ−1b Φs1 + Φs2 (26)

with {
Λσ (xb, q) = Λ− ΛTc Λ−1b Λc
Ψ (xb, q) = I − ΛTc Λ−1b ΛTb .
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Now, a Cartesian control law is proposed as

Fc = Λσẍd−ΛTc Λ−1b M−1b McM
−1
σ Nτn−ΛTc Λ−1b Φs1 + Φs2−Dc (xb, q) ėx−Kc (xb, q) ex. (27)

Substituting (27) into (26) yields

Λσ (xb, q) ëx +Dc (xb, q) ėx +Kc (xb, q) ex = ΨFext. (28)

The expression in (28) establishes a relationship through a generalized mechanical im-
pedance between the vector of resulting forces ΨFext and the vector of displacements ex.
In order to avoid the coupled motion attributed by Ψ it is necessary to measure the forces
\torquesFext or to simplify the dynamic equation of the system.

4.3. Cartesian impedance controller based on energy tank

From assumption P.4, the velocity ẋb in local coordinates of the base robot can be
neglected and the constraint for the dynamics is given by{

xb (t) = const
ẋb(t) = ẍb(t) = 0.

(29)

Hence, from (25) the dynamic equation of the manipulator is given by

Fc + Fext = Λ (q) ẍ+ ϕs2
(
xb, q, x

′′) . (30)

Now, the Cartesian impedance control law can be developed by using the dynamic equa-
tion (30). Because the proposed control gains Kc, Dc in Sec. 3 vary with time, a Cartesian
impedance control law as [8] cannot ensure passivity of the pair {ėx, Fext} using the storage
function

V =
1

2
ėTxΛ(xb, q)ėx +

1

2
eTxKc(xb, q)ex. (31)

Therefore, a new control law is proposed based on energy tank which is used to store
the energy dissipated by the controlled system. By introducing a state variable xt ∈ R
(xt (t = 0) > 0 to avoid singularity) with the store function of the tank

Tt (xt) =
1

2
xTt xt, (32)

the closed-loop dynamics (6) is expanded and given by Λ (xb, q) ëx +Dvar (xb, q, 0, q̇) ėx +Kcconstex − wxt = Fext

ẋt =
δ

xt

(
ėTxDvar(xb, q,000, q̇̇q̇q)ėx

)
− wT ėx

(33)

with

Dc (xb, q) = Dvar(xb, q,000, q̇̇q̇q) +
1

2
Λ̇(xb, q). (34)

In the following it is resumed the desired damping matrix Dc (xb, q) is chosen big enough
and together with the assumption P.3 it yields Dvar(xb, q,000, q̇̇q̇q) > 0.
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Furthermore, Kcconst ∈ Rn×n is the constant control stiffness and from (8) is chosen by
Kcconst = Kcmin . δ (with 0 < δ ≤ 1) is a constant to scale the dissipated energy in the tank
and simultaneously to ensure this being not larger than dissipated energy of the main control.
Finally, w ∈ Rn presents a new control input to control the energy exchange between the
main control law and the tank, and is chosen by

w =

 −
(Kc −Kcconst) ex

xt
if Tt (xt) ≥ ε

0 if Tt (xt) < ε.
(35)

For the desired dynamics (33) the control input Fc in (30) is proposed by

Fc = Λ (xb, q) ẍd +Dc (xb, q) ėx + Kcconstex − wxt + Φs2. (36)

Figure 3. Step response of the controller
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Table 1. Torque controller parameters for the DLR space robot

Joint KD KTK
−1 KSK

−1

1
2
3
4
5
6
7

-2.0
-4.0
-4.5
-2.0
-2.0
0.0
0.0

1.590
4.966
4.461
2.495
2.709
1.940
1.521

0.0068798
0.0182072
0.0083539
0.0016764
0.0221534
0.0060800
0.0053030

Table 2. Impedance controller parameters for the DLR space robot
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Figure 4. Desired point-to-point trajectory

If Tt (xt) ≥ ε the desired closed-loop dynamics (6) is present, otherwise a new closed-loop
dynamics

Λ (xb, q) ëx +Dc (xb, q) ėx + Kcconstex = Fext (37)
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is created. Now, we consider the store function

V1 =
1

2
ėTxΛ(xb, q)ėx +

1

2
eTxKcconstex +

1

2
x2t . (38)

Then, taking the derivative of the function V1 and using equations (28), (33) we obtain

V̇1 = ėTxFext − ėTx (1− δ)Dvarėx ≤ ėTxFext. (39)

Obviously, the controlled system (33) ensures passivity of the pair {ėx, Fext}.

5. SIMULATIONS

The complete control structure of the robot is proposed in Figure 2 consisting of a joint
torque controller, a tracking joint position controller (state feedback controller with position
integrator terms) and a Cartesian impedance controller which allows the robot work in two
control modes, either with high position accuracy or with safe interaction.

Figure 5. Cartesian translation position errors
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Because of the slow system dynamics and the high required computing time, the robot
dynamics and inverse kinematics as well as the control gains of the Cartesian impedance
controller are computed online at 1.33 kHz sampling rate, whereas the position controller,
the torque controller, the Cartesian impedance controller, as well as the friction compensation
are implemented at 4 kHz sampling rate.

All simulations with the DLR space robot are implemented with control parameters
represented in the Tables 1, 2 for the torque and the Cartesian impedance controller, re-
spectively.

At first, the control performance in terms of the dynamic behavior of controller is vali-
dated by using step response results. It can be seen in Figure 3 that the proposed controller
can damp oscillations of the Cartesian position quite well.

In the next experiment, a point to point trajectory in Figure 4 is chosen in order to
show the position tracking accuracy of the robot. Figure 5 shows the reached translation
position accuracy. It can be seen that the controller can achieve position errors in the order
of magnitude of 1cm.

6. CONCLUSIONS

This paper presented a novel method to derive a dynamic model for a free-floating robot
in operational space, which is necessary for the control design. Furthermore, a Cartesian
impedance control design is derived from this, based on using energy tank to ensure passivity
of the controlled system. Therefore, the controlled system can achieve stable and good
dynamic behavior for the interaction control between the space robot and the environment.
Finally, the effectiveness of the method is shown with simulation results.
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