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Abstract. The following problems are presented: the unsteady flow on a river system and reservoirs,

the discontinuous wave and unsteady flow after the dam breaking, numerical experiments for some

test cases and for natural Da river.

Tóm tắt. Bài báo này tr̀ınh bày mô h̀ınh toán ho.c và thuâ. t toán t́ınh dòng cha’y không dù.ng trên

hê. thống sông và hồ chú.a, sóng gián doa.n và dòng cha’y không dù.ng sau võ. dâ.p bằng phu.o.ng pháp

dă.c tru.ng, áp du. ng t́ınh thu.’ nghiê.m số cho bốn bài toán kiê’m tra có nghiê.m gia’ i t́ıch và các tru.̀o.ng

ho.. p võ. hoàn toàn cũng nhu. không hoàn toàn cu’a dâ.p So.n La trên hê. thống sông Dà.

INTRODUCTION

There are several algorithms and softwares for calculating the unsteady flow on a river after
dam breaking. Some of them allow calculating the unsteady flow after gradual dam breaking,
but cannot exactly determine the position of discontinuous front ξ and the height ∆h of the
front ξ (see [8 - 11]). Other ones determine the accuracy of the front ξ and the height ∆h, but
the unsteady flow is calculated only on one river branch after the instant dam breaking (see
[1, 5, 6, 7]).

In this paper the algorithm basing on the [5] permits to calculate the unsteady flow on the
river system, connecting with reservoirs after instant or gradual dam breaking.

1. MATHEMATICAL MODELLING

The equation system describing the unsteady flows is established from the laws of conser-
vation (see [1]) and has the following form:

∮

∂S

Qdt− ωdx =

∫∫

S

qdxdt,

∮

∂S

[
P +

Q2

ω

]
dt−Qdx =
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S

[
gω
(
i−

Q|Q|

K2
+Rx

)]
dxdt, (1.1)

where

P = g

h∫

0

(h− ζ)b(x, ζ)dζ, Rx = g

h∫

0

(h− ζ)
∂b(x, ζ)

∂x
dζ,
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x - the coordinate along channel, t - time,
q - lateral flow, ω - cross-section area,
K - conveyance factor, h - the depth,
i - bottom slope, b(x, ζ) - width on the distance ζ from the bottom,
g - acceleration due to gravity, S - consideration region,
Q - discharge, ∂S - boundary of S.

1.1. One dimensional Saint—Venant equation system

If the flow is continuous, from (1.1) we get the Saint—Venant equation system

B
∂Z

∂t
+
∂Q

∂x
= q,

∂Q

∂t
+ 2v

∂Q

∂x
+B(c2 − v2)

∂Z

∂x
= Φ, (1.2)

where
Φ =

[

iB +

(
∂ω

∂x

)

h=const

]

v2 −
gωQ|Q|

K2
=

(
∂ω

∂x
−B

∂Z

∂x

)
v2 −

gωQ|Q|

K2
,

Z - level of free surface,
v - velocity,
B - width of the water surface,
c - celerity of small wave propagation.

Equation system (1.2) is quasilinear and of hyperbolic type, which can be rewritten in the
characteristic form:

∂Q

∂t
+ (v − c)

∂Q

∂x
+B(−v − c)

[∂Z
∂t

+ (v − c)
∂Z

∂x

]
= Φ + (−v − c)q, (1.3)

∂Q

∂t
+ (v + c)

∂Q

∂x
+B(−v + c)

[∂Z
∂t

+ (v + c)
∂Z

∂x

]
= Φ + (−v + c)q. (1.4)

For solving the equation system (1.2) or (1.3)—(1.4), it is necessary to give initial conditions
at t = 0 : Z(x, 0) = Z0(x), Q(x, 0) = Q0(x) and the boundary conditions, adjoint conditions.

a. Boundary conditions

For subcritical flow, one boundary condition is needed:
- At the upstream boundary:

Q(xb, t) = Qb(t). (1.5)

- At the downstream boundary:

Z(xb, t) = Zb(t) or Q(xb, t) = f(Zb(t)). (1.6)

For supercritical flow:
- At the upstream boundary, two boundary conditions are needed:

Q(xb, t) = Qb(t) and Z(xb, t) = Zb(t). (1.7)

- At the downstream boundary:
No boundary condition is needed.

b. Adjoint conditions at the internal node of river systems for the continuous flow (for example,
nodes D,E, F in Fig. 1.1).
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At every internal node it is necessary to give the following adjoint condition (for example,
adjoint conditions at D):

A

B
C

D

E
F

A

B
C

D

E
F

Fig. 1.1

∑

j∈JD

α
Dj
QDj ,

ZDj = ZD, j ∈ JD, (1.8)

where JD is the set of the river branches having common

node D.

αDj =

{
−1 if D is left boundary of the river branch j,

+1 if D is right boundary of the river branch j.

c. Adjoint conditions at the common node A of a river and a reservoir for the continuous flow

Suppose that the reservoir has volume V depending on the elevation ZH :

V = V (ZH).

The adjoint conditions are (see Fig. 1.2)
2∑

j=1

αjQj +Q3 = 0, ZAj = ZH , j = 1, 2... (1.9)

where Q3 = −
dV (ZH)

dt
.

1.2. Adjoint condition at the discontinuous front

One adjoint condition at the discontinuous front is needed: (see [1, 5, 7])

[P ].
[ 1
ω

]
+ [v]2 = 0, (1.10)

where, [f ] = f+ − f−, f− is the value f at the left side of ξ, f+ is the value f at the right
side of ξ.

(1)

(2)

.

A

Reservoir

ξ(t+∆t)

ξ(t)

∂S

(1)

(2)

.

A

Reservoir

(1)

(2)

.

A

Reservoir

ξ(t+∆t)

ξ(t)

ξ(t+∆t)

ξ(t)

ξ(t+∆t)

ξ(t)

∂S

Fig. 1.2 Fig. 1.3

The velocity of the discontinuous front ξ is (see Fig. 1.3)

C∗ = v+ +

√
ω−

ω+
P+ − P−

ω+ − ω−
= v− +

√
ω+

ω−
P+ − P−

ω+ − ω−
=
Q+ −Q−

ω+ − ω−
,

v+ + c+ < C∗, v
− − c− < C∗ < v

− + c−. (1.11)
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In the case when the height of discontinuous front is very small (∆h � 1), the adjoint
condition and velocity C∗ are:

Q+ −Q− −B+(v− + c+)(Z+ − Z−) = 0, (1.12)

C∗ = v− + c+ ≈ v+ + c−. (1.13)

2. THE ALGORITHMS

2.1. Calculation of the one dimensional unsteady flows (see[2, 4, 5, 6])

Equations (1.3) and (1.4) may be rewritten as follows:

dQ

dt
+ a1

dZ

dt
= b1,

dx

dt
= c1, (2.1)

dQ

dt
+ a2

dZ

dt
= b2,

dx

dt
= c2, (2.2)

where

a1 = B(−v − c), b1 = Φ + (−v − c)q, c1 = v − c,

a2 = B(−v + c), b2 = Φ + (−v + c)q, c2 = v + c,

a. Calculation of the values Zk+10 and Qk+10 at left boundary L0

• Determine the coordination of point A(i), (i.e. the intersection of a characteristics line
dx/dt = v − c and the line t = tk) at the iterative step (i) (see Fig. 2.1)

xA(i) = x0 +
τ

2

[
(c1)

i−1
L∗0

+ (c1)A(i−1)
]
, (c1)

(0)
L∗0

= (c1)A(0) = (c1)
k
L0
.

t

L0
*

tk+1

tk

L2
*

L2L0

A(i) B(i)

L(i)T(i)

G
t

L0
*

tk+1

tk

L2
*

L2L0

A(i) B(i)

L(i)T(i)

G

dx

dt
= v − c

dx

dt
= v + c

Fig. 2.1

• Determine the values ZA(i) and QA(i) by the linear interpolation.
• Substituting these values into equation (2.1) we get

Q
(i)
0 + a

(i)
0 Z

(i)
0 = d

(i)
0 . (2.3)
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• From the equation (2.3) and boundary conditions (1.5) one deduces Z
(i)
0 .

The iterative process is stopped if |Z
(i)
0 − Z

(i−1)
0 | < ε|Z

(i−1)
0 |, ε � 0.01.

b. Calculation of the values Zk+1N and Qk+1N at right boundary L2

By the analogous argument from the equation (2.2), we have the following equation at the
iterative step (i) (see Fig. 2.1)

Q
(i)
N + a

(i)
N Z

(i)
N = d

(i)
N . (2.4)

Solving this equation (2.4) and the boundary condition (1.6) Zk+1N = Zb(tk+1) or linearized

boundary condition Q
(i)
N + α

(i)
N Z

(i)
N = β

(i)
N , where

α
(i)
N = −

∂f

∂Z

∣∣∣∣
(i−1)

N

; β
(i)
N = Q

(i−1)
N −

∂f

∂Z

∣∣∣∣
(i−1)

N

.Z
(i−1)
N , we get Q

(i)
N , Z

(i)
N .

The iterative process is stopped if

|Z
(i)
N − Z

(i−1)
N | < ε|Z

(i−1)
N |, |Q

(i)
N −Q

(i−1)
N | < ε|Q

(i−1)
N |.

c. Calculation of the values Zk+1 and Qk+1 at the internal node of river system (for example,
D on Fig. 11)

For each river branch j (j = 1, 2, ..., JD) having common internal node D, we have one
linear equation

Q
(i)
Dj

= a
(i)
Dj
Z
(i)
Dj

+ d
(i)
Dj
, (2.5)

where

a
(i)
Dj

= −(a
(i)
0 )j and d

(i)
Dj

= (d
(i)
0 )j if D is left boundary of the branch j,

a
(i)
Dj

= −(a
(i)
N )j and d

(i)
Dj

= (d
(i)
N )j if D is right boundary of the branch j.

From adjoint conditions (1.8) and (2.5), we obtain

Z
(i)
Dj

= Z
(i)
D =

−

JD∑

j=1

α
Dj
d
(i)
Dj

JD∑

j=1

α
Dj
d
(i)
Dj

. (2.6)

The interative process is stopped if |Z
(i)
D − Z

(i−1)
D | < ε|Z

(i−1)
D |.

d. Calculation of the values Zk+1 and Qk+1 at the common node of a river and a reservoir
(for example, node A on the Fig. 1.2)

Linearizing the equation Q3 = −
dV (Z)

dt
, we have

Qk+13 ≈ −
V (Zk+1)− V (Zk)

τ
≈ −

1

τ

[
V (Zk) +

dV

dZ
(Zk+1 − Zk)− V (Zk)

]
, (2.7)

Q
(i)
3 ≈ β(i)(Z(i) − Zk),
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where β(i) = −
1

2τ

[(
dV

dZ

)(i−1)
+

(
dV

dZ

)(k)]

.

From the equation (2.5) for each river branch, adjoint conditions (1.9) and equation (2.7)
we get

Z
(i)
H =

β(i)ZkH −
2∑

j=1
αjd

(i)
Aj

β(i) +
2∑

j=1
αja

(i)
Aj

. (2.8)

Iterative process is stopped if |Z
(i)
H − Z

(i−1)
H | < ε|Z

(i−1)
H |.

The discharge is calculated from (2.5) and (2.7).

e. Calculation of Z and Q at interior nodes of river branch (For example, node G on
Fig. 2.1)

From the equations (2.1) and (2.2), by method of characteristic we get the following equa-
tions for determining the values Z and Q at the iterative step (i) .

Q
(i)
G + a

(i)
L Z

(i)
G = d

(i)
L ,

Q
(i)
G + a

(i)
T Z

(i)
G = d

(i)
T .

Solving this equation system we obtain Z
(i)
G and Q

(i)
G .

Iterative process is stopped if

∣∣Q(i)G −Q
(i−1)
G

∣∣ < ε
∣∣Q(i−1)G

∣∣ and
∣∣Z(i)G − Z

(i−1)
G

∣∣ < ε
∣∣Z(i−1)G

∣∣.

2.2. Discontinuous wave on a river

Suppose that the dam sitting at the point L1 is totally and instantaneously broken. The
computational process includes (see [1, 6, 7, 8]).

a. Calculation of Z−, Q− at the moment of dam breaking

According to references [3, 5, 6, 7] these values can be calculated by an iterative method
using formulas

Vi = v+ +

√
g

2

[
(h(i))2 − (h+)2

]
.
( 1

h+
−

1

h(i)

)
and hs =

1

4g

(
v1 + 2

√
gh1 − Vi

)2
,

where
v1 = v(L1 − 0.0), h1 = h(L1 − 0.0), h(i) = h(i−1) + 0.01h+, h(0) = h+ = h(L1 + 0.0).

Iterative process is stopped if hs � h
(i).

b. Determine the position of the discontinuous front ξ

ξk+1 = ξ(tk+1) = ξk + Ck• τ,

where
C∗ = v+ +

√
ω−

ω+
.
P+ − P−

ω+ − ω−
.
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c. Determine the values (Z+)k+1, (Q+)k+1 at the right side of the discontinuous front ξ

From the Saint—Venant equation system in the characteristic form (2.1), (2.2) one deduces
the equations at the iterative step (i)

(Q+)(i) + a
(i)
L (Z+)(i) = d

(i)
L ,

(Q+)(i) + a
(i)
T (Z+)(i) = d

(i)
T .

Solving this equation system we get (Z+)(i) and (Q+)(i).
We take (Z+)k+1 = (Z+)(i), (Q+)k+1 = (Q+)(i) if |(Z+)(i) − (Z+)(i−1)| < ε|(Z+)(i−1)|

and |(Q+)(i) − (Q+)(i−1)| < ε|(Q+)(i−1)|.

d. Determine the values (Z−)k+1, (Q−)k+1 at the left side of the discontinuous front ξ

From the equation (2.2) it yields

(Q−)(i) + a
(i)
T (Z−)(i) = d

(i)
T .

Linearizing adjoint condition (1.10) one deduces

γ(i)(Q−)(i) + µ(i)(Z−)(i) = θ(i),

where γ(i), µ(i), θ(i), are known coefficients.
Solving this equation system we obtain (Z−)(i) and (Q−)(i).

If

|(Z−)(i) − (Z−)(i−1)| < ε|(Z−)(i−1)|, |(Q−)(i) − (Q−)(i−1)| < ε|(Q−)(i−1)|,

we take (Z−)K+1 = (Z−)(i), (Q−)K+1 = (Q−)(i).

e. The values Zk+1 and Qk+1 at the boundary nodes, internal nodes of river system, common
nodes of a river and a reservoir or interior nodes of each river branch are calculated by the
method of characteristic as in the point 1.

2.3. Unsteady flow after the dam breaking on river

Suppose that the dam breaking is gradual. The condition at dam is the function:

Q = f(ZT , ZD), (2.9)

and QT = QD = Q. (2.10)

Linearizing the equation (2.9) we get

Q
(i)
T = α(i)Z

(i)
T + β(i)Z

(i)
D + γi. (2.11)

a. For the supercritical flow

Analogously, from the equation (2.1), (2.2) one deduces two following equations at the left
side of the dam

Q
(i)
T + a

(i)
T Z

(i)
T = d

(i)
T , (2.12)
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Q
(i)
T + a

(i)
L Z

(i)
T = d

(i)
L . (2.13)

Solving the equations (2.10) - (2.13) we obtain the values Z
(i)
T , Z

(i)
D , Q

(i)
T , Q

(i)
D .

The iterative process is stopped if the error is small enough and we take

Zk+1T = Z
(i)
T , Z

k+1
D = Z

(i)
D , Q

k+1
T = Q

(i)
T .

b. For the subcritical flow

From the equation (2.2) at the right side and (2.1) at the left side of the dam we have

Q
(i)
T + a

(i)
T Z

(i)
T = d

(i)
T , (2.14)

Q
(i)
D + a

(i)
L Z

(i)
D = d

(i)
L . (2.15)

Solving the equations (2.10), (2.11), (2.14), (2.15) we obtain the values Z
(i)
T , Z

(i)
D , Q

(i)
T , Q

(i)
D .

The iterative is stopped if the error is small enough.

c. The values Zk+1 and Qk+1 at the boundary, internal, common nodes or interior nodes of
each river branch are calculated by the same method as in the point 1.

3. NUMERICAL EXPERIMENTS

The method of characteristic is applied to solve some test problems and natural Da river
system problem (see [8]).

3.1. Test case 1

Channel of 1.5 km long in which every section is rectangular. Its geometry is described in
Fig. 3.1 and Fig. 3.2. The bed slop is about 10% with reverse gradients. One can notice the
important contracting section at x = 800m which creates an acceleration of the flow.

This test enables to check that these source terms are correctly evaluated, in the case of
flat water at rest.
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Fig. 3.1. Channel geometry - Profile view Fig. 3.2. Channel geometry - Top view

The complete description of the geometry is given in the Table 1.

* In each configuration the boundary and initial conditions are as follows:
- Downstream boundary and initial condition: level imposed equal to 12m.

- Upstream boundary condition: no discharge.
- Initial condition: water at rest at the level 12 m.
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Table 1

Cross-sec X(m) Zb(m) B(m) Cross-sec X(m) Zb(m) B(m)

1 0 0 40 16 530 9 45

2 50 0 40 17 550 6 50

3 100 2.5 30 18 565 5.5 45

4 150 5 30 19 575 5.5 40

5 250 5 30 20 600 5 40

6 300 3 30 21 650 4 30

7 350 5 25 22 700 3 40

8 400 5 25 23 750 3 40

9 425 7.5 30 24 800 2.3 5

10 435 8 35 25 820 2 40

11 450 9 35 26 900 1.2 35

12 470 9 40 27 950 0.4 25

13 475 9 40 28 1000 0 40

14 500 9.1 40 29 1500 0 40

15 505 9 45

* The analytical solution is very simple in this test case.

- Water at rest: discharge and flow velocity must be equal to zero.

- Flat free surface water level stays at the initial level of 12 m.

* The numerical solution (see Fig. 3.3):

- Discharge flow is 0m3/s.

- Water surface level is 12m.
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Fig. 3.3. The numerical solution and the analytical solution

3.2. Test case 2

The steady flow over a bump in a rectangular channel with a constant width. According
to the boundary and initial condition, the flow may be subcritical, transcritical with a steady
shock, supercritical or at rest.

* Geometry data:

- The channel width B = 1m.
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- The channel length L = 25m.
- Bottom Zb equation x < 8m and x > 12m: Zf = 0,
8m< x < 12m: Zf = 0.2− 0.05(x− 10)2.

* Transcritical flow without shock:
- Downstream: level imposed equal to 0.66m, no level imposed when the flow becomes

supercritical.
- Upstream: discharge imposed equal to 1.53 m3/s.
- Analytic and numerical solution (see Fig. 3.4).

* Transcritical flow with shock:
- Downstream: level imposed equal to 0.33 m.
- Upstream: discharge imposed equal to 0.18 m3/s.
- Analytic and numerical solution (see Fig. 3.5).

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

X(m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30
X(m)

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

X(m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25 30
X(m)

Fig. 3.4 Fig. 3.5

* Subcritical flow
- Downstream: level imposed equal to 2 m.
- Upstream: discharge imposed equal to 4.42 m3/s.
- Analytic and numerical solution (see Fig. 3.6).
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Fig.3.6. The numerical solution and the analytical solution

* Initial conditions
- Constant level equal to the level imposed downstream.
- Discharge equal to zero.
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- Friction term equal to zero.

3.3. Test case 3

Our purpose is to calculate the unsteady flow resulting from an instantaneous dam breaking
in a rectangular channel with constant width.

* Geometrical data (see Fig. 3.7):

- Channel length 2000 m.

- Dam position x = 0m.

- Channel width L=1m.

* Physical parameters

- No friction.

- Boundary conditions.

Downstream: level imposed equal to y2.

Upstream: no discharge.

* Initial conditions

y = y1 = 6 if x < 0.

y = y2 = 0m if x > 0.

* Analytic and numerical solution (see Fig. 3.8).
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Fig. 3.7 Fig. 3.8

Dam break on dry bed, initial state The numerical solution and the analytical
solution at t = 30 s

3.4. Test case 4

Our purpose is to calculate the unsteady flow of an instantaneous dam break on an already
wet bed.

* Geometrical data (see Fig. 3.9):

- Channel length 2000 m.

- Dam position x = 0m.

- Channel width L = 1m.

* Physical parameters

- No friction.

- Boundary conditions.

Downstream: level imposed equal to y2.
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Upstream: no discharge.

* Initial conditions

y = y1 = 6 if x < 0.

y = y2 = 2m if x > 0.

* Analytic and numerical solution (see Fig. 3.10).
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Dam break on wet bed, initial state The numerical and the analytical
solution at t =72 s

3.5. Instant dam break and discontinuous wave on the Da river (see Fig. 3.11)
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SonLa dam on the Da river, initial state Da river and the reservoirs
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Z(t) at Son La dam Q(t) at Son La dam
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The Son La dam is situated at the distance of 300 km from the upstream boundary L0. The
water level on upstream side of dam is 215 m and on the other one is 116m. The cross-section
areas are constructed according to the information of field measurements. The water volume
of Main River and some reservoirs at upstream side of SonLa dam is 9.109m3. Suppose that
the dam is totally and instantly broken. The numerical solution is presented in the Fig. 3.12,
Fig. 3.13 and Fig. 3.14a, Fig. 3.14b.
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Water surface elevation at t = 0.25h Water surface elevation at t = 0.5h

3.6. Gradual dam break and the unsteady flow on the Da river (see Fig. 3.11b)
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The data are given as in the problem 5, we suppose that the dam is gradual failure and
rectangular breach 135m× 105 m (width×depth). Maximum of breach size at t = 0.25 h.
The numerical solution is presented in the Fig. 3.15. and Fig. 3.16.

CONCLUSIONS

The algorithm is applied for calculating:
- The unsteady flows of some test cases having the analytical solution.
- The unsteady flow on the Da river system after instant or gradual dam breaking.

The computational results show that:
- The algorithm is easy executed and numerical solutions for the test cases have height

accuracy in comparison with the analytical solution.
- The unsteady flows on Da river system, connecting with reservoir after gradual dam

breaking is corresponded with the ones of other algorithms in [9].
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