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Abstract. Multiple Traveling Repairmen Problem (MTRP) is a class of NP-hard combinatorial
optimization problems. In this paper, an other variant of MTRP, also known as Multiple Traveling
Repairmen Problem with Distance Constraint (MTRPD), is introduced. In MTRPD problem, a
fleet of vehicles serves a set of customers. Each vehicle which starts from the depot is not allowed
to travel any distance longer than a limit and each customer must be visited exactly once. The
goal is to find the order of customer visits of all vehicles that minimizes the sum of all vertices’
waiting time. To the best of our knowledge, the problem has not been studied much previously,
even though it is a natural and practical extension of the Traveling Repairman Problem or Multiple
Traveling Repairmen Problem case. In our work, we propose a metaheuristic algorithm which is
mainly based on the principles of Greedy Randomized Adaptive Search Procedure (GRASP) and
Variable Neighborhood Descent (VND) to solve the problem. The GRASP is used to build an initial
solution which is good enough in a construction phase. In a cooperative way, the VND is employed to
generate diverse neighborhoods in an improvement phase, therefore, it can help the search escape from
local optimal. Extensive numerical experiments on 321 benchmark instances show that our algorithm
can find the optimal solutions with up to 50 vertices in several instances. For larger instances, our
algorithm obtains provably near-optimal solutions, even for large instances.

Keywords. Multiple Traveling Repairmen Problem with Distance Constraints (MTRPD), GRASP,
VND, metaheuristic.

1. INTRODUCTION

The Traveling Repairman Problem (TRP) or Minimum Latency Problem (MLP) has
been studied in a number of previous work [1, 2, 3, 4, 5, 6, 7, 8, 9, 14]. It has arised many
practical applications, e.g., whenever repairman or servers have to accommodate a set of
requests so as to minimize their total (or average) waiting time [1, 8, 14]. A generalization
of the TRP is known as the Multiple Traveling Repairmen Problem (MTRP) that consists
of several vehicles instead of one vehicle [17, 19]. Practical applications of MTRP can be
found in Routing Pizza Deliverymen, and Scheduling Machine Problem to minimize mean
flow time for jobs [14, 22]. In this work, we study an extension of the MTRP (Multiple
Traveling Repairmen Problem with Distance Constraints - MTRPD) by involving a distance
constraint that the route length (or maximum duration (MD)) of each vehicle cannot exceed a
predetermined limit [20]. This type of constraint usually stems from regulations on working
hours for workers. Informally, in the MTRPD problem, a fleet of vehicles serves a set of
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customers. Fach vehicle which starts from the depot is not allowed to travel a distance
longer than any limit and each customer must be visited exactly once. The goal is to find
the order of customer visits of all vehicles that minimizes the sum of waiting time of all
customers.

This variant is at least as hard as the TRP and MTRP, and it is also NP-hard problem

because it is a generalization of the TRP and MTRP. In this paper, we consider the problem
in the metric case, and formulate the MTRPD as follows:
Given a complete graph K, with the vertex set V' = {1,2, ...,n}, a symmetric distance
matrix C' = {c(i,j) | 4,7 = 1,2, ...,n}, where ¢(i, 7) is the distance between two vertices i and
j, and a predetermined limit L. Let R = (1,2, ..., k) be a set of k vehicles which begin at the
main depot v1. Suppose that the tour T' = (Ry, ..., Ry, ..., Rx) is a set of obtained routes from
k vehicles. Let R; = (v1,...,0p, ..., ) (1 < m < n) be a route of vehicle (I € k). Denote
P(v1,vp,) is the path from vy to vy, on the route R; and I(P(v1,vy)) is its length. The waiting
time of a vertex v, (1 < h < m) on R; is the length of the path from starting vertex v; to
vy, as follows

h—1

(P(vi,vn) = D c(vi, viga)- (1)

i=1

The waiting time of the route R; is defined as the sum of waiting times of all vertices in this
route and its length cannot exceed a predetermined limit MD

W(R) = UP(v1,vm)), (2)

The total waiting time of 7" is the sum of all the vertices’ waiting times

W(T) =) W(R). (4)

=1

The MTRPD asks for a k— routes, which starts at a given vertex vy, visits each vertex in
the graph once exactly and the total waiting time of all vertices is minimized.

For NP-hard problems, there are three common approaches to solve, namely, 1) exact
algorithms, 2) approximation algorithms, 3) heuristic algorithms. Firstly, the exact algo-
rithms guarantee finding the optimal solution and take exponential time in the worst case,
but they often run much faster in practice. However, the exact algorithms only solve with
up to 50 vertices [2, 5, 20, 26]. Secondly, the approximation algorithm produces a solution
within some factor « of the optimal solution. In this approach, the best approximation factor
is still far from the optimal solution [1, 8, 9, 15, 17]. Thirdly, heuristic algorithms perform
well in practice and validate their empirical performance on an experimental benchmark of
interesting instances. Our metaheuristic algorithm depends on this approach.
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To the best of our knowledge, the problem has not been well studied previously, even
though it is a natural and practical extension of the Traveling Repairman Problem or Multiple
Traveling Repairmen Problem case [7, 12, 22, 23, 25]. Recently, Z. Lou et al. [20] has
introduced the MTRPD problem and proposed an exact algorithm for the problem. Their
algorithm can solve exactly with up to 50 vertices. However, the small size of the problem
is not suitable for the practical situations. In this work, we presents the first metaheuristic
approach for this problem. In our work, we propose a metaheuristic algorithm which is
mainly based on the principles of Greedy Randomized Adaptive Search Procedure (GRASP)
and Variable Neighborhood Descent (VND) to solve the problem. The GRASP is used to
build an initial solution which is good enough in a construction phase. In a cooperative way,
the VND is employed to generate diverse neighborhoods in an improvement phase, therefore,
it can help the search to escape from local optimal. Extensive numerical experiments on 321
benchmark instances show that our algorithm can find the optimal solutions with up to 50
vertices within reasonable running time. For larger instances, our algorithm obtains provably
near-optimal solutions, even for large instances.

The rest of this paper is organized as follows. Section 2 presents the proposed algorithm.
In section 3, and 4 we discuss computational evaluations, and discussions, respectively. The
conclusions of this paper are summarized in Section 7.

2. OUR ALGORITHM

Our algorithm consists of two phases such as a Greedy Randomized Construction phase
and a Variable Neighborhood Descent improvement phase. Firstly, GRASP (Greedy Ran-
domized Adaptive Search Procedure) [13] is used to allow a controlled amount of randomness
to overcome the behaviour of a purely greedy heuristic. Secondly, VND [21] is based on the
principle of systematically exploring several different neighborhoods. It provides diverse
neighborhoods for our algorithm, combined with shaking technique to escape from local op-
tima. Our algorithm is repeated a number of times, and the best solution found is reported.
An outline of the algorithm is shown in Algorithm 1. In step 1, the algorithm starts with an
initial solution obtained from the GRASP [13]. In Step 2, we investigate a novel neighbor-
hoods’ structure in VND and explore systematically switches between six neighborhoods. In
order to extend the solution space of the problem, a diversification step is described in step
3. In the remaining of this section, more details about the three steps of our algorithm are
given.

Step 1: The GRASP is used to generate an initial solution [13]. In this step, a feasible
solution T is built, one vertex at a time for each route. At next step, a random route is
selected from k routes in tour 7', then, a restricted candidate list (RCL) is determined by
ordering all non selected vertices in term of a greedy function that measures the benefit of
including them in the route. After that, one element will be chosen from RCL if its addition
into the route does not make the length of the new route be more than MD. Otherwise,
a random vertex from V is chosen when the addition does not violated the length limit.
Since all vertices are visited, the algorithm stops and the initial solution is returned. The
size of RCL is a parameter of the GRASP that controls the balance between greediness and
randomness. The GRASP for our algorithm is described in Algorithm 2.

If it can not find any feasible solution in this phase then we will choose the initial solution
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Algorithm 1 The Proposed Algorithm
Input: v, V,N;(T)(i = 1,...,5), pos are a starting vertex, the set of vertices in K, the set
of neighborhoods and the number of swap, respectively.
Output: The best solution 1.
Step 1 GRASP(Generate an initial solution):
T = GRASP(v1,V, k, a);
while stop criteria not met do
Step 2 (VND):
for (i =1;i <6;i++) do
T = argminTueNi(T)L(T”)
if (W(T") <W(T)) or (W(T') < W(T*))) then
T=T
end if
if (W(T') < W(T*) and (T" must be an feasible solution) then
T =T
else
v+ +
end if
end for
step 3 (Implement Diversification): {Select randomly a number from 1 to 2}
type = rand(2);
if (type==1) then
R; = Select randomly the [ — th route of T
R; = Shaking-one-route( Ry, pos);
else
R; and Rj = Select randomly two routes of T
R; and Ry, = Shaking-two-routes(R;, Ry, pos) ;
end if
Go to step 2;
end while
return T7;

based on the value of the new objective function W’
W' =W + PF x max{LT — M D, 0}, (5)

where LT and PF' are the longest route in the current solution (feasible or infeasible) and
the penalty factor, respectively. If the obtained solution is feasible then LT < MD and
W' = W. Otherwise, an infeasible solution will be chosen based on the smallest amount of
infeasibility.

Step 2: In this step, six neighborhoods investigated are divided into two types: 1-route,
and 2-route. l-route is used as a post-optimizer on single vehicle routes which consists of
applying remove-insert, swap-adjacent, swap, 2-opt [18]. Meanwhile, solution improvements
can often be obtained by move vertices belonging to two or more different routes in 2-route.
For a given current solution 7', neighborhood explores the neighboring solution space set
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Algorithm 2 GRASP (v, V. k, a)

Input: v1,V,k, « are a starting vertex, the set of vertices in K,,, the number of vehicles,
and the size of RCL, respectively.
Output: the initial solution 7. {7 is an initial Tour}
T = ¢;
for (I =1;1<k;l++) do
R; = R;Uwy; {The | — th route of the tour T starts at a main depot vy}
end for{L is the list of visited vertices in K}
L = ¢;
while |[L| <n do
[ = random(k);{Choose a route randomly in k routes}
Create RCL with a vertices v; € V' closest to vy; {v; is the last vertex in route R}
FND = 0;
while Jv is not considered in RCL do
Select a vertex v = {v;|lv; € RCL and v; € R };
if L(R,Uv) < MD then

R, = R; Uw;
FND = 1; {If we find successfully v to add to R;}
end if
end while

if FND == 0 then
Select randomly a vertex v in K, such that v ¢ R; and L(R; Uv) < MD;
Ry = R;Uuw;
end if
L=LUuv;
end while
for I =11 <k;l++) do
T =T U Ry;;{Update | — th route in the tour 7'}
end for
return T

Algorithm 3 Shaking-one-route(R;, pos)

Input: Ry, k,pos are the [ — th route, the number of vehicles and the number of swap,
respectively.
Output: a new solution R;.
while (pos > 0) do
select 4, j positions from R; at random
if (i # j) then
Insert R;[i] between R;[j] and R;[j + 1];
pos = pos — 1;
end if
end while
return Rj;
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Algorithm 4 Shaking-two-routes(R;, Ry, pos)

Input: Ry, Ry, k,pos are the [ — th, h — th route, the number of vehicles and the number of
swap, respectively.
Output: a new solution R; and Ry,.
while (pos > 0) do
select ¢ — th and j — th positions from R; and Ry at random, respectively;
swap Ry[i] between Rp[j];
pos = pos — 1;
end while
return R; and Ry;

N(T) of T iteratively and tries to replace T by the best solution 77 € N(T). The main
operation in exploring the neighborhood is the calculation of a neighboring solutions’ cost.
In straightforward implementation in the worst case, this operation requires Tsol = O(n).
We describe more details about six neighborhoods as follows:

For 1-route: Assume that R; and |R;| are a singe route and its length in 7', respectively
(In the worst case, |R;| = n). 1-route is used only to optimizer on single route. We describe
four neighborhoods’ structure in turn.

e The swap-adjacent (see in Fig. 1 in [28]) attempts to swap each pair of adjacent
vertices in R;. The complexity of exploring the neighborhood is O(T'sol x |Ry|).

e The remove-insert (see in Fig. 2 in [28]) considers each vertex v; in R; and to places
the vertex furthest away from this vertex v; at the end of the route R;. The complexity
of exploring the neighborhood is O(T'sol x |Ry|).

e The swap (see in Fig. 3 in [28]) tries to swap the positions of each pair of vertices in
the single route R;. The complexity of exploring the neighborhood is O(T'sol x |Ry|?).

e The 2-opt (see in Fig. 4 in [28]) removes each pair of edges from the route R; and
reconnects the vertices. The complexity of exploring the neighborhood is O(T'sol x
|Ril?).

For 2-route: Assume that Ry, |R;| and Ry, |Ry| are two different routes and their size of
them in T, respectively. 2-route is used to move vertices in two different routes as follows:

e The swap-two-routes (see in Fig. 5 in [28]) tries to exchange the positions of each
pair of vertices in R; and Ry. The complexity of exploring the neighborhood is O(T sol x
[Ri| % |Rnl)-

e The insert-two-routes (see in Fig. 6 in [28]) considers each vertex v; in R; and
insert it into each position in Rp. The complexity of exploring the neighborhood is
O(T'sol x |Ry| x |Rp)).

In preliminary study, we realize that the efficiency of VND algorithm relatively depends on
the order in which the neighborhoods are used. Therefore, the neighborhoods are explored
in a specific order based on the size of their structure, namely, from small to large, such as
swap-adjacent, remove-insert, swap, 2-opt, swap-two-routes, insert-two-routes.
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Step 3: Shaking procedure allows our algorithm to guide the search towards an unex-
plored part of the solution space. In this work, two categories are used to obtain a new
solution such as shaking in a single route (Shaking-one-route) and shaking in two routes
(Shaking-two-routes). In Shaking-one-route, it selects the I-th route R; of T' and then swaps
randomly several vertices. In Shaking-two-routes, it picks randomly two routes R; and Rj
and then, exchanges randomly some several vertices between them. We finally return to step
2 with the new solution. The Shaking procedure is described in Algorithm 3.

The last aspect to discuss is the stop criterium of our algorithm. A balance must be made
between computation time and efficiency. Here, the algorithm stops if no improvement is
found after the number of loop (NL).

The running time of our algorithm mainly spends for exploring in VND. In VND, swap-
two-routes and insert-two-routes, in which their time complexity is not less than those of
any neighborhoods, run in O(T'sol x |R;| x |Rp|) time. Assume that k; is a number of runs
of them, therefore our algorithm requires O(k; x T'sol x |R;| X |Rp|) time.

3. COMPUTATIONAL EVALUATIONS

In order to evaluate the efficiency of a metaheuristic algorithm, its solution can be com-
pared to 1) the optimal solution (OPT); 2) the lower bound (LB); and 3) the initial solution
of the construction phase (init.Sol); 4) a good upper bound of the state-of-the-art meta-
heuristic algorithm (UB).

We define the improvement of our algorithm with respect to best.sol (best.sol is the best
solution found by our algorithm) in comparison with the optimal solution (gap;[%]), the
lower bound of the optimal solution(gap2[%]), and an initial solution (improv[%]) in percent
respectively as follows:

best.sol — OPT

best.sol — LB
gap (%] = 222 100, % (7)

best.sol — init.Sol
improv|%] = - Sijm't SZ,Z; % % 100.% (8)

For small instances, the optimal solutions for the problem from [20] allows us to evaluate
the performance of our algorithm exactly. When no optimum solution is available for large
instance sizes and our algorithm is the first metaheuristic for solving the problem, our best
solutions can be compared to the tight lower bound of the optimal solution in [22] or initial
solutions from GRASP. Certainly, the comparision between GRASP and VND is not com-
pletely fair because they depend on two different types of algorithm. Specifically, GRASP
runs only once to obtain an initial solution while VND runs many times and it terminates
when there is no better solution found after a number of iterations. However, the comparision
is still significant to represent the efficiency of the VND phase.
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3.1. Datasets

The experimental data includes two datasets. Each instance contains the coordinate of n
vertices. We divide these instances into two types: Type 1 consists of the instances in which
the optimal solutions of them have been known; otherwise, they depend on type 2.

Small instances and their optimal solutions in [20] are used in our experiments. We
can obtain the optimal solutions for these instances by using exact algorithms in [20]. We
named them as dataset 1. It includes six TSP instances from the TSPLIB such as brd14051,
d15112, d18512, fnl4461, nrwl1379 and pr1002. For each TSP instance, we generate ten
MTRPD instances by randomly selecting subsets of n vertices, where n = 30, 40 and 50
and one vertex was arbitrarily designated as the depot. Therefore, one hundred and fifty
instances are selected in the dataset 1.

The numerical analysis was performed on a set of benchmark problems for Capacitated
VRP in [27]. As testing our algorithm on all instances would have been computationally
too expensive, we implemented our numerical analysis on some selected instances. Firstly,
in order to eliminate size effects, problems with approximately from 50 up to 200 customers
are chosen. Also, in order not to bias the results by taking “easy” or “hard” instances
we randomly choose instances. Specifically, this dataset includes seven instances (CMTG6,
CMT7, ..., CMT14) and twelve instances (tai75, ..., tail50d). Moreover, one hundred and
thirty instances from 60 to 80 vertices [22] are also used in our experiments. We gather
and name them as dataset 2. In this dataset, we can obtain the optimal solutions for the
instances of MTRP in [22]. These optimal solutions are the lower bound of the optimal
solutions of MTRPD. Most of the instances in dataset 2, the distance constraint is not
available, except several instances in dataset 2. We denote by dy.x the greatest distance
for any route involving a single customer and impose on each vehicle a travel distance limit
MD = 2 X dpax. The similar generation for travel distance limit can be found in [10].

3.2. Results

The experiments are conducted on a personal computer, which is equipped with an Intel
Pentium core i7 duo 2.10 Ghz CPU and 8 GB of bytes RAM.

Two experiments are conducted on the above datasets. For the instances in dataset
1, their optimal solutions let us evaluate exactly the efficiency of our algorithm. For the
instances in dataset 2, since their optimal solutions have been not known, the efficiency of
the algorithms is only evaluated relatively.

Through preliminary experiments, we observed that the values a = 5, pos=5, PF=100,
and NL = 100 resulted in a good trade-off between solution quality and run time. In addition,
in a pilot study, the performance of the algorithm relatively depends on the order in which
the neighborhoods are used. In this paper, the order of the neighborhoods is as follows: swap
adjacent, remove-insert, swap, 2-opt, swap-two-routes, insert-two-routes. These settings have
thus been used in the following experiments.

In Tables, best.sol, aver.sol correspond to the best solution, average solution for our
metaheuristic algorithm after ten runs, respectively. Tables 1 compare the results of our
algorithm with the optimal solutions in [20]. Table 3, ..., 5 compare the results of our
algorithm with the lower bound of the optimal solution (note that the optimal solution of
the MTRP is the lower bound of the optimal solution of the MTRPD. The optimal solution
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Table 2. The average experimental results for dataset type 1

Instances Gap | T Gapr | T Gapr | T

ine brd14051-x | 0.00 | 0.45 | 0.26 | 0.45 | 0.63 | 0.90
d15112-x 0.00 | 0.22 | 0.30 | 0.80 | 0.44 | 0.46
fnl4461-x 0.00 | 0.25 ] 0.26 | 0.35 | 0.59 | 0.75
nrwl379-x 0.00 | 0.22 | 0.47 | 0.81 | 0.54 | 0.72
pr1002-x 0.00 | 0.21 | 0.28 | 0.47 | 0.54 | 0.77

Table 6. The average experimental results for dataset type 2

Instances gaps | improv | T
brd14051-60-x | 3.65 | 13.62 1.83
d15112-60-x 3.60 | 13.68 2.02
fnl4461-60-x 2.69 | 13.53 1.64
nrwl3d79-60-x | 4.21 | 13.89 1.88
pr1002-60-x 4.75 | 13.56 1.99
brd14051-70-x | 3.59 | 13.69 3.07
d15112-70-x 2.73 | 13.95 2.53
fnl4461-70-x 3.82 | 14.28 2.84
nrwl379-70-x | 4.53 | 14.46 2.64
pr1002-70-x 3.67 | 14.19 2.82
brd14051-80-x | 3.32 | 15.47 10.47
d15112-80-x 2.86 | 15.40 8.99
fnl4461-80-x 4.05 | 15.54 9.11
nrwl379-80-x | 3.06 | 15.45 11.04
pr1002-80-x 3.87 | 15.60 9.25
tai-x - 28.09 34.60
CMT - 26.66 67.98

of the MTRP is obtained in [22]) and the initial solution from GRASP. Table 7 shows the
evolution of the average deviation to the initial solutions during the iterations on some
instances. Table 8, 9 compare our results with the state-of-the-art metaheuristic algorithms
in MTRP and CCVRP, such as I. O. Ezzineet al.s (IOE) [12], L. Ke et al.s (CCVRP) [16],
SU. Ngueveu (MA1) [23], S. Nucamendi-Guillen et al.s (SNG) [22], G. Riberio et als (ALNS)
[25]. The optimal solutions in Table 8 are highlighted in “*’ symbol.

The average experimental results are illustrated in Table 2 for all instances in Type 1,
which are the average values calculated from Table 1. Similarly, the results are described
in Table 6, which are the average values calculated from Table 3 to 5 for all instances in
Type 2. In Table 2 and 6, we denote by gapr, gaps,improv and T the average values of
gapi, gaps, improv and T for each MTRPD dataset, respectively.

In Table 2, for all instances, it shows that our algorithm is capable of finding the optimal
solutions for several instances which is up to 50 vertices in dataset 1 at a reasonable amount
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Table 7. Evolution of average deviation to Init.Sol

281

Dataset | 1 iterations | 20 iterations | 30 iterations | 50 iterations | 100 iterations | 200 iterations
TSP-x 11.87 | 0.35 | 13.79 | 0.96 14.06 | 1.39 14.30 | 2.31 14.44 | 4.81 14.44 | 8.93
tai-x 25.99 | 2.52 | 27.65 | 7.21 27.87 | 10.45 | 28.00 | 17.30 | 28.09 | 34.60 | 28.09 | 72.08
CMT 25.10 | 2.34 | 26.22 | 16.41 | 26.47 | 21.10 | 26.54 | 32.82 | 26.66 | 67.98 | 26.66 | 135.96
Aver 20.99 | 1.74 | 22.55 | 8.19 22.80 | 10.98 | 22.95 | 17.48 | 23.06 | 35.80 | 23.06 | 72.32

of time. In addition, it is obvious that, in average, our solutions fall within 1.0% of the
optimal solutions.
Table 6, for all instances, it can be observed that our algorithm is capable of improving
the solutions in comparison with Init.Sol and LB. The average improvement of our algorithm
with average improv is between 13.52% and 28.09%. Moreover, our solutions are below 5.0%
of the lower bound of the optimal solutions. Obviously, our algorithm can obtain provably
near-optimal solutions, even for large instances and required small scaled running time.

Table 8. Comparsion with state of the art metaheuristic algorithms for CCVRP

Instances | n | & MA1 ALNS LK Our Algorithm
best.sol T best.sol T best.sol | T | best.sol T
CMTI1 50| 512230.35| 10.63 |2230.35 | 30.29 | 2230.35| 17.6 | 2230.35 | 1.27
CMT2 75110 | 2391.63 | 27.78 |2421.90 | 60.77 | 2391.63 | 22.4 | 2391.63 | 5.76
CMT3 100 | 8 | 4045.42 | 449.44 | 4073.12 | 235.12 | 4045.42 | 92.6 | 4167.32 | 18.49
CMT4 150 | 12 | 4987.52 | 97.91 | 4987.52 | 172.45 | 4987.52 | 60.9 | 5178.31 | 81.66
CMTI11 | 120 | 7 |7315.87|160.64 | 7317.98 | 202.07 | 7314.55 | 71.6 | 7347.49 | 27.09
CMTI12 | 100 | 10 | 3558.92 | 38.20 | 3558.92 | 152.74 | 3558.92 | 53.7 | 3622.12 | 16.14
Table 9. Comparsion with state of the art metaheuristic algorithms for MTRP
Instances 2 | IOE SNG Our Algorithm
bestsol | T | bestsol T | best.sol | gap: T
E-n51-k5 50| 513320.00|2.25]2209.64* 0.7 | 2386.87 | 8.02 | 2.49
E-n76-k10 75110 | 4094.00 | 1.48 | 2310.09* 421257734 | 11.57 | 5.46
E-n76-k14 75|14 |3762.00 | 0.51 | 2005.4* 341217625 | 8.52| 5.26
E-n76-k15 75115 ]3822.00 | 0.09 | 1962.47* | 2.81 | 2182.32 | 11.20 | 5.16
E-n101-k8 | 100 | 8 | 6383.00 | 89.4 - 1.47 | 4862.12 - 11.81
E-nl101-k14 | 100 | 14 | 4504.00 | 5.40 - 10.53 | 3314.23 - 10.91
Aver 9.83

In table 7, the deviations are 20.99%, 22.55%, 22.80%, 22.95%, 23.06%, and 23.06% for

the first local optimum, obtained by one, ten, twenty, thirty, fifty, one-hundred, and two-
hundred calls VND, respectively. As can be observed, additional iterations give a minor
improvement with the large running time. Hence, the first way to reduce the large running
time is to use no more than fifty calls to VND and the improvement of our algorithm is
about 23.06%. A much faster option is to run the initial construction phase then improve
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it by using a single call to VND, which obtains an average deviation of 20.99% and average
time of 1.74 seconds, even for the instances which are up to 200 vertices.

3.3. Comparision with MTRP and CCVRP

As we mentioned in the first section, the MTRPD is a generalization of the MTRP (Mul-
tiple Traveling Repairmen Problem) and CCVRP (Cumulative Capacity Vehicle Routing
Problem). It follows that any solution method for the MTRPD can be used to solve in-
stances of the MTRP and CCVRP. Although many researchers have studied the MTRP and
CCVRP [12, 16, 22, 23, 25|, the literature on the MTRPD is surprisingly limited. The only
prior study we can find in existing literature is an exact algorithm [20] for the MTRPD.
In this work, we present the first metaheuristic approach for this problem, therefore, there
is no direct comparison to the other algorithms. However, our algoirthm can be indirectly
compared to the state of the art algorithms in MTRP [12, 22] in Table 7 and CCVRP [16,
23, 25] in Table 8 (note that MTRP is a particular variant of CCVRP where the vehicle
capacity restrictions are removed). In these experiments, our algorithm is run without the
distance and capacity constraints. By comparing the other algorithms, it becomes clear that,
although not designed for it, our algorithm still performs better than IOE for the most of
instances and nearly as good as the other MTRP and CCVRP metaheuristics. In particular,
our solutions are very close to the optimal solutions since the solutions are within 9.83% of
the optimum in MTRP and comparable to the others in CCVRP.

The algorithms are implemented on computers with different configurations. Therefore,
we only evaluate the running time of them relatively. In Table 8 and 9, the running time of
our algorithm is comparable to those of the others.

4. DISCUSSIONS

Three types of algorithms are used to solve MTRPD. The first type consists of exact
algorithms that are time-consuming, however, they can only solve the problem with small
sizes. The second type consists of classical heuristics such as greedy, local search, relaxation
based etc. These heuristics produce approximate solution faster, when compared with the
first type, but without guarantee of optimality. The third type consists of heuristics that are
based on some metaheuristic rules. Our algorithm depends on metaheuristic.

In combinatorial optimization problem such as MTRPD, there exist many “locally op-
timal”, but enough good as well as global optimal solution. To the best of our knowledge,
algorithms often get trapped into local optimum because their explored part of the solution
space is not large enough. Our metaheuristic approach takes the advantages of both GRASP
and VND. Firstly, GRASP is a constructive heuristic that starts with an empty solution and
repeatedly extends the current solution until a complete solution is obtained. The main
purpose of the implemented construction heuristics is to feed the main algorithm with an
initial solution, but it also meets performance comparison purposes. Secondly, in the im-
provement phase, a metaheuristicVND tries to improve the current solution further via a set
of neighborhood moves. Even though the initial solution is set far from global minima, VND
still helps our algorithm to extend the explored part of the solution space in order to escape
local minima, and thus drives our search to global minima. Our algorithm performs better
than local search because heuristic approaches (gradient method, local search, ...) are often
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too greedy, therefore, they often get stuck in local optimum. Our metaheuristic approach,
on the other hand, is not greedy and allows them to explore more thoroughly the solution
space, thus the chance to obtain better solutions is higher than heuristics. In addition, it is
very simple and fast to implement. However, better solutions found in VND phase only is
accepted when their distance constraint is satisfied (or their solutions are valid), therefore,
the quality of solution cannot be improved after VND phase in some special cases. Our
experiments show that the average improvement obtained by VND falls into the range of
13.52% and 28.09% in comparison with GRASP. That improvement presents the efficiency
of the VND phase. In addition, our algorithm also is compared to the other algorithms in
MTRP and CCVRP. Currently, there have been a few published studies [12, 16, 22, 23, 25]
with metaheuristics developed for the MTRP and CCVRP. In the experiment, we run our
algorithm without the distance and capacity constraint, therefore, it can directly compare to
the state-of-the-art metaheuristics. The experimental results show that our algorithm sig-
nificantly performs nearly as good as the state-of-the-art algorithms, although our algorithm
is not designed for these problems.

Our algorithm in this paper and the algorithm in [7] also use the popular scheme of the
combination of GRASP and VND. The differences between them come from some points
as follows: 1) our problem is a generation of the problem in [7], therefore it becomes more
difficult to solve. In [7], any solution found is valid, thus their algorithm always returns a
proper solution while we cannot guarantee that our algorithm always obtains a valid solution
because of the distance constraint. Even so, it is difficult to find a valid solution in many
cases; 2) In combinatorial optimization problems, GRASP, and VND are the popular and
effective techniques to solve. However, GRASP in our work is modified by using a penalty
factor. Similarity, in VND, moves from there to a new one if and only if an improvement
was made and new solution obtained must be valid. It can be said that our algorithm is the
development from the algorithm in [7] for the more general case; 3) benchmark in our work
is different from the one in [7] in terms of the presence of the distance constraint.

5. CONCLUSIONS

In this paper, we propose the first metaheuristic algorithm which is mainly based on
the principles of VND and GRASP to solve the problem. Moreover, we introduce a new
novel neighborhoods structure in VND for the problem. Extensive numerical experiments
on benchmark instances show that our algorithm can find the optimal solutions with up
to 50 vertices at a reasonable amount of time. For large instances, our algorithm led to
significant improvement between 13.52% and 28.09% and also required small computational
time, even 20.99% with an average time of 1.74 seconds which is only used for a single call
to VND. In comparison with the state of the art metaheuristics in MTRP and CCVRP, our
computation time as well as the solution quality are comparable although our algorithm is
not designed for them. In the future, we intend to extend our algorithm by including more
neighborhoods and careful study of the effectiveness of each neighborhood on the problem.
Enhancing the efficiency of our algorithm to allow even larger problems to be solved, is
another future research topic.
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Table 1. The experimental results for dataset type 1

HA BANG BAN

APPENDIX

n=30, k=6 n=40, k=8 n=50, k=10
Instances
OPT best.sol aver.sol T OPT best.sol aver.sol T OPT best.sol aver.sol T
0 168188.80 | 168188.80 | 272908.40 | 0.19 | 233387.20 | 234559.70 | 234928.65 | 0.38 | 272908.40 274612.40 27487447 | 0.72
1 195805.80 195805.80 | 249275.40 0.18 218781.40 218781.40 219715.60 | 0.38 249275.40 251158.80 251564.40 | 0.73
2 182635.00 | 182635.00 | 277959.10 | 0.20 | 211241.70 | 212136.50 | 212365.37 | 0.40 | 277959.10 278887.60 279113.61 | 0.69
3 139784.70 139784.70 298846.10 0.18 196120.40 197071.80 197230.69 | 0.42 298846.10 299799.40 299982.79 | 0.72
prl002 4 164916.70 164916.70 262518.40 0.17 227450.10 227450.10 227648.64 | 0.50 262518.40 262518.40 264323.66 | 0.68
5 163642.30 163642.30 | 273318.80 0.18 194802.20 195630.00 195799.75 | 0.43 273318.80 277004.80 277255.46 | 0.68
6 160585.90 | 160585.90 | 280317.30 | 0.19 | 229730.10 | 229730.10 | 231345.39 | 048 | 280317.30 280317.30 282363.62 | 0.72
7 166887.00 166887.00 246341.00 0.20 236896.10 237187.80 237204.56 | 0.39 246341.00 248305.70 248446.62 | 0.73
8 161025.80 161025.80 256971.40 0.18 230126.60 230679.10 230904.24 | 0.47 256971.40 258526.80 259101.37 | 0.74
9 144167.00 | 144167.00 | 267596.70 | 0.18 | 192179.90 | 193276.50 | 193463.13 | 048 | 267596.70 269132.50 269446.87 | 0.75
0 97380.30 97380.30 | 133642.30 | 0.19 97630.70 97777.80 97873.15 | 0.43 | 133642.30 135037.10 135190.87 | 0.68
1 96322.50 96322.50 123212.70 0.18 110671.10 110935.00 110977.16 | 0.42 123212.70 123592.50 123646.28 | 0.69
2 64109.40 64109.40 | 137175.10 | 0.19 | 127629.70 | 127629.70 | 127802.82 | 0.46 | 137175.10 137795.10 137864.68 | 0.75
3 89582.50 89582.50 | 150209.80 | 0.18 99527.60 99764.80 99800.43 | 0.37 | 150209.80 151470.90 151573.55 | 0.75
brd14051 4 87615.70 87615.70 116278.70 0.19 123881.80 124005.60 124063.66 | 0.49 116278.70 117078.60 117223.95 | 0.75
5 75079.50 75079.50 | 124648.20 | 0.19 98329.40 98329.40 98606.42 | 0.49 | 124648.20 124648.20 125120.08 | 0.69
6 94540.80 94540.80 121190.40 0.20 110676.60 111083.00 111171.57 | 0.36 121190.40 122472.80 122618.57 | 0.72
7 81515.80 81515.80 124077.60 0.19 103775.50 104131.50 104197.46 | 0.42 124077.60 124714.00 124805.31 | 0.68
8 74160.80 74160.80 | 125446.00 | 0.19 | 101387.30 | 102229.30 | 102356.58 | 0.41 125446.00 126072.00 126137.35 | 0.72
9 90628.10 90628.10 | 118925.00 [ 0.18 87945.10 88271.10 88327.50 | 0.48 | 118925.00 119942.00 120022.13 | 0.75
0 51192.20 51192.20 81562.20 0.19 63096.00 63255.90 63289.70 | 0.48 81562.20 82262.50 82342.65 | 0.68
1 44154.70 44154.70 79804.80 | 0.18 66882.60 66882.60 67347.95 | 0.38 79804.80 79804.80 80394.96 | 0.71
2 46571.20 46571.20 73309.10 0.18 70151.40 70257.60 70277.79 | 0.39 73309.10 74245.20 74417.87 | 0.69
3 48591.40 48591.40 79335.10 0.19 58843.90 59080.90 59167.14 | 0.43 79335.10 79745.70 79791.55 | 0.67
14461 4 54485.90 54485.90 75052.00 0.18 61654.90 61654.90 62092.89 | 0.38 75052.00 75326.90 75417.03 | 0.70
n 5 47907.30 47907.30 76738.10 0.18 56144.50 56312.70 56349.92 | 0.42 76738.10 77397.10 77432.55 | 0.75
6 45882.10 45882.10 75268.90 0.18 61274.90 61703.40 61805.05 | 0.43 75268.90 75268.90 75841.85 | 0.70
7 44545.30 44545.30 72956.30 0.20 65698.30 65817.60 65904.44 | 0.38 72956.30 73236.80 73406.63 | 0.72
8 50365.30 50365.30 70244.00 0.20 64260.90 64516.80 64546.20 | 0.48 70244.00 71043.50 71226.29 | 0.72
9 49179.60 49179.60 82157.00 | 0.18 58717.50 58833.50 58922.49 | 0.49 82157.00 82602.50 82627.28 | 0.73
0 225070.20 225070.20 353657.80 0.18 287734.80 288775.30 288880.38 | 0.37 353657.80 356010.10 356206.86 | 0.73
1 213332.30 | 21333230 | 35511520 | 0.19 | 256987.10 | 256987.10 | 257046.88 | 0.39 | 355115.20 357795.00 35834092 | 0.72
2 208323.60 | 208323.60 | 392196.10 | 0.19 | 307407.10 | 308184.10 | 308378.92 | 0.46 | 392196.10 394937.80 395443.60 | 0.75
3 222870.40 222870.40 350821.80 0.19 292602.70 292602.70 294673.72 | 0.42 350821.80 352514.80 352927.54 | 0.72
415112 4 216056.00 216056.00 341493.60 0.19 299259.00 300039.10 300434.70 | 0.35 341493.60 342899.20 343504.91 | 0.74
5 235215.80 | 235215.80 | 360717.40 | 0.18 | 269559.40 | 269559.40 | 270295.81 | 0.35 | 360717.40 360717.40 364367.19 | 0.72
6 207139.00 207139.00 390251.40 0.19 320989.40 323197.50 323704.55 | 0.45 390251.40 393471.50 394039.37 | 0.72
7 280309.00 280309.00 327701.90 0.20 287270.70 289161.90 289368.39 | 0.41 327701.90 327701.90 330738.28 | 0.73
8 244015.40 244015.40 344600.50 0.19 303263.90 304002.60 304260.97 | 0.38 344600.50 345565.50 345872.08 | 0.68
9 238976.20 | 238976.20 | 347783.60 | 0.20 | 282412.30 | 283799.60 | 284133.95 | 0.40 | 347783.60 348895.00 349108.87 | 0.72
0 31249.40 31249.40 39206.10 0.17 35655.20 35810.30 35847.05 | 0.45 39206.10 39396.10 39441.78 | 0.74
1 33138.50 33138.50 61449.00 | 0.17 33000.70 33206.80 33264.85 | 0.39 44233.60 44931.60 44975.83 | 0.68
2 31872.00 31872.00 45914.20 0.19 39928.10 40189.40 40212.15 | 0.49 45914.20 46171.20 46229.34 | 0.72
3 31777.10 31777.10 46208.00 0.18 36685.40 36685.40 36822.25 | 0.50 46208.00 46208.00 46407.92 | 0.68
1379 4 26671.20 26671.20 43557.90 0.18 36168.60 36433.50 3649491 | 0.38 43557.90 43813.90 43854.03 | 0.75
nrwl37 5 29010.30 29010.30 46718.40 | 0.18 38005.40 38005.40 38365.05 | 0.42 46718.40 47031.00 47078.92 | 0.71
6 30398.10 30398.10 49421.10 0.19 31837.30 32051.90 32071.83 | 0.36 49421.10 49421.10 49716.24 | 0.73
7 30765.50 30765.50 49960.10 0.19 39394.80 39546.10 39604.12 | 0.49 49960.10 50118.70 50132.81 | 0.75
8 28796.40 28796.40 41560.90 | 0.20 36674.50 36950.70 37026.01 | 0.37 41560.90 41852.50 41887.55 | 0.74
9 26271.20 26271.20 44404.00 0.18 36447.70 36616.60 36679.32 | 043 44404.00 44610.90 44644.15 | 0.68
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Table 4. The experimental results for dataset type 2 (tai instances)

. Our algorithm
Instances | Init.Sol
best.sol | aver.sol T
tai75a 6840.64 | 492241 | 4944.85| 5.68
tai75b 5575.85 | 387892 | 3889.81| 3.56
tai75¢ 7110.74 | 3938.11 | 3943.07 | 3.56
tai75d 6501.43 | 4940.87 | 4953.09 | 4.04

tail00a 11398.6 | 7905.68 | 7938.74 | 16.40
tail00b 9775.59 | 7250.37 | 7282.37 | 17.00
tail00c 7895.75 | 4882.14 | 4891.52|17.40
tail00d 9051.64 | 5503.64 | 5518.74 | 16.40
tail50a 16188.04 | 14400.04 | 14424.68 | 83.00
tail50b 14018.07 | 11557.99 | 11585.42 | 84.50
tail50c 13293.35 | 10012.81 | 10022.76 | 81.40
tail50d 13001.42 | 10033.97 | 10064.00 | 82.30

Table 5. The experimental results for dataset type 2 (CMT instances)

Instances | n | k | MD | initsol | bestsol | aver.sol | gap> T

CMT6 50| 6| 200 |2986.76 | 2011.86 | 2155.06 | 32.64 0.93
CMT7 751 11| 160 3410 | 2332.44 | 2530.69 | 31.60 5.52
CMT8 100 | 9| 230 |6325.56 | 4360.79 | 4698.06 | 31.06 | 18.69
CMT9 150 | 14 | 200 | 7873.37 | 5369.92 | 5920.42 | 31.80 | 82.90
CMTI10 | 199 | 18| 200 | 9299.84 | 6873.20 | 7418.16 | 26.09 | 323.11
CMTI3 |[120| 11| 720|9056.03 [ 6925.13 | 7204.73 | 23.53 | 28.20
CMT14 | 100 | 11 | 1040 | 4368.63 | 3937.02 | 4259.01 | 9.88 | 16.50
Aver 26.66 | 67.98
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