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Abstract. This paper addresses the modeling of a planar parallel robot including electric motors.

The dynamic model of the system is derived by applying the substructure method and Lagrangian

equations with multipliers in the form of redundant generalized coordinates. These equations are then

transformed to the form of minimal coordinates of operational variables. Based on this form, a sliding

mode controller (SMC) is designed for trajectory tracking in a task space. Numerical simulations in

MATLAB are carried out based on the 3RRR parallel robot in order to show the effectiveness of the

proposal approach. The obtained results show a good behavior of the proposed task space tracking

controller.
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1. INTRODUCTION

Nowadays, parallel robotic manipulators are used widely in industrial applications due
to their advantages such as high stiffness, accuracy, and light links. This kind of robots has
attracted numerous researchers. Many of them deal with the modeling of parallel manipu-
lators [4, 8]. In many work such as [1, 2] the parallel manipulators are modeled by a closed
loop rigid multibody system driven directly by torques/forces. To establish the dynamic
equations of a parallel robot, there are some approaches proposed in literature including
Lagrangian formulation with multipliers, Newton-Euler equations, the principle of virtual
work, the Jourdain principle, and Kane equation such as in [2, 3, 6-8, 13, 14]. In general,
manipulators are driven by electric motors with gear transmission, therefore the dynamic
of actuators should be considered. The modeling of electromechanical systems of a parallel
robotic manipulator has been examined by only some researchers [19-21].

Besides modeling, the control design of parallel manipulators is also an important prob-
lem. Similarly to serial manipulators, many control laws such as PD plus gravity compensa-
tion, exact feedback linearization, sliding mode, adaptive, fuzzy and neural network are also
exploited to design controllers for parallel manipulators. Several authors have designed con-
trollers for the robot in active joint coordinates [9-11, 17, 18]. This design method required
solving the inverse kinematic problem.

In this study, the substructure method is applied in the modeling of a parallel manip-
ulator driven by electric motors. The whole system is divided into three parts: actuators,
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massless gear transmissions, and manipulator as a closed loop multiboby system. The dy-
namic equations of electric actuators are derived, mainly based on the angular momentum
law combined with Kirchoff’s laws. The equation describing a massless gear transmission is
obtained by the power balance at the input and output of the gearbox. For the closed loop
multiboby system, the redundant generalized coordinates and the Lagrangian formulation
with multipliers are used to establish the equations of motion [1, 2, 4]. Being combined with
the constraint equations, the dynamic model of a parallel robot is presented in a form of
differential-algebraic equations (DAEs). The obtained equations are then simplified with the
assumption that an electric time constant is much smaller than a mechanical time constant.
Moreover, to design the controller for the robot the simplified equations in a DAEs form are
then converted into the form of minimal coordinates of operational variables.

The rest of this paper is organized as follows: Section 2 presents a dynamical modeling
of parallel manipulator actuated by electric motors and the transformation of the differential
equations into the minimal form in space of operational coordinates. The controller design
in task space is described in Section 3. Some numerical simulations are shown in Section 4.
Finally, the conclusion is given in Section 5.

2. DYNAMICAL MODEL

2.1. Equations of motion of a parallel robot driven by electric motors

Let us consider the parallel robot having n degrees of freedom driven by n electric motors
as shown in Fig. 1. For governing the equations of motion, the symbols and notations in
Table 1 will be used.

Figure 1. Model of an electric motor with gearbox and a 3RRR parallel robot

The system dynamic model is derived by applying Lagrangian equation with multipli-
ers and the substructure method. The three mentioned substructures are described by the
following equations: Dynamics of actuators is described by the mechanical and electric equa-
tions as [15, 16].
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Table 1. The generalized coordinates and parameters of the system

Order Notations Name

1 θ = [θ1, θ2, ..., θn]T =: qa Active joint variables

2 β = [β1, β2, ..., βl]
T Auxiliary variables (unactuated joint)

3 x = [x1, x2, ..., xn]T Position of moving platform

4 p = [βT ,xT ]T Combination of auxiliary and moving plat-
form variables

5 q = [θT ,βT ,xT ]T Redundant coordinates

6 λ = [λ1, λ2, ..., λr]T Lagrangian multipliers

7 r = ri = θm,i/θi Gear reduction ratio

8 θm = [θm1, θm2, ..., θmn]T Angle of the motor shaft

9 τ 2 = [τ2,1, τ2,2, ..., τ2,n]T Torque/force at the output of transmission

10 τ 1 = [τ1,1, τ1,2, ..., τ1,n]T Torque/force at the input of transmission

11 τ 0 = [τ0,1, τ0,2, ..., τ0,n]T Torque/force of the motor

12 Jm = diag(Jm,1, Jm,2, ..., Jm,n) Moment of inertia of rotors

13 La = diag(La,1, La,2, ..., La,n) Motor coil inductances

14 Ra = diag(Ra,1, Ra,2, ..., Ra,n) Motor coil resistances

15 Ke = diag(Ke,1,Ke,2, ...,Ke,n) Back-emf constants

16 Km = diag(Km,1,Km,2, ...,Km,n) Torque constants

17 u = [U1, U2, ..., Un]T Motor input voltages

18 i = [i1, i2, ..., in]T Current in motors

19 Dm = diag(b1, b2, ..., bn) Viscous friction coefficients of motor shafts

Jmθ̈m +Dmθ̇m = τ 0 − τ 1. (1)

La
di

dt
+Rai = u− ue. (2)

The mechanical and electric interaction in DC motors is shown by the relationship be-
tween current and motor torque; between motor speed and EMF’s voltages as follows

τ 0 = Kmi, ue = Keθ̇m. (3)

For the gear transmission, by neglecting the mass and power loss, the constraint equations
are written as follows

rq̇a = rθ̇ = θ̇m, (4)

τ 2 = rτ 1. (5)

For a closed loop multibody system the redundant generalized coordinate will be used
and the dynamic equation is described in form of DAEs as follows

M(q)q̈ +C(q, q̇)q̇ + g(q) +Dq̇ + ΦT (q)λ = Bτ 2, (6)
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φ(q) = 0, (7)

where M(q) is the mass matrix; g(q) the potential generalized force vector; Dq̇ is the vector
of generalized forces of non-conservative forces (linear damping force); φ(q) = 0 is the vector
of constraint equations; Φ(q) = ∂φ/∂q is the Jacobian matrix; B = [En×n,0

T
m−n,n]T is the

matrix related to the control input arrangement; the coriolis and centrifugal matrix C(q, q̇)
can be determined from the mass matrix by using the Christoffel formula [2].

Normally, the electric time constant is much smaller than mechanical time constant, so
the approximation Ladi/dt ≈ 0 when t ≥ ε > 0 can be used to simplify the system of
differential equations describing the system. After some calculations one gets(

M(q) +BJmr
2Z
)
q̈ +C(q, q̇)q̇ + g(q)

+
(
D +B(Dm +KmR

−1
a Ke)r

2Z
)
q̇ = BK

m
R−1
a ru+ ΦT

q (q)λ
(8)

in which the matrix Z = [En×n,0n,m−n] has been used. By defining the following matrices

Bs(q) =
(
M(q) +BJmr

2Z
)
, Cs(q, q̇) = C(q, q̇)

Ds =
(
D +B(Dm +KmR

−1
a Ke)r

2Z
)

gs(q) = g(q), Bs = BKmR
−1
a r

the equation (8) is rewritten in a compact form as

M s(q)q̈ +Cs(q, q̇)q̇ +Dsq̇ + gs(q) = Bs(q)u+ ΦT
q λ. (9)

Noting that BJmr
2Z is a constant matrix, so the Coriolis matrices Cs(q, q̇) or C(q, q̇)

calculating from mass matrices M s(q) or M(q) are the same, and the skew-symmetric
property of matrix N = Ṁ s(q)− 2Cs(q, q̇) is remained.

Thus, the dynamic model of a planar parallel robot driven by electric motors is described
by a set of differential algebraic equations (9) and (7). These equations show the dynamic
relationship between input (voltage u) and output (motion q(t) including the motion of
moving platform x(t)). These will be used for the inverse and forward dynamic problems of
parallel robots.

2.2. Equations of motion in a minimal coordinate form in a task space

The equations of motion in a redundant generalized coordinates form are convenient for
deriving it as well as simulation. To design a controller in a task space, the equations need
to be transformed to minimal coordinates form of operational variable x with a number of
equations equal to the degrees of freedom. By differentiating (7) with respect to time (w.r.t.)
one gets

Φq(q)q̇ = Jyẏ + Jxẋ = 0, with y = [θT ,βT ]T . (10)

Assuming that Jacobian matrix Jy(q) = ∂φ/∂y is regular. From (10), after some calcu-
lations one gets

q̇ = Rxẋ. (11)

Here matrix Rx(q) ∈ Rm×n is defined by

Rx =

[
−J−1

y Jx
E

]
. (12)
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By differentiating (12) w.r.t. time one gets

q̈ = Rxẍ+ Ṙxẋ. (13)

Noting that matrix Rx(q) defined by (12) satisfies the following formula

ΦqRx = 0 or RT
xΦT

q = 0. (14)

To eliminate multipliers λ in equation (9) one premultiplies it from link with RT
x

RT
x [M s(q)q̈ +Cs(q, q̇)q̇ +Dsq̇ + gs(q)] +RT

xΦT
q (q)λ = RT

xBsu. (15)

In order to get the equation of motion in minimal coordinates, substituting q̇, q̈ defined
from (11) and (13) into (15), one obtains

Mx(x)ẍ+Cx(x, ẋ)ẋ+Dxẋ+ gx(x) = RT
xBsu =: τ x (16)

where
Mx(x) = RT

xM s(q)Rx, Cx(x, ẋ) = RT
x (Cs(q, q̇)Rx +M s(q)Ṙx),

Dx(x) = RT
xDsRx, gx(x) = RT

x gs(q).

In equation (16) the following properties are still guaranteed: Mx(x) is a symmetric and
positive definite matrix and Nx = [Ṁx(x)− 2Cx(x, ẋ)] skew-symmetric matrix [5]. These
properties are important for control design in the next section.

3. DESIGN OF A SLIDING MODE CONTROLLER IN A TASK SPACE

The objective of the control problem is to find the law of the motor voltage so that the
motion of the mobile platform tracks the given trajectory defined by xd(t). The basis for
the design of controller in a task space is the equation (16). To design a controller based on
sliding mode, the sliding surface is chosen as follows

s = ėx(t) + Λex(t), Λ = diag([λ1, λ2, ...λn]) > 0, (17)

with the tracking error ex(t) = x(t)− xd(t). Defining

ẋr = ẋd(t)−Λex(t), s = ẋ− ẋr, ṡ = ẍ− ẍr. (18)

To find a control law, a Lyapunov candidate function is chosen as

V =
1

2
sTMx(x)s. (19)

Differentiating this function w.r.t. time, one gets

V̇ = sTMx(x)ṡ+
1

2
sTṀx(x)s. (20)

From (16), (18) and the skew-symmetric property of Ṁx − 2Cx ones obtains

V̇ = sT [τ x −Cx(x, ẋ)ẋr −Dx(x)ẋ− gx(x)−Mx(x)ẍr]. (21)



330 NGUYEN QUANG HOANG, VU DUC VUONG

The formula (21) suggests to choose a control law as

τ x = M̂x(x)ẍr + Ĉx(x, ẋ)ẋr + D̂x(x)ẋr + ĝx(x)−Kpds−Ks sgn(s) (22)

where M̂x(x), Ĉx(x, ẋ), D̂x(x), ĝx(x) are the estimators ofMx(x), Cx(x, ẋ), Dx(x), gx(x),
sgn(s) = [sgn(s1), sgn(s2), ..., sgn(sn) ]T , Kpd and Ks are the symmetric positive definite
matrices, Kpd = KT

pd > 0, Ks = KT
s > 0. For simplicity, these two matrices are selected to

be in diagonal form as

Kpd = diag{k11pd, k22pd, ... , knnpd }, Ks = diag{k11s , k22s , ... , knns }.

Substituting control law (22) into (16) one gets

Mx(x)(ẍ− ẍr) +Cx(x, ẋ)(ẋ− ẋr) +Dx(ẋ− ẋr) =

−Kpds−Ks sgn(s) + M̃x(x)ẍr + C̃x(x, ẋ)ẋr + D̃xẋr + g̃x(q)
(23)

or
Mx(x)ṡ+Cx(x, ẋ)s+Dxs = −Kpds−Ks sgn(s) + dx(x, ẋ, ẋr, ẍr), (24)

where system uncertainties are

M̃x(x) = M̂x(x)−Mx(x), C̃x(x, ẋ) = [Ĉx(x, ẋ)−Cx(x, ẋ)],

D̃x = D̂x −Dx, g̃x(q) = ĝx(q)− gx(q),

d = M̃x(x)ẍr + C̃x(x, ẋ)ẋr + D̃xẋr + g̃x(q).

From (24) it leads to

Mx(x)ṡ = −Cx(x, ẋ)s−Dxs−Kpds−Ks sgn(s) + dx(x, ẋ, ẋr, ẍr). (25)

Substituting (25) into (20) one obtains

V̇ = sTMx(x)ṡ+ 1
2s

TṀx(x)s

= −sT [Dx +Kpd]s− sT (Ks sgn(s)− dx) + 1
2s

T [Ṁx(x)− 2Cx(x, ẋ)]s
= −sT [Dx +Kpd]s− sT (Ks sgn(s)− dx).

(26)

Assuming that the system uncertainties are bounded, it means |d| ≤ d0, or |di| ≤ di,0,
with the above selection, one gets

V̇ = −sT [Dx +Kpd]s− sTKssgn(s) + sTd

= −sT [Dx +Kpd]s−
∑n

i=1K
(ii)
s |si|+

∑n
i=1 sidi

≤ −sT [Dx +Kpd]s−
∑n

i=1(K
(ii)
s − |di|)si.

To be sure V̇ ≤ 0, the elements of the matrixKs will be chosen such that Kii
s −|di| > 0 or

Kii
s > |di| > 0. In control law (22) the discontinuous terms sign(s) can cause the chattering

phenomenon in the system. In order to reduce this effect, the sign(s) function will be replaced
by an approximation (2/π)atan(ks), k >> 1.

In summary, the control law is determined with the following quantities

s = ėx(t) + Λex(t), ex(t) = x(t)− xd(t),
ẋr = ẋd(t)−Λex(t),
ẍr = ẍd(t)−Λėx(t), s = ẋ(t)− ẋr(t),
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τ x = M̂x(q)ẍr + Ĉx(q, q̇)ẋr + D̂xẋ+ ĝx(q)−Kpds− 2
πKsatan(ks), (27)

u = (RT
xBs)

−1τ x. (28)

The control diagram in the task space is given in Fig. 2.

Figure 2. Control diagram

4. NUMERICAL SIMULATIONS

4.1. Stabilization technique in simulation

The numerical simulation of a parallel manipulator requires to solve the DAEs (16) and
(17). In order to solve the DAEs, normally, the constraint equations are derived twice w.r.t.
time to transform the DAEs to ODEs. Because the second order derivative instead of the
constrained equation is used in the simulation, the constraint stabilization is needed. Here
the Baumgarte’s technique is applied in the simulation [12]. The main idea of this approach
is that the constraint in acceleration level, φ̈(q) = 0, is replaced by the following equation

φ̈(q) + 2δω0φ̇(q) + ω2
0φ(q) = 0, (29)

with two parameters of the method 0 < δ ≤ 1 and ω0 > 0. Differentiating twice (7) w.r.t.
time, yields

Φq(q)q̈ + Φ̇q(q)q̇ = 0. (30)

So the constraint equation using in simulation derived from (29) will be

Φqq̈ + Φ̇qq̇ + 2δω0Φqq̇ + ω2
0φ = 0. (31)

Combination with the equation (15), the dynamic model used for simulation of parallel
manipulator becomes

RT
x (M s(q)q̈ +Cs(q, q̇)q̇ +Dsq̇ + gs(q)) = RT

xBsu,

Φq(q)q̈ + Φ̇q(q)q̇ + 2δω0Φq(q)q̇ + ω2
0φ(q) = 0,

or in the matrix form as follows[
RT
xM s(q)
Φq(q)

]
q̈ +

[
RT
x [Cs(q, q̇) +Ds]

Φ̇q + 2δω0Φq(q)

]
q̇ +

[
RT
x gs(q)
ω2
0φ(q)

]
=

[
RT
xBsu

0

]
. (32)
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4.2. Numerical simulations

Some simulations with a 3-DOF planar parallel manipulator which moves in the horizon-
tal plane driven by 3 actuators are implemented. The numerical simulations are carried out
in Matlab. The model of the robot is shown in Fig. 1. The mechanical parameters of the
robot are given as follows [22].

Base: L = 1.2m.
Two links of the legs:

li,1 = 0.581m, mi,1 = 2.072kg, JC1 = 0.13kg.m2,

li,2 = 0.620m, mi,2 = 0.750kg, JC2 = 0.03kg.m2,

Platform: a = 0.2m, m7 = 0.978kg, JC7 = 0.007kg.m2, αi = [
7

6
π,−1

6
π,

1

2
π].

Gear trans: r = 10 (transmission ratio).

DC motor : Jm = 0.01kg.m2,Km = 3.00Nm/A, Ke = 0.10Vs/rad, Ra = 3.00Ohm.

In order to compare the controller proposed in this paper to an augmented PD controller,
two simulations are carried out. The first one is implemented with the SMC and the second
one is conducted with the augmented PD controller, that is given as

τ x = Mx(x)ẍd +Cx(x, ẋ)ẋd +Dx(x)ẋd + gx(x)−Kdė−Kpe, Kd,Kp > 0. (33)

This control law is driven from a Lyapunov candidate function as

V =
1

2
ėTMx(x)ė+

1

2
eTKpe, Kp = KT

p > 0, e = x− xd. (34)

In two simulations, the center of the platform will be moved along a circular trajec-
tory, while its orientation is constant, ϕ = π/3[rad]. The trajectory has a center at
(xC , yC) = (0.6, 0.4)[m] and radius R = 0.12[m]. This trajectory is chosen to be in the
work space of the mobile platform. The parameters of two controllers are chosen as

SMC: Λ = 30diag(1, 1, 1), Kpd = 200diag(1, 1, 1), Ks = 0.01diag(1, 1, 1),

PD: Kp = 850diag(1, 1, 1), Kd = 150diag(1, 1, 1).

Additionally, the robot parameters such as masses and moments of inertia used in the
control laws are chosen about 15 − 25% different compared to those that are used in the
dynamic model.

The results are shown in Fig. 3. to Fig. 12. The results show that with the SMC the
motion of the mobile platform tracks the desired trajectory after about 0.22 second (Fig. 7
and 9), while this time is about 1 second with the PD controller (Fig. 8 and 10). The moving
platform errors in position are kept about 10−5 mm and error in angle is kept about 10−5

radian. Fig. 11 and 12 show that the center of mobile platform tracks the desired trajectory
better than the one with the augmented PD controller. These results show the robustness
of the SMC controller.
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Figure 3. Trajactory tracking in a task space
(SMC)

Figure 4. Trajactory tracking in a task space
(PD)

Figure 5. Trajactory tracking of active joint
(SMC)

Figure 6. Trajactory tracking of active joint
(PD)

Figure 7. Tracking errors of x, y coordinates
(SMC)

Figure 8. Tracking errors of x, y coordinates
(PD)
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Figure 9. Tracking errors of φ angle (SMC) Figure 10. Tracking errors of φ angle (PD)

Figure 11. The desired path vs. the actual
path of the platform center (SMC)

Figure 12. The desired path vs. the actual
path of the platform center (PD)

5. CONCLUSION

This paper presented the modeling of a parallel robot driven by DC motors. The equa-
tions of motion for parallel manipulator were derived by using the redundant generalized
coordinates and the Lagrangian multipliers. Moreover, the dynamics of DC motors were
also integrated in the whole models of the system. The obtained model in this study in-
cluded electric and mechanical parts, so it described better a mechanical system that is
driven by electric motors such as parallel manipulators. The equations of motion in DAEs
form were then transformed to ODE form of task space variables for the control design. The
sliding mode controllers in the task space has been proposed for the manipulator. Simula-
tion results have shown that the controller is effective for trajectory control of the parallel
manipulator.
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APPENDIX: THE DYNAMIC MODEL OF A 3RRR PARALLEL ROBOT

For this model, the following vectors have been used in Section 2

θ = [θ1, θ2, θ3]
T , β = [β1, β2, β3]

T , x = [xC , yC , ϕ]T .

Here q = [θ1, β1, θ2, β2, θ3, β3, xC , yC , ϕ]T .

The equation of motion is derived with the kinetic and potential energy

T (q, q̇) =
1

2

7∑
k=1

(mkv
2
Ck + JCkω

2
k), Π(q) = 0.

The constraint equations of the manipulator are given as follows

φ(q) ≡ φ(θ,β,x) = 0,

xO1 + l1 cos θ1 + l2 cos(θ1 + β1) = xC + b cos(ϕ+ α1),

yO1 + l1 sin θ1 + l2 sin(θ1 + β1) = yC + b sin(ϕ+ α1),

xO2 + l1 cos θ2 + l2 cos(θ2 + β2) = xC + b cos(ϕ+ α2),

yO2 + l1 sin θ2 + l2 sin(θ2 + β2) = yC + b sin(ϕ+ α2),

xO3 + l1 cos θ3 + l2 cos(θ3 + β3) = xC + b cos(ϕ+ α3),

yO3 + l1 sin θ3 + l2 sin(θ3 + β3) = yC + b sin(ϕ+ α3).

The mass matrix M s(q) is obtained as

M s =



m11 m12 0 0 0 0 0 0 0
m21 m22 0 0 0 0 0 0 0

0 0 m33 m34 0 0 0 0 0
0 0 m43 m44 0 0 0 0 0
0 0 0 0 m55 m56 0 0 0
0 0 0 0 m65 m66 0 0 0
0 0 0 0 0 0 m77 0 0
0 0 0 0 0 0 0 m88 0
0 0 0 0 0 0 0 0 m99


,

m11 = Jc1 + Jc2 +
1

4
m1l

2
1 +m2l

2
1 + r2Jr, m12 =

1

2
m2l1l2 cos(θ1 − β1),

m21 = m12, m22 =
1

4
m2l

2
2, m33 = Jc1 +

1

4
m1l

2
1 +m2l

2
1 + r2Jr,

m34 =
1

2
m2l1l2 cos(θ2 − β2), m43 = m34,
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m44 = Jc2 +
1

4
m2l

2
2, m55 = Jc1 +

1

4
m1l

2
1 +m2l

2
1 + r2Jr,

m56 =
1

2
m2l1l2 cos(θ3 − β3), m65 = m56, m66 = Jc1 +

1

4
m2l

2
2,

m77 = m3, m88 = m3, m99 = Jc3 .

The coriolis and centrifugal matrix Cs(q, q̇) are given below and other elements are zero

c21 = −1

2
m2l1l2 sin(θ1 − β1)θ̇1, c12 =

1

2
m2l1l2 sin(θ1 − β1)β̇1,

c43 = −1

2
m2l1l2 sin(θ2 − β2)θ̇2, c34 =

1

2
m2l1l2 sin(θ2 − β2)β̇2,

c65 = −1

2
m2l1l2 sin(θ3 − β3)θ̇3, c56 =

1

2
m2l1l2 sin(θ3 − β3)β̇3.

The damping matrix Ds is given with

Ds = R−1
a r2KmKediag([1, 0, 1, 0, 1, 0, 0, 0, 0]).

The control input matrix Bs is given with zero elements except for

Bs(1, 1) = Bs(3, 2) = Bs(5, 3) = R−1
a rKm.
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