Synthesis and Electrochemical Characterization of NiCo\(_2\)S\(_4\) Nanosheets/reduced Graphene Oxide for Energy Storage Applications

Thi Thanh Tam Le, Thanh Tung Doan, Thanh Dung Ngo, Ngoc Hong Phan, Van Hoi Pham, Ngoc Minh Phan, Trong Lu Le
Author affiliations

Authors

  • Thi Thanh Tam Le Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Thanh Tung Doan Institute for Tropical Technology - VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY https://orcid.org/0000-0002-2158-1735
  • Thanh Dung Ngo Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
  • Ngoc Hong Phan Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
  • Van Hoi Pham Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Ngoc Minh Phan Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam and Center for High Technology Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Trong Lu Le Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam. and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

DOI:

https://doi.org/10.15625/0868-3166/30/4/15448

Keywords:

Electrode, energy storage device, NiCo2S4, reduced graphene oxide, transition metal sulfide

Abstract

In the present study, NiCo2S4-rGO (NCS-rGO) composites were fabricated by mixing active materials including NCS and rGO individually using polyvinypyrrolidone (PVP) as a binder to form a homogeneous mixture. Therein, rGO was prepared by modified Hummer’s method while NCS nanosheets were successfully synthesized by thermal decomposition method using 1-dodecanethiol (DDT) as a sulfur source. The NCS-rGO composites based electrode was then produced using 3D printing technique making easy to design electrodes with the desired shape. The architecture and elemental composition of electrode components are characterized by energy dispersive x-ray analysis (EDX) and scanning electron microscopy (SEM). The electrochemical activity of the NCS-rGO electrode were studied in three electrode configuration in 6M KOH electrolyte by CV, GCD and EIS measurement. The obtained results indicate that the combination of NCS nanosheets and rGO could improve the electrical conductivity of the individual materials, enhance electrochemical performance of electrode. The as-prepared NCS-rGO electrode posseses a high Csp of 1535.8 Fg-1 at 4 Ag-1 with excellent cycling stability even after 2500 charge-discharge cycles,  demonstrating that the NCS-rGO nanocomposites  are promising candidates for electrode materials for high-performance energy storage devices in the future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 4 (2005) 366. DOI: https://doi.org/10.1038/nmat1368

[2] C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 22 (2010) E28–E62. DOI: https://doi.org/10.1002/adma.200903328

[3] N. Garg, M. Basu, A. K. Ganguli, J. Phys. Chem. C 118 (2014) 17332. DOI: https://doi.org/10.1021/jp5039738

[4] S. Zhang, N. Pan, Adv. Energy Mater. 5 (2015), 1401401. DOI: https://doi.org/10.1002/aenm.201401401

[5] P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845. DOI: https://doi.org/10.1038/nmat2297

[6] K. Xu, R. Zou, W. Li, Q. Liu, X. Liu, L. An, J. Hu, J. Mater. Chem. A 2 (2014) 10090. DOI: https://doi.org/10.1039/c4ta01489h

[7] L. L. Zhang, X. Zhao, Chem. Soc. Rev. 38 (2009) 2520. DOI: https://doi.org/10.1039/b813846j

[8] J. R. Miller, P. Simon, Sci. Mag. 321 (2008) 651. DOI: https://doi.org/10.1126/science.1158736

[9] A. Wang, H. Wang, S. Zhang, C. Mao, J. Song, H. Niu, Y. Tian, Appl. Surf. Sci. 282 (2013) 704. DOI: https://doi.org/10.1016/j.apsusc.2013.06.038

[10] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Adv. Funct. Mater. 21 (2011) 2366. DOI: https://doi.org/10.1002/adfm.201100058

[11] W. Peng, H. Li, S. Song, ACS Appl. Mater. Interfaces, 9 (2017) 5204. DOI: https://doi.org/10.1021/acsami.6b11316

[12] P. Kulkarni, S. K. Nataraj, R. G. Balakrishna, D. H. Nagaraju, M. V. Reddy, J. Mater. Chem. A. 5 (2017) 22040– DOI: https://doi.org/10.1039/C7TA07329A

[13] S. J. Peng, L. L. Li, C. C. Li, H. T. Tan, R. Cai, Yu H, S. Mhaisalkar, M. Srinivasan, S. Ramakrishna, Q. Y. Yan,

Chem. Commun. 49 (2013) 10178. DOI: https://doi.org/10.1039/c3cc46034g

[14] X. Cai, X. Shen, L. Ma, Z. Ji, L. Kong, RSC Advances 5 (2015) 58777. DOI: https://doi.org/10.1039/C5RA09447J

[15] J. Li, S. Xiong, Y. Liu, Z. Ju, Y. Qian, ACS Appl. Mater. Interfaces 5 (2013) 981. DOI: https://doi.org/10.1021/am3026294

[16] T. Chen, Y. Tang, W. Guo, Y. Qiao, S. Yu, S. Mu, F. Gao, Electrochimica Acta 212 (2016) 294. DOI: https://doi.org/10.1016/j.electacta.2016.07.023

[17] H. Nan, J. Han, Q. Luo, X. Yin, Y. Zhou, Z. Yao, X. Zhao, X. Li, H. Lin, Appl. Surf. Sci. 437 (2018) 227. DOI: https://doi.org/10.1016/j.apsusc.2017.12.175

[18] H. Chen, J. Jiang, L. Zhang, H. Wan, T. Qi, D. Xia, Nanoscale 5 (2013) 8879. DOI: https://doi.org/10.1039/c3nr02958a

[19] Surjit Sahoo, Chandra Sekhar Rout, Electrochemica Acta, 220 (2016) 57.

[20] J. Pu, F. L. Cui, S. B. Chu, T. T. Wang, E. H. Sheng, Z. H. Wang, ACS Sustainable Chem. Eng. 2 (2014) 809. DOI: https://doi.org/10.1021/sc400472z

[21] Y. F. Zhang, M. Z. Ma, J. Yang, C. C. Sun, H. Q. Su, W. Huang, X. C. D, Nanoscale, 6 (2016) 9824. DOI: https://doi.org/10.1039/C4NR02833C

[22] L. Yu, L. Zhang, H. B. Wu, X. W. D. Lou, Angew. Chem. Int. Ed. Engl, 53 (2014) 3711. DOI: https://doi.org/10.1002/anie.201400226

[23] J. W. Xiao, X. W. Zeng, W. Chen, F. Xiao, S. Wang, Chem. Commun. 50 (2014) 9596. DOI: https://doi.org/10.1039/c4cc01467g

[24] Q. Li, N. Mahmood, J.H. Zhu, Y.L. Hou, S.H. Sun, Nano Today 9 (2014) 668. DOI: https://doi.org/10.1016/j.nantod.2014.09.002

[25] M. J. Zhi, C. C. Xiang, J. T. Li, M. Li and N. Q. Wu, Nanoscale 5 (2013) 72. DOI: https://doi.org/10.1039/C2NR32040A

[26] W.M.Du,Z.Y.Wang,Z.Q.Zhu,S.Hu,X.Y.Zhu,Y.F.Shi,H.Pang,X.F.Qian,J.Mater.Chem.A2(2014) DOI: https://doi.org/10.1039/C4TA00414K

[27] X. Huang, Z. Y. Yin, S. Wu, X. Y. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7 (2011) 1876. DOI: https://doi.org/10.1002/smll.201002009

[28] C. C. Xiang, M. Li, M. J. Zhi, A. Manivannan, N. Q. Wu, J. Power Sources, 226 (2013) 65. DOI: https://doi.org/10.1016/j.jpowsour.2012.10.064

[29] Le T. T. Tam, Nguyen V. Hung, Doan T. Tung, Ngo T. Dung, Hoang T. Dung, Pham T. Nam, Phan N. Minh,

Phan N. Hong, Le T. Lu, Vietnam J. Sci. Technol. 57 (2019) 58. DOI: https://doi.org/10.15625/2525-2518/57/1/12801

[30] Doan T. Tung, Le T. T. Tam, Hoang T. Dung, Ngo T. Dung, Nguyen T. Dung, Thai Hoang, Tran D. Lam, Phan

N. Minh, Tran V. Thu, Phan N. Hong, Le T. Lu, J. Electron. Mater. 49 (2020) 4671. DOI: https://doi.org/10.1007/s11664-020-08165-z

[31] K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv.

Mater. 28 (2016) 2587.

[32] S. Sahoo, C. S. Rout, Electrochimica Acta 220 (2016) 57.

[33] W. M. Du, Z. Q. Zhu, Y. B. Wang, J. N. Liu, W. J. Yang, X. F. Qian, H. Pang, RSC Adv. 4 (2014) 6998. DOI: https://doi.org/10.1039/c3ra46805d

[34] M. B. Zakaria, M. Hu, R. R. Salunkhe, M. Pramanik, K. Takai, V. Malgras, S. Choi, S. X. Dou, J. H. Kim, M.

Imura, S. Ishihara, Y. Yamauchi, Chem. A Eur. J. 21 (2015) 3605. DOI: https://doi.org/10.1002/chem.201404895

[35] C. Mondal, M. Ganguly, P. K. Manna, S. M. Yusuf and T. Pal, Langmuir, 29 (2013), 9179. DOI: https://doi.org/10.1021/la401752n

[36] S. Sahoo, C. S. Rout, Electrochimica Acta, 220 (2016) 57–66. DOI: https://doi.org/10.1016/j.electacta.2016.10.043

[37] T. Morishita, Y. Soneda, H. Hatori, M. Inagaki, Electrochim. Acta, 52 (2007) 2478. DOI: https://doi.org/10.1016/j.electacta.2006.08.056

[38] Y. H. Li, L. J. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. H. Zhang, J. Mater. Chem. A 2 (2014) 6540. DOI: https://doi.org/10.1039/C3TA15373H

[39] Z. Li, X. Ji, J. Han, Y. Hu, R. Guo, J. Colloid Interface Sci. 477 (2016) 46. DOI: https://doi.org/10.1016/j.jcis.2016.05.038

[40] X. Yang, H. Niu, H. Jiang, Z. Sun, Q. Wang, F. Qu, ChemElectroChem, 5 (2018) 1576. DOI: https://doi.org/10.1002/celc.201800302

[41] Y. Wu, M. Yan, L. Sun, W. Shi, New J. Chem. 42 (2018), 16174. DOI: https://doi.org/10.1039/C8NJ03049A

[42] W. Peng, H. Chen, W. Wang, Y. F. Huang, G. Han, Curr. Appl. Phys. 20 (2020) 304. DOI: https://doi.org/10.1016/j.cap.2019.11.023

[43] N. V. Hoa, P. A. Dat, N. V. Hieu, T. N. Le, N. C. Minh, Ng. V. Tang, D. T. Nga, T. Q. Ngoc, Diam. Relat. Mater.

(2020), 107850.

Downloads

Published

14-11-2020

How to Cite

[1]
T. T. T. Le, T. T. Doan, T. D. Ngo, N. H. Phan, V. H. Pham, N. M. Phan and T. L. Le, Synthesis and Electrochemical Characterization of NiCo\(_2\)S\(_4\) Nanosheets/reduced Graphene Oxide for Energy Storage Applications, Comm. Phys. 30 (2020) 399. DOI: https://doi.org/10.15625/0868-3166/30/4/15448.

Issue

Section

Papers
Received 01-09-2020
Accepted 13-11-2020
Published 14-11-2020

Most read articles by the same author(s)