Multipartite Disentanglement Dynamics Due Simultaneously to Amplitude Damping and Phase Damping
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/19/4/6406Abstract
We present a detailed analysis on disentanglement dynamics of multiqubit GHZ-type states whose qubits are remotely located in absence of any mutual interactions. The dynamics is thus induced by independent local environments surrounding each qubit. It has recently been known that if each qubit is subjected solely to the phase damping then the state's entanglement vanishes asymptotically in time and if only the amplitude damping is active then the state's entanglement may vanish suddenly in certain parameter subspace. In this paper, we shall show that a combined action of both the phase damping and the amplitude damping will force the state's entanglement to always vanish suddenly in the entire parameter space. Furthermore, we shall prove that by proper local operations such a finite-time disentanglement can be avoided for whatever state's parameters, no matter the phase damping and the amplitude damping act severally or in combination.Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
Downloads
Published
31-12-2009
How to Cite
[1]
N. B. An, “Multipartite Disentanglement Dynamics Due Simultaneously to Amplitude Damping and Phase Damping”, Comm. Phys., vol. 19, no. 4, Dec. 2009.
Issue
Section
Papers
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Published 31-12-2009