Vol. 27 No. 2 (2017)

Electrochemical Performance of \(\text{Na}_{0.44}\text{MnO}_{2}\) Synthesized by Hydrothermal Method Using as a Cathode Material for Sodium Ion Batteries

Nghia Van Nguyen
Hanoi Architectural University

Published 24-08-2017


  • cathode materials,
  • hydrothermal method,
  • Na0.44MnO2,
  • sodium ion battery

How to Cite

Ta, T. A., Pham, L. D., Nguyen, H. S., Hoang, C. V., Le, C. H., Dang, C. T., Nguyen, H. T. T., & Nguyen, N. V. (2017). Electrochemical Performance of \(\text{Na}_{0.44}\text{MnO}_{2}\) Synthesized by Hydrothermal Method Using as a Cathode Material for Sodium Ion Batteries. Communications in Physics, 27(2), 143. https://doi.org/10.15625/0868-3166/27/2/9631


Orthorhombic Na0.44MnO2 with an S-shape tunnel structure was successfully synthesized by a hydrothermal method. The Na0.44MnO2 material has lattice parameters of a = 9.0842 Å, b = 26.2889 Å, and c = 2.8245 Å. Scanning electron microscope analysis reveals that the morphologies of Na0.44MnO2 consist of Na0.44MnO2 nanowires with diameters of about 30-50 nm and Na0.44MnO2 particles with the size in the range of 200 to 500 nm. The first charge and discharge capacities of Na0.44MnO2 cathode, at 0.1 C between 2.0-4.0 V, are 66.2 mAh g-1 and 62.7 mAh g-1, respectively. The Na0.44MnO2 has an excellent cycle stability with 85.3% of capacity retention over 50 cycles. The coulombic efficiency of Na0.44MnO2 material is approximately 90% after 70 cycles. It is suggested that the structure of Na0.44MnO2 is stable during cycling and Na0.44MnO2 can be a promising cathode material for sodium ion batteries.


Download data is not yet available.


  1. M. Choi, I.-H. Jo, S.-H. Lee, Y.-I. Jung, J.-K. Moon and W.-K. Choi, Curr. Appl. Phys. 16 (2016)
  2. D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang and Y. Cao, Electrochim. Acta 116
  3. (2014) 300.
  4. N. Van Nghia, P.-W. Ou and I.-M. Hung, Electrochim. Acta 161 (2015) 63.
  5. N. Van Nghia, P.-W. Ou and I.-M. Hung, Ceram. Int. 41 (2015) 10199.
  6. J. Whitacre, A. Tevar and S. Sharma, Electrochem. Commun. 12 (2010) 463.
  7. C. Liu, W.-l. Guo, Q.-h. Wang, J.-g. Li and X.-P. Yang, J. Alloys Compd. 658 (2016) 588.
  8. N. Van Nghia, S. Jaan, I. Hung et al., J. Electron. Mater. 45 (2016) .
  9. Z. Li, D. B. Ravnsbk, K. Xiang and Y.-M. Chiang, Electrochem. Commun. 44 (2014) 12.
  10. H. Wang, X. Gao, J. Feng and S. Xiong, Electrochim. Acta 182 (2015) 769.
  11. N. Nghia, P. D. Long, T. A. Tan, S. Jaan and I.-M. Hung, J. Electron. Mater. 6 (2017) 3689.
  12. A. Caballero, L. Hernan, J. Morales, L. Sanchez, J. S. Pena and M. Aranda, J. Mater. Chem. 12
  13. (2002) 1142.
  14. W. Zhao, H. Kirie, A. Tanaka, M. Unno, S. Yamamoto and H. Noguchi, Mater. Lett. 135 (2014) 131.
  15. D. J. Kim, R. Ponraj, A. G. Kannan, H.-W. Lee, R. Fathi, R. Ruo, C. M. Mari and D. K. Kim, J.
  16. Power Sources 244 (2013) 758.
  17. F. Sauvage, L. Laont, J.-M. Tarascon and E. Baudrin, Inorg. Chem. 46 (2007) 3289.
  18. E. Hosono, T. Saito, J. Hoshino, M. Okubo, Y. Saito, D. Nishio-Hamane, T. Kudo and H. Zhou, J.
  19. Power Sources 217 (2012) 43.
  20. Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang and J. Liu, Adv. Mater. 23
  21. (2011) 3155.
  22. X. He, J. Wang, B. Qiu, E. Paillard, C. Ma, X. Cao, H. Liu, M. C. Stan, H. Liu, T. Gallash et al.,
  23. Nano Energy 27 (2016) 602.
  24. B. Fu, X. Zhou and Y. Wang, J. Power Sources 310 (2016) 102.