Fabrication of Organolead Iodide Perovskite Solar Cells with Niobium-doped Titanium Dioxide as Compact Layer

Nguyen Tran Thuat, Bui Bao Thoa, Nguyen Bao Tran, Nguyen Minh Tu, Nguyen Ngoc Minh, Hoang Ngoc Lam Huong, Pham Thu Trang, Phan Vu Thi Van, Truong Thanh Tu, Dang Tuan Linh
Author affiliations

Authors

  • Nguyen Tran Thuat Nano and Energy Center, VNU University of Science
  • Bui Bao Thoa Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi
  • Nguyen Bao Tran Department of Advanced Materials Science and Nanotechnology, University of Science and Technology of Hanoi
  • Nguyen Minh Tu Nano and Energy Center, VNU University of Science
  • Nguyen Ngoc Minh Nano and Energy Center, VNU University of Science
  • Hoang Ngoc Lam Huong Nano and Energy Center, VNU University of Science
  • Pham Thu Trang Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology
  • Phan Vu Thi Van Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology
  • Truong Thanh Tu Faculty of Chemistry, VNU University of Science
  • Dang Tuan Linh Nano and Energy Center, VNU University of Science

DOI:

https://doi.org/10.15625/0868-3166/27/2/9811

Keywords:

perovskite, CH3NH3PbI3, solar cells, NTO, TTO, CuSCN

Abstract

Organometal halide perovskite materials have shown high potential as light absorbers for photovoltaic applications. In this work, perovskite planar solar cells were fabricated on corning substrates with the structure as follows: the first layer made of tantalum-doped tin oxide as transparent contact material, followed by sputtering niobium-doped titanium oxide as the compact electron transport layer; covered with perovskite CH3NH3PbI3 as the light harvester by combination between spin-coating and dipping methods; CuSCN was evaporated as the hole transport layer; the final thin Al/Ag electrodes were deposited. This configuration is shortly described as Al/TTO/NTO/CH3NH3PbI3/CuSCN/Ag. Such heterojunctions are expected to be suitable for the development of efficient hybrid solar cells. The fabricated cells were measured under the air mass 1.5 illumination condition, showed the rectification effect and exhibited a power conversion efficiency of 0.007%, with a open circuit voltage of 53.2 mV, a short circuit current of 0.36 mA/cm2, and a form factor of 37%. The power conversion efficiency will be further optimized in near future.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

H. Spanggaard, F.C. Krebs, 'A brief history of the development of organic and polymeric photovoltaics', Sol. Energy Mater. Sol. Cells. 83 (2004) 125–146. DOI: https://doi.org/10.1016/j.solmat.2004.02.021

D.M. Chapin, C.S. Fuller, G.L. Pearson, 'A new silicon p-n junction photocell for converting solar radiation into electrical power', J. Appl. Phys. 25 (1954) 676–677. DOI: https://doi.org/10.1063/1.1721711

M. Grätzel, 'Dye-sensitized solar cells', J. Photochem. Photobiol. C Photochem. Rev. 4 (2003) 145–153. DOI: https://doi.org/10.1016/S1389-5567(03)00026-1

H.S. Jung, N. Park, 'Perovskite Solar Cells: From Materials to Devices', Small. 11 (2015) 10–25. DOI: https://doi.org/10.1002/smll.201402767

M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, 'Solar cell efficiency tables (version 48)', Prog. Photovoltaics Res. Appl. 24 (2016) 905–913. DOI: https://doi.org/10.1002/pip.2788

D. Weber, 'CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure', Zeitschrift Für Naturforsch. B. 33 (1978) 862–865. DOI: https://doi.org/10.1515/znb-1978-0809

D. Weber, 'CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure', Zeitschrift Für Naturforsch. B. 33 (1978) 1443–1445. DOI: https://doi.org/10.1515/znb-1978-1214

D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, 'Conducting tin halides with a layered organic-based perovskite structure', Nature. 369 (1994) 467–469. DOI: https://doi.org/10.1038/369467a0

D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, 'Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3', J. Solid State Chem. 114 (1995) 159–163. DOI: https://doi.org/10.1006/jssc.1995.1023

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells', J. Am. Chem. Soc. 131 (2009) 6050–6051. DOI: https://doi.org/10.1021/ja809598r

H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, 'Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%', Sci. Rep. 2 (2012) 591. DOI: https://doi.org/10.1038/srep00591

W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, 'High-performance photovoltaic perovskite layers fabricated through intramolecular exchange', Science. 348 (2015) 1234–1237. DOI: https://doi.org/10.1126/science.aaa9272

D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, 'Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%', Nano Energy. 23 (2016) 138–144. DOI: https://doi.org/10.1016/j.nanoen.2016.03.020

M. Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, 'Progress in emerging solution-processed thin film solar cells - Part II: Perovskite solar cells', Renew. Sustain. Energy Rev. 62 (2016) 1012–1031. DOI: https://doi.org/10.1016/j.rser.2016.05.042

N. Park, 'Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell', J. Phys. Chem. Lett. 4 (2013) 2423–2429. DOI: https://doi.org/10.1021/jz400892a

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, 'Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites', Science. 338 (2012) 643–647. DOI: https://doi.org/10.1126/science.1228604

J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, 'Low-temperature processed meso-superstructured to thin-film perovskite solar cells', Energy Environ. Sci. 6 (2013) 1739. DOI: https://doi.org/10.1039/c3ee40810h

H. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N. Park, J. Bisquert, 'Mechanism of carrier accumulation in perovskite thin-absorber solar cells', Nat. Commun. 4 (2013) 2242. DOI: https://doi.org/10.1038/ncomms3242

F. Brivio, A.B. Walker, A. Walsh, 'Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles', APL Mater. 1 (2013) 42111. DOI: https://doi.org/10.1063/1.4824147

J. Even, L. Pedesseau, J. Jancu, C. Katan, 'Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications', J. Phys. Chem. Lett. 4 (2013) 2999–3005. DOI: https://doi.org/10.1021/jz401532q

P. Docampo, F.C. Hanusch, N. Giesbrecht, P. Angloher, A. Ivanova, T. Bein, 'Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance', APL Mater. 2 (2014) 81508. DOI: https://doi.org/10.1063/1.4890244

J. Kim, S. Lee, J.H. Lee, K. Hong, 'The Role of Intrinsic Defects in Methylammonium Lead Iodide', J. Phys. Chem. Lett. 5 (2014) 1312–1317. DOI: https://doi.org/10.1021/jz500370k

C. Eames, J.M. Frost, P.R.F. Barnes, B.C.O. Regan, A. Walsh, M.S. Islam, 'Ionic transport in hybrid lead iodide perovskite solar cells', Nat. Commun. 6 (2015) 7497. DOI: https://doi.org/10.1038/ncomms8497

T. Van Phan Vu, M.T. Nguyen, D.T.T. Nguyen, T.D. Vu, D.L. Nguyen, N.M. An, M.H. Nguyen, C.D. Sai, V.D. Bui, C.H. Hoang, T.T. Truong, N.D. Lai, T. Nguyen-Tran, 'Three-Photon Absorption Induced Photoluminescence in Organo-Lead Mixed Halide Perovskites', J. Electron. Mater. 46 (2017) 3622–3626. DOI: https://doi.org/10.1007/s11664-017-5407-y

M. Liu, M.B. Johnston, H.J. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition', Nature. 501 (2013) 395–398. DOI: https://doi.org/10.1038/nature12509

N.M. Nguyen, M.Q. Luu, M.H. Nguyen, D.T. Nguyen, V.D. Bui, T.T. Truong, V.T. Pham, T. Nguyen-Tran, 'Synthesis of Tantalum-Doped Tin Oxide Thin Films by Magnetron Sputtering for Photovoltaic Applications', J. Electron. Mater. 46 (2017) 3667–3673. DOI: https://doi.org/10.1007/s11664-017-5296-0

N.M. Hieu, N.T. Lan, N.B. Loc, N.T.T. Hang, N.T. Tien, P. V Thanh, L.M. Quynh, N.H. Luong, N.L.H. Hoang, 'Influence of Experimental Installation on Photocatalytic Activity of Sputtered Nb-Doped TiO2 Thin Film', J. Electron. Mater. 46 (2017) 3726–3731. DOI: https://doi.org/10.1007/s11664-017-5368-1

P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, 'Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency', Nat. Commun. 5 (2014) 3834. DOI: https://doi.org/10.1038/ncomms4834

B. Ptaszyński, E. Skiba, J. Krystek, 'Thermal decomposition of alkali metal, copper(I) and silver(I) thiocyanates', Thermochim. Acta. 319 (1998) 75–85. DOI: https://doi.org/10.1016/S0040-6031(98)00391-8

E. Science, W. Seattle, 'Recent progress and perspective in solution- processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells', Energy Environ. Sci. 8 (2015) 1160–1189. DOI: https://doi.org/10.1039/C4EE03824J

C.-S. Jiang, M. Yang, Y. Zhou, B. To, S.U. Nanayakkara, J.M. Luther, W. Zhou, J.J. Berry, J. van de Lagemaat, N.P. Padture, K. Zhu, M.M. Al-Jassim, 'Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential', Nat. Commun. 6 (2015) 8397. DOI: https://doi.org/10.1038/ncomms9397

Downloads

Published

24-08-2017

How to Cite

[1]
N. T. Thuat, “Fabrication of Organolead Iodide Perovskite Solar Cells with Niobium-doped Titanium Dioxide as Compact Layer”, Comm. Phys., vol. 27, no. 2, p. 121, Aug. 2017.

Issue

Section

Papers
Received 11-05-2017
Accepted 16-06-2017
Published 24-08-2017

Most read articles by the same author(s)