Fabrication of Organolead Iodide Perovskite Solar Cells with Niobium-doped Titanium Dioxide as Compact Layer
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/27/2/9811Keywords:
perovskite, CH3NH3PbI3, solar cells, NTO, TTO, CuSCNAbstract
Organometal halide perovskite materials have shown high potential as light absorbers for photovoltaic applications. In this work, perovskite planar solar cells were fabricated on corning substrates with the structure as follows: the first layer made of tantalum-doped tin oxide as transparent contact material, followed by sputtering niobium-doped titanium oxide as the compact electron transport layer; covered with perovskite CH3NH3PbI3 as the light harvester by combination between spin-coating and dipping methods; CuSCN was evaporated as the hole transport layer; the final thin Al/Ag electrodes were deposited. This configuration is shortly described as Al/TTO/NTO/CH3NH3PbI3/CuSCN/Ag. Such heterojunctions are expected to be suitable for the development of efficient hybrid solar cells. The fabricated cells were measured under the air mass 1.5 illumination condition, showed the rectification effect and exhibited a power conversion efficiency of 0.007%, with a open circuit voltage of 53.2 mV, a short circuit current of 0.36 mA/cm2, and a form factor of 37%. The power conversion efficiency will be further optimized in near future.Downloads
Metrics
References
H. Spanggaard, F.C. Krebs, 'A brief history of the development of organic and polymeric photovoltaics', Sol. Energy Mater. Sol. Cells. 83 (2004) 125–146. DOI: https://doi.org/10.1016/j.solmat.2004.02.021
D.M. Chapin, C.S. Fuller, G.L. Pearson, 'A new silicon p-n junction photocell for converting solar radiation into electrical power', J. Appl. Phys. 25 (1954) 676–677. DOI: https://doi.org/10.1063/1.1721711
M. Grätzel, 'Dye-sensitized solar cells', J. Photochem. Photobiol. C Photochem. Rev. 4 (2003) 145–153. DOI: https://doi.org/10.1016/S1389-5567(03)00026-1
H.S. Jung, N. Park, 'Perovskite Solar Cells: From Materials to Devices', Small. 11 (2015) 10–25. DOI: https://doi.org/10.1002/smll.201402767
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, 'Solar cell efficiency tables (version 48)', Prog. Photovoltaics Res. Appl. 24 (2016) 905–913. DOI: https://doi.org/10.1002/pip.2788
D. Weber, 'CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure', Zeitschrift Für Naturforsch. B. 33 (1978) 862–865. DOI: https://doi.org/10.1515/znb-1978-0809
D. Weber, 'CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure', Zeitschrift Für Naturforsch. B. 33 (1978) 1443–1445. DOI: https://doi.org/10.1515/znb-1978-1214
D.B. Mitzi, C.A. Feild, W.T.A. Harrison, A.M. Guloy, 'Conducting tin halides with a layered organic-based perovskite structure', Nature. 369 (1994) 467–469. DOI: https://doi.org/10.1038/369467a0
D.B. Mitzi, C.A. Feild, Z. Schlesinger, R.B. Laibowitz, 'Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3', J. Solid State Chem. 114 (1995) 159–163. DOI: https://doi.org/10.1006/jssc.1995.1023
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, 'Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells', J. Am. Chem. Soc. 131 (2009) 6050–6051. DOI: https://doi.org/10.1021/ja809598r
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, 'Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%', Sci. Rep. 2 (2012) 591. DOI: https://doi.org/10.1038/srep00591
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S. Il Seok, 'High-performance photovoltaic perovskite layers fabricated through intramolecular exchange', Science. 348 (2015) 1234–1237. DOI: https://doi.org/10.1126/science.aaa9272
D. Bi, B. Xu, P. Gao, L. Sun, M. Grätzel, A. Hagfeldt, 'Facile synthesized organic hole transporting material for perovskite solar cell with efficiency of 19.8%', Nano Energy. 23 (2016) 138–144. DOI: https://doi.org/10.1016/j.nanoen.2016.03.020
M. Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, 'Progress in emerging solution-processed thin film solar cells - Part II: Perovskite solar cells', Renew. Sustain. Energy Rev. 62 (2016) 1012–1031. DOI: https://doi.org/10.1016/j.rser.2016.05.042
N. Park, 'Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell', J. Phys. Chem. Lett. 4 (2013) 2423–2429. DOI: https://doi.org/10.1021/jz400892a
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, 'Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites', Science. 338 (2012) 643–647. DOI: https://doi.org/10.1126/science.1228604
J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, 'Low-temperature processed meso-superstructured to thin-film perovskite solar cells', Energy Environ. Sci. 6 (2013) 1739. DOI: https://doi.org/10.1039/c3ee40810h
H. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N. Park, J. Bisquert, 'Mechanism of carrier accumulation in perovskite thin-absorber solar cells', Nat. Commun. 4 (2013) 2242. DOI: https://doi.org/10.1038/ncomms3242
F. Brivio, A.B. Walker, A. Walsh, 'Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles', APL Mater. 1 (2013) 42111. DOI: https://doi.org/10.1063/1.4824147
J. Even, L. Pedesseau, J. Jancu, C. Katan, 'Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications', J. Phys. Chem. Lett. 4 (2013) 2999–3005. DOI: https://doi.org/10.1021/jz401532q
P. Docampo, F.C. Hanusch, N. Giesbrecht, P. Angloher, A. Ivanova, T. Bein, 'Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance', APL Mater. 2 (2014) 81508. DOI: https://doi.org/10.1063/1.4890244
J. Kim, S. Lee, J.H. Lee, K. Hong, 'The Role of Intrinsic Defects in Methylammonium Lead Iodide', J. Phys. Chem. Lett. 5 (2014) 1312–1317. DOI: https://doi.org/10.1021/jz500370k
C. Eames, J.M. Frost, P.R.F. Barnes, B.C.O. Regan, A. Walsh, M.S. Islam, 'Ionic transport in hybrid lead iodide perovskite solar cells', Nat. Commun. 6 (2015) 7497. DOI: https://doi.org/10.1038/ncomms8497
T. Van Phan Vu, M.T. Nguyen, D.T.T. Nguyen, T.D. Vu, D.L. Nguyen, N.M. An, M.H. Nguyen, C.D. Sai, V.D. Bui, C.H. Hoang, T.T. Truong, N.D. Lai, T. Nguyen-Tran, 'Three-Photon Absorption Induced Photoluminescence in Organo-Lead Mixed Halide Perovskites', J. Electron. Mater. 46 (2017) 3622–3626. DOI: https://doi.org/10.1007/s11664-017-5407-y
M. Liu, M.B. Johnston, H.J. Snaith, 'Efficient planar heterojunction perovskite solar cells by vapour deposition', Nature. 501 (2013) 395–398. DOI: https://doi.org/10.1038/nature12509
N.M. Nguyen, M.Q. Luu, M.H. Nguyen, D.T. Nguyen, V.D. Bui, T.T. Truong, V.T. Pham, T. Nguyen-Tran, 'Synthesis of Tantalum-Doped Tin Oxide Thin Films by Magnetron Sputtering for Photovoltaic Applications', J. Electron. Mater. 46 (2017) 3667–3673. DOI: https://doi.org/10.1007/s11664-017-5296-0
N.M. Hieu, N.T. Lan, N.B. Loc, N.T.T. Hang, N.T. Tien, P. V Thanh, L.M. Quynh, N.H. Luong, N.L.H. Hoang, 'Influence of Experimental Installation on Photocatalytic Activity of Sputtered Nb-Doped TiO2 Thin Film', J. Electron. Mater. 46 (2017) 3726–3731. DOI: https://doi.org/10.1007/s11664-017-5368-1
P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, 'Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency', Nat. Commun. 5 (2014) 3834. DOI: https://doi.org/10.1038/ncomms4834
B. Ptaszyński, E. Skiba, J. Krystek, 'Thermal decomposition of alkali metal, copper(I) and silver(I) thiocyanates', Thermochim. Acta. 319 (1998) 75–85. DOI: https://doi.org/10.1016/S0040-6031(98)00391-8
E. Science, W. Seattle, 'Recent progress and perspective in solution- processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells', Energy Environ. Sci. 8 (2015) 1160–1189. DOI: https://doi.org/10.1039/C4EE03824J
C.-S. Jiang, M. Yang, Y. Zhou, B. To, S.U. Nanayakkara, J.M. Luther, W. Zhou, J.J. Berry, J. van de Lagemaat, N.P. Padture, K. Zhu, M.M. Al-Jassim, 'Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential', Nat. Commun. 6 (2015) 8397. DOI: https://doi.org/10.1038/ncomms9397
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 16-06-2017
Published 24-08-2017