In silico study of the influences of cooling rates on the phase transition of water inside the carbon nanotube under different ambient pressures

Vi Toan Lam, Giang Hoang Nguyen, Hoa Van Nguyen, Phi Minh Nguyen, Hanh Thi Thu Tran
Author affiliations

Authors

  • Vi Toan Lam \(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;<br/> \(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam https://orcid.org/0000-0002-9701-6222
  • Giang Hoang Nguyen \(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;<br/> \(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
  • Hoa Van Nguyen \(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;<br/> \(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
  • Phi Minh Nguyen \(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;<br/> \(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
  • Hanh Thi Thu Tran \(^{1}\)Laboratory of Computational Physics, Faculty of Applied Science, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam;<br/> \(^{2}\)Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/17301

Keywords:

carbon nanotube, phase transition, MD simulation

Abstract

By using MD simulation method, this study shows the influences of cooling rates on the solidifying temperature of water inside a single-wall-carbon-nanotube under different ambient pressures when cooling the systems from 300 K down to 200 K. Our results showed that the more rapid cooling rate of the systems creates more disruptive and dramatic phase transitions. Moreover, we also found that the lower of pressures correlates to the more dramatic phase transitions of water, regardless of cooling rate. This study generally provides more insight into water behavior in the SWCNT with variations in ambient conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nat. Nanotechnol. 12 (2017) 267. DOI: https://doi.org/10.1038/nnano.2016.254

K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802 DOI: https://doi.org/10.1038/35090532

J. H. Walther, K. Ritos, E. R. Cruz-Chu, C. M. Megaridis and P. Koumoutsakos, Barriers to superfast water transport in carbon nanotube membranes, Nano Lett. 13 (2013) 1910. DOI: https://doi.org/10.1021/nl304000k

D. Takaiwa, I. Hatano, K. Koga and H. Tanaka, Phase diagram of water in carbon nanotube, Proc. Natl. Acad. Sci. 105 (2008) 39. DOI: https://doi.org/10.1073/pnas.0707917105

J. Shiomi, T. Kimura and S. Maruyama, Molecular dynamics of Ice-nanotube formation inside carbon nanotubes, J. Phys. Chem. C 111 (2007) 12188. DOI: https://doi.org/10.1021/jp071508s

Y. Maniwa, H. Kataura, M. Abe, S. Suzuki, Y. Achiba, H. Kira and K. Matsuda, Phase transition in confined water inside carbon nanotubes, J. Phys. Soc. Jpn. 71 (2002) 2863. DOI: https://doi.org/10.1143/JPSJ.71.2863

M. Yutaka, K. Hiromichi, A. Masatoshi, A. Udaka, S. Suzuki, Y. Achiba, H. Kira, K. Matsuda, H. Kadowaki and Y. Okabe, Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes, Chem. Phys. Lett. 401 (2005) 534. DOI: https://doi.org/10.1016/j.cplett.2004.11.112

J. Bai, J. Wang and X. C. Zeng, Multiwalled ice helixes and ice nanotubes, Proc. Natl. Acad. Sci. 103 (2006) 19664. DOI: https://doi.org/10.1073/pnas.0608401104

T. Ohba, S. I. Taira, K. Hata, K. Kanekoc and H. Kanoh Predominant nanoice growth in single-walled carbon nanotubes by water-vapor loading, RSC Adv. 2 (2012) 3634. DOI: https://doi.org/10.1039/c2ra20290e

A. I. Kolesnikov, J. M. Zanotti, C. K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy and C. J. Burnham Anomalously soft dynamics of water in a nanotube: A revelation of nanoscale confinement, Phys. Rev. Lett. 93 (2004) 035503. DOI: https://doi.org/10.1103/PhysRevLett.93.035503

K. Matsuda, T. Hibi, H. Kadowaki, H. Kataura and Y. Maniwa, Water dynamics inside single-wall carbon nanotubes: NMR observations, Phys. Rev. B 74 (2006) 073415. DOI: https://doi.org/10.1103/PhysRevB.74.073415

H. Kyakuno, K. Matsuda, H. Yahiro, Y. Inami, T. Fukuoka, Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, T. Saito, M. Yumura and S. Iijima, Confined water inside single-walled carbon nanotubes: Global phase diagram and effect of finite length, J. Chem. Phys. 134 (2011) 244501. DOI: https://doi.org/10.1063/1.3593064

V. V. Hoang, Cooling rate effects on structure of amorphous graphene, Phys. B Condens. Matter 456 (2015) 50. DOI: https://doi.org/10.1016/j.physb.2014.08.020

V. Van Hoang and N.T. Long, Amorphous silicene - a view from molecular dynamics simulation, J. Phys. Condens. Matter 28 (2016) 19540. DOI: https://doi.org/10.1088/0953-8984/28/19/195401

N. H. Giang and V. V. Hoang, Influences of cooling rate on formation of amorphous germanene, Physica E: Low-dimensional Systems and Nanostructure 126 (2021) 114492. DOI: https://doi.org/10.1016/j.physe.2020.114492

W. Humphrey, A. Dalke and K. Schulten, VMD molecular dynamics, J. Molec. Graphics 14 (1996) 33. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

L. Mart´ınez, R. Andrade, E. G. Birgin and J. M. Mart´ınez, Packmol: A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (2009) 2157. DOI: https://doi.org/10.1002/jcc.21224

A.D. MacKerell Jr, D. Bashford, M. L. D. R. Bellott, R. L. Dunbrack Jr, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wi´orkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. 102 (1998) 3586. DOI: https://doi.org/10.1021/jp973084f

S. Stuart, A. B. Tutein and J. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472. DOI: https://doi.org/10.1063/1.481208

M. Raju, A. V. Duin and M. Ihme, Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes, Sci. Rep. 8 (2018) 3851. DOI: https://doi.org/10.1038/s41598-018-22201-3

Downloads

Published

03-11-2022

How to Cite

[1]
V. T. Lam, H. G. Nguyen, V. H. Nguyen, M. P. Nguyen and T. T. H. Tran, In silico study of the influences of cooling rates on the phase transition of water inside the carbon nanotube under different ambient pressures, Comm. Phys. 33 (2022) 51. DOI: https://doi.org/10.15625/0868-3166/17301.

Issue

Section

Papers
Received 06-07-2022
Accepted 12-09-2022
Published 03-11-2022