Published 01-06-2022
Keywords
- pyrolytic carbon, carbon electrodes, electrochemical sensors, pyrolysis.
How to Cite
Abstract
In this work, pyrolytic carbon electrodes were prepared through pyrolysis of well-patterned AZ 1505 positive photoresist films. The designed electrodes firstly were prepared via photolithography technique, then the polymer was thermally broken-down into carbon skeletons in an oxygen-free environment using pyrolysis technique. The effect of the highest temperature and ramping rate on the electrical properties of the carbon films were investigated. The results show that the pyrolysis process was optimal at the ramping rate of 3 °C/minute, annealing temperature of 900 °C, and annealing time of one hour. The lowest resistivity was obtained at 6.3 ´ 10-5Wm for pyrolytic films prepared at the optimal pyrolysis conditions. Electrochemical measurements confirm the potential of this electrode for electrochemical sensing applications.
Downloads
Metrics
References
- S. Hemanth, a. Halder, C. Caviglia, Q. Chi, S. S. Keller, Biosensors 8 (2018) 70. DOI: https://doi.org/10.3390/bios8030070
- E. Peltola, J. J. Heikkinen, K. Sovanto, S. Sainio, A. Aarva, S. Franssila, V. Jokinen, T. Laurila, J. Mater. Chem. B 5 (2017) 9033. DOI: https://doi.org/10.1039/C7TB02469J
- A. Asif, A. Heiskanen, J. Emneus, S. S. Keller, Electrochimica Acta, 379 (2021) 138122. DOI: https://doi.org/10.1016/j.electacta.2021.138122
- L. Amato, A. Heiskanen, R. Hansen, L. Gammelgaard, T. Rindzevicius, M. Tenje, J. Emneus, S. S. Keller, Carbon 94 (2015) 792. DOI: https://doi.org/10.1016/j.carbon.2015.06.014
- S. Hemanth, C. Caviglia, S. S. Keller, Carbon 121 (2017) 226. DOI: https://doi.org/10.1016/j.carbon.2017.05.090
- B. C. Benitez, C. Eschenbaum, D. Mager, J. G. Korvink, M. J. Madou, U. Lemmer, I. D. Leon, S. O. Martinez-Chapa, Microsystems & Nanoengineering 5 (2019).
- I. Mantis, S. Hemanth, C. Caviglia, A. Heiskanen, S. S. Keller, Carbon 179 (2021) 579. DOI: https://doi.org/10.1016/j.carbon.2021.04.069
- J. A. Lee, S. W. Lee, K-C. Lee, S. I. Park, S. S. Lee, Micromech. Microeng 18 (2008) 035012. DOI: https://doi.org/10.1088/0960-1317/18/3/035012
- Y. M. Hassan, L. Massa, C. Caviglia, S. S. Keller, Electroanalysis 30 (2018 ).
- J. Kim, X. Song, K. Kinoshita, M. Madou, R. White, J Electrochem. Soc. 145 (1998) 2314. DOI: https://doi.org/10.1149/1.1838636
- K. Jurkiewicz, M. Pawlyta, D. Zygadlo, D. Chrobak, S. Duber, R. Wrzalik, A. Ratuszna, A. Burian, J Mater Sci. 53 (2018) 3509. DOI: https://doi.org/10.1007/s10853-017-1753-7
- Swati Sharma, A. M. Rostas, L. Bordonali, N. MacKinnon, S. Weber, J, G, Korvink, J. Appl. Phys. 120 (2016) 235107. DOI: https://doi.org/10.1063/1.4972476
- R. Natu, M. Islam, J. Gilmore, R. Martinez-Duarte, Journal of Analytical and Applied Pyrolysis 131 (2018) 17. DOI: https://doi.org/10.1016/j.jaap.2018.02.015
- S. Sharma, Materials 11 (2018) 1857. DOI: https://doi.org/10.3390/ma11101857
- A. B. Fuertes, I. Menendez, Separation and Purification Technology 28 (2002) 29. DOI: https://doi.org/10.1016/S1383-5866(02)00006-0
- H. Wang, J. Yao, Ind. Eng. Chem. Res. 45 (2006) 6393. DOI: https://doi.org/10.1021/ie0602660
- Y. M. Hassan, C. Caviglia, S. Hemanth, D. M. A. Mackenzie, T. S. Alstrom, D. H. Petersen, Journal of Analytical and Applied Pyrolysis 125 (2017) 91. DOI: https://doi.org/10.1016/j.jaap.2017.04.015
- L. Amato, K. Schulte, a. Heiskanen, S. S. Keller, S. Ndoni, J. Emneus, Electroanalysis 27 (2015). DOI: https://doi.org/10.1002/elan.201400430
- N. McEvoy, N. Peltekis, S. Kumar, E. Rezvani, H. Nolan, G. P. Keeley, W. J. Blau, G. S. Duesberg, Carbon 50 (2012) 1216. DOI: https://doi.org/10.1016/j.carbon.2011.10.036
- B. Pramanick, M. Vazquez-Pinon, A. Torres-Castro, S. O. Martinez-Chapa, M. Madou, Materials Today: Proceedings 5 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.10.153
- A. Singh, J. Jayaram, M. Madou, S. Akbar, Journal of The Electrochemical Society 149 (2002) E78. DOI: https://doi.org/10.1149/1.1436085
- B. Hsia, M. S. Kim, M. Vincent, C. Carraro, R. Maboudian, Carbon vol. 57 (2013) 395. DOI: https://doi.org/10.1016/j.carbon.2013.01.089
- S. Theodoropoulou, D. Papadimitriou, I. Zoumpoulakis, J. Simitzis, Analytical and bioanalytical chemistry 379 (2004) 788. DOI: https://doi.org/10.1007/s00216-003-2453-5
- S. U. Rege, R. T. Yang, Chemical engineering science 56 (2001) 3781. DOI: https://doi.org/10.1016/S0009-2509(01)00095-1
- B. C. Smith, "Spectroscopy," 01 01 2016. [Online]. Available: https://www.spectroscopyonline.com/view/process-successful-infrared-spectral-interpretation.
- Y. Zhang, Q. Cheng, D. Wang, D. Xia. X. Zheng, Z. Li, J. Y. Hwang, Jom 71 (2019) 3658. DOI: https://doi.org/10.1007/s11837-019-03658-7
- P. Puech, M. Kandara, G. Paredes, L. Moulin, E. Weiss-Hortala, A. Kundu, N. Ratel-Ramond, J.. M. Plewa, R. Pellenq, M. Monthioux, Journal of carbon research 5 (2019) 69. DOI: https://doi.org/10.3390/c5040069
- R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R. Kotz, Thin Solid Films 396 (2001) 36. DOI: https://doi.org/10.1016/S0040-6090(01)01185-3
- L. N. Quang, A. Halder, B. Rezaei, P. E. Larsen, Y. Sun, A. Boisen, S. S. Keller, Micro and Nano Engineering 2 (2019) 64. DOI: https://doi.org/10.1016/j.mne.2019.01.001
- J. F. S. Pereira, R. G. Rocha. S. V. F. Castro, A. F. Joao, P. H. S. Borges, D. P. Rocha, A. Siervo, E. M. Richter, E. Nossol, R. V. Gelamo, R. A. A. Munoz, Sensors and Actuators: B. Chemical 347 (2021) 130651. DOI: https://doi.org/10.1016/j.snb.2021.130651
- G. Gao, L. Z. Cheong, D. Wang, C. Shen, Carbon Resources Conversion 1 (2018) 104. DOI: https://doi.org/10.1016/j.crcon.2018.04.001
- B. Rezaei, J. Y. Pan, C. Gundlach, S. S. Keller, Materials and Design 193 (2020) 108834. DOI: https://doi.org/10.1016/j.matdes.2020.108834
- S. Kwon, H. J. Choi, H. C. Shim, Y. Yoon, J. Ahn, H. Lim, G. Kim, K. B. Choi, J. Lee, Nanomaterials 11 (2021) 2828. DOI: https://doi.org/10.3390/nano11112828