Vol. 32 No. 4 (2022): Coming Issue
Papers

Pyrolytic Carbon Electrodes and Their Potential Application in Electrochemical Sensors

Thi Thanh Ngan Nguyen
University of Science and Technology of Hanoi

Published 01-06-2022

Keywords

  • pyrolytic carbon, carbon electrodes, electrochemical sensors, pyrolysis.

How to Cite

Nguyen, T. T. N., Bui, T. G., Nguyen, D. T., Nguyen, D. T., Nguyen, H. L., Nguyen, T. H., Dang, T. B., & Vu, T. T. (2022). Pyrolytic Carbon Electrodes and Their Potential Application in Electrochemical Sensors. Communications in Physics, 32(4). https://doi.org/10.15625/0868-3166/16829

Abstract

In this work, pyrolytic carbon electrodes were prepared through pyrolysis of well-patterned AZ 1505 positive photoresist films. The designed electrodes firstly were prepared via photolithography technique, then the polymer was thermally broken-down into carbon skeletons in an oxygen-free environment using pyrolysis technique. The effect of the highest temperature and ramping rate on the electrical properties of the carbon films were investigated. The results show that the pyrolysis process was optimal at the ramping rate of 3 °C/minute, annealing temperature of 900 °C, and annealing time of one hour. The lowest resistivity was obtained at 6.3 ´ 10-5Wm for pyrolytic films prepared at the optimal pyrolysis conditions. Electrochemical measurements confirm the potential of this electrode for electrochemical sensing applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. S. Hemanth, a. Halder, C. Caviglia, Q. Chi, S. S. Keller, Biosensors 8 (2018) 70. DOI: https://doi.org/10.3390/bios8030070
  2. E. Peltola, J. J. Heikkinen, K. Sovanto, S. Sainio, A. Aarva, S. Franssila, V. Jokinen, T. Laurila, J. Mater. Chem. B 5 (2017) 9033. DOI: https://doi.org/10.1039/C7TB02469J
  3. A. Asif, A. Heiskanen, J. Emneus, S. S. Keller, Electrochimica Acta, 379 (2021) 138122. DOI: https://doi.org/10.1016/j.electacta.2021.138122
  4. L. Amato, A. Heiskanen, R. Hansen, L. Gammelgaard, T. Rindzevicius, M. Tenje, J. Emneus, S. S. Keller, Carbon 94 (2015) 792. DOI: https://doi.org/10.1016/j.carbon.2015.06.014
  5. S. Hemanth, C. Caviglia, S. S. Keller, Carbon 121 (2017) 226. DOI: https://doi.org/10.1016/j.carbon.2017.05.090
  6. B. C. Benitez, C. Eschenbaum, D. Mager, J. G. Korvink, M. J. Madou, U. Lemmer, I. D. Leon, S. O. Martinez-Chapa, Microsystems & Nanoengineering 5 (2019).
  7. I. Mantis, S. Hemanth, C. Caviglia, A. Heiskanen, S. S. Keller, Carbon 179 (2021) 579. DOI: https://doi.org/10.1016/j.carbon.2021.04.069
  8. J. A. Lee, S. W. Lee, K-C. Lee, S. I. Park, S. S. Lee, Micromech. Microeng 18 (2008) 035012. DOI: https://doi.org/10.1088/0960-1317/18/3/035012
  9. Y. M. Hassan, L. Massa, C. Caviglia, S. S. Keller, Electroanalysis 30 (2018 ).
  10. J. Kim, X. Song, K. Kinoshita, M. Madou, R. White, J Electrochem. Soc. 145 (1998) 2314. DOI: https://doi.org/10.1149/1.1838636
  11. K. Jurkiewicz, M. Pawlyta, D. Zygadlo, D. Chrobak, S. Duber, R. Wrzalik, A. Ratuszna, A. Burian, J Mater Sci. 53 (2018) 3509. DOI: https://doi.org/10.1007/s10853-017-1753-7
  12. Swati Sharma, A. M. Rostas, L. Bordonali, N. MacKinnon, S. Weber, J, G, Korvink, J. Appl. Phys. 120 (2016) 235107. DOI: https://doi.org/10.1063/1.4972476
  13. R. Natu, M. Islam, J. Gilmore, R. Martinez-Duarte, Journal of Analytical and Applied Pyrolysis 131 (2018) 17. DOI: https://doi.org/10.1016/j.jaap.2018.02.015
  14. S. Sharma, Materials 11 (2018) 1857. DOI: https://doi.org/10.3390/ma11101857
  15. A. B. Fuertes, I. Menendez, Separation and Purification Technology 28 (2002) 29. DOI: https://doi.org/10.1016/S1383-5866(02)00006-0
  16. H. Wang, J. Yao, Ind. Eng. Chem. Res. 45 (2006) 6393. DOI: https://doi.org/10.1021/ie0602660
  17. Y. M. Hassan, C. Caviglia, S. Hemanth, D. M. A. Mackenzie, T. S. Alstrom, D. H. Petersen, Journal of Analytical and Applied Pyrolysis 125 (2017) 91. DOI: https://doi.org/10.1016/j.jaap.2017.04.015
  18. L. Amato, K. Schulte, a. Heiskanen, S. S. Keller, S. Ndoni, J. Emneus, Electroanalysis 27 (2015). DOI: https://doi.org/10.1002/elan.201400430
  19. N. McEvoy, N. Peltekis, S. Kumar, E. Rezvani, H. Nolan, G. P. Keeley, W. J. Blau, G. S. Duesberg, Carbon 50 (2012) 1216. DOI: https://doi.org/10.1016/j.carbon.2011.10.036
  20. B. Pramanick, M. Vazquez-Pinon, A. Torres-Castro, S. O. Martinez-Chapa, M. Madou, Materials Today: Proceedings 5 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.10.153
  21. A. Singh, J. Jayaram, M. Madou, S. Akbar, Journal of The Electrochemical Society 149 (2002) E78. DOI: https://doi.org/10.1149/1.1436085
  22. B. Hsia, M. S. Kim, M. Vincent, C. Carraro, R. Maboudian, Carbon vol. 57 (2013) 395. DOI: https://doi.org/10.1016/j.carbon.2013.01.089
  23. S. Theodoropoulou, D. Papadimitriou, I. Zoumpoulakis, J. Simitzis, Analytical and bioanalytical chemistry 379 (2004) 788. DOI: https://doi.org/10.1007/s00216-003-2453-5
  24. S. U. Rege, R. T. Yang, Chemical engineering science 56 (2001) 3781. DOI: https://doi.org/10.1016/S0009-2509(01)00095-1
  25. B. C. Smith, "Spectroscopy," 01 01 2016. [Online]. Available: https://www.spectroscopyonline.com/view/process-successful-infrared-spectral-interpretation.
  26. Y. Zhang, Q. Cheng, D. Wang, D. Xia. X. Zheng, Z. Li, J. Y. Hwang, Jom 71 (2019) 3658. DOI: https://doi.org/10.1007/s11837-019-03658-7
  27. P. Puech, M. Kandara, G. Paredes, L. Moulin, E. Weiss-Hortala, A. Kundu, N. Ratel-Ramond, J.. M. Plewa, R. Pellenq, M. Monthioux, Journal of carbon research 5 (2019) 69. DOI: https://doi.org/10.3390/c5040069
  28. R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R. Kotz, Thin Solid Films 396 (2001) 36. DOI: https://doi.org/10.1016/S0040-6090(01)01185-3
  29. L. N. Quang, A. Halder, B. Rezaei, P. E. Larsen, Y. Sun, A. Boisen, S. S. Keller, Micro and Nano Engineering 2 (2019) 64. DOI: https://doi.org/10.1016/j.mne.2019.01.001
  30. J. F. S. Pereira, R. G. Rocha. S. V. F. Castro, A. F. Joao, P. H. S. Borges, D. P. Rocha, A. Siervo, E. M. Richter, E. Nossol, R. V. Gelamo, R. A. A. Munoz, Sensors and Actuators: B. Chemical 347 (2021) 130651. DOI: https://doi.org/10.1016/j.snb.2021.130651
  31. G. Gao, L. Z. Cheong, D. Wang, C. Shen, Carbon Resources Conversion 1 (2018) 104. DOI: https://doi.org/10.1016/j.crcon.2018.04.001
  32. B. Rezaei, J. Y. Pan, C. Gundlach, S. S. Keller, Materials and Design 193 (2020) 108834. DOI: https://doi.org/10.1016/j.matdes.2020.108834
  33. S. Kwon, H. J. Choi, H. C. Shim, Y. Yoon, J. Ahn, H. Lim, G. Kim, K. B. Choi, J. Lee, Nanomaterials 11 (2021) 2828. DOI: https://doi.org/10.3390/nano11112828