Liquid-gated Field-effect-transistor Based on Chemically Reduced Graphene Oxide for Sensing Neurotransmitter Acetylthiocholine

Thi Thanh Ngan Nguyen, Thi Thu Vu, Nguyen Danh Thanh, Nguyen Thi Lan, Duong Thanh Tung, Cao Thi Thanh, Nguyen Van Chuc
Author affiliations

Authors

  • Thi Thanh Ngan Nguyen University of Science and Technology of Hanoi
  • Thi Thu Vu
  • Nguyen Danh Thanh University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Thi Lan Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
  • Duong Thanh Tung Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
  • Cao Thi Thanh Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Nguyen Van Chuc Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/16737

Keywords:

hydrazine, graphene oxide, acetylcholinesterase, FET

Abstract

In this work, an enzymatic liquid-gated field-effect-transistor sensor based on chemically reduced graphene oxide film was develop for determination of acetylthiocholine in aqueous conditions. The device was designed with interdigitated electrode configuration and then manufactured by combining lithography and chemical vapor deposition techniques in clean room. Graphene oxide material (prepared by Hummer method) was chemically reduced using a strong reducing agent hydrazine, and then drop-casted onto the channel region. The results have demonstrated a successful reduction of graphene oxide with clearly shifting of 02 characteristic peaks comparing with graphene oxide. Consequently, the transfer curve of as-prepared reduced graphene oxide based transistor exhibits ambipolar characteristics with a V-shape. Acetylcholinesterase was immobilized on top of reduced graphene oxide film with the aid of glutaraldehyde trapping agent. It was found that the release of proton from enzymatic hydrolysis of acetylthiocholine has caused significant variation in charge concentration and mobility in the channel, thus generated a significant blue shift in position of Dirac point on ambipolar curve. The developed sensor exhibits good sensing performances with LOD of 250 µM in concentration range 0 – 0.8 mM.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

P. Aspermair, V. Mishyn, J. Bintinger, H. Happy, K. Bagga, P. Subramanian, W. Knoll, R. Boukherroub, S. Szunerits, Analytical and Bioanalytical Chemistry 413 (2021) 779. DOI: https://doi.org/10.1007/s00216-020-02879-z

X. Sui, H. Pu, A. Maity, J. Chang. B. Jin, G. Lu, Y. Wang, R. Ren, S. Mao and J. Chen, ECS Journal of Solid State Science and Technology 9 (2020) 115012. DOI: https://doi.org/10.1149/2162-8777/abaaf4

J. Sengupta and C. M. Hussain, Carbon Ttrens 2 (2021). DOI: https://doi.org/10.1016/j.cartre.2020.100019

D. Wu, H. Zhang, D. Jin, D. W. Pang, M. M. Xiao, Z. L. Zhang, Z. Y. Zhang, Analyst 144 (2019) 6055. DOI: https://doi.org/10.1039/C9AN01332F

T. Q. Trung, N. T. Tien, D. Kim, M. Jang, O. J. Yoon and N. –E. Lee, Adv.Funct. Mater.(2013).

C. R. Rozman, A. Kotlowski and W. Knoll, Biosensors 6 (2016).

M. Hasegawa, Y. Hirayama, Y. Ohno, K. Maehashi and K. Matsumoto, Jpn. J. Appl. Phys 53 (2014). DOI: https://doi.org/10.7567/JJAP.53.05FD05

T. Quast, F. Mariani, E. Scavetta, W. Schuhmann and C. Andronescu, ChemElectroChem 7 (2020) 1922. DOI: https://doi.org/10.1002/celc.202000162

M. Sun, C. Zhang. D. Chen, J. Wang, Y. Ji, N. Liang, H. Gao, S. Cheng and H. Liu, SmartMat. 2 (2021) 213. DOI: https://doi.org/10.1002/smm2.1030

A. D. Rashid, A. R. Ruslinda, M. F. Fatin, U. Hashim, M. K. Arshad, AIP Conf Proc. 1733 (2015) 020076. DOI: https://doi.org/10.1063/1.4948894

X. Jin, H. Zhang, Y. T. Li, M. M. Xiao, Z. L. Zhang, D. W. Pang, G. Wong, Z. Y. Zhang, G. J. Zhang, Microchimica Acta (2019) 186. DOI: https://doi.org/10.1007/s00604-019-3256-5

M. S. Chae, Y. K. Yoo, J. Kim. T. G. Kim. K. S. Hwang, Sensors and Actuators B 272 (2018) 448. DOI: https://doi.org/10.1016/j.snb.2018.06.010

P. Bhattacharyya, IEEE Sensors Journal, 21 (2021) 10231. DOI: https://doi.org/10.1109/JSEN.2021.3060463

N. T. Lan, D. T. Chi, N. X. Dinh, N. D. Hung, H. Lan, P. A. Tuan, L. H. Thang, N. N. Trung, N. Q. Hoa, T. Q. Huy. N. V. Quy, T. T. Duong, V. N. Phan, A. T. Le, Journal of Alloys and Compounds 615 (2014) 843. DOI: https://doi.org/10.1016/j.jallcom.2014.07.042

M. R. Martínez, M. A. Álvarez, M. V. L. Ramón, G. C. Quesada, J. R. Utrilla and M. S. Polo, Catalysts 10 (2020) 520. DOI: https://doi.org/10.3390/catal10050520

H. Su, C. Zhang, X. Li, L. Wu and Y. Chen, RSC Adv. 8 (2018) 39140. DOI: https://doi.org/10.1039/C8RA07263A

D. Konios, M. M. Stylianakis, E, Stratakis, E. Kymakis, Journal of Colloid and Interface Science 430 (2014) 108. DOI: https://doi.org/10.1016/j.jcis.2014.05.033

A. C. Ferrari, Solid State Communications 143 (2007) 47. DOI: https://doi.org/10.1016/j.ssc.2007.03.052

V. Scardaci and G. Compagnini, C 7 (2021) 48. DOI: https://doi.org/10.3390/c7020048

M. Srivastava, A. K. Das, P. Khanra, M. E. Uddin, N. H. Kim and J. H. Lee, J. Mater. Chem. A 1 (2013) 9792. DOI: https://doi.org/10.1039/c3ta11311f

J. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei and Z. Su, RSC Adv. 5 (2015( 22935. DOI: https://doi.org/10.1039/C5RA00884K

C. T. Thanh, N. H. Binh, N. V. Tu, V. T. Thu, M. Bayle, M. Pailler, J. L. Sauvajol, P. B. Thang, T. D. Lam, P. N. Minh, N. V. Chuc, Sensors and Actuators B 260 (2018) 78. DOI: https://doi.org/10.1016/j.snb.2017.12.191

T. T. Cao, V. C. Nguyen, H. B. Nguyen, H. T. Bui, T. T. Vu, N. H. Phan, B. T. Phan, l. Hoang. M. Bayle, M. Paillet, J. L. Sauvajol, N. M. Phan, D. L. Tran, Adv. Nat. Sci. Nanosci. Nanotechnoli 7 (2016) 035007. DOI: https://doi.org/10.1088/2043-6262/7/3/035007

T. T. Vu, T. N. N. Dau, C. T. Ly, D. C. Pham, T. T. N. Nguyen and V. T. Pham, J Mater Sci (2020).

I. -Y. Sohn, D. -J. Kim, J. -H. Jung, O. J. Yoon, T. N. Thanh, T. T. Quang, N. -E. Lee, Biosensors and Bioelectronics 45 (2013) 70. DOI: https://doi.org/10.1016/j.bios.2013.01.051

C. R. Rozman, M. Larisika, C. Nowak, W. Knoll, Biosensors and Bioelectronics 70 (2015) 21. DOI: https://doi.org/10.1016/j.bios.2015.03.013

Downloads

Published

27-03-2022

How to Cite

[1]
T. T. N. Nguyen, “Liquid-gated Field-effect-transistor Based on Chemically Reduced Graphene Oxide for Sensing Neurotransmitter Acetylthiocholine”, Comm. Phys., vol. 32, no. 3, p. 253, Mar. 2022.

Issue

Section

Papers
Received 16-11-2021
Accepted 25-01-2022
Published 27-03-2022

Most read articles by the same author(s)