Vol. 32 No. 3 (2022)
Papers

Liquid-gated Field-effect-transistor Based on Chemically Reduced Graphene Oxide for Sensing Neurotransmitter Acetylthiocholine

Thi Thanh Ngan Nguyen
University of Science and Technology of Hanoi
Nguyen Danh Thanh
University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Nguyen Thi Lan
Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
Duong Thanh Tung
Advanced Institute for Science and Technology (AIST), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hai Ba Trung District, Hanoi, Vietnam
Cao Thi Thanh
Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
Nguyen Van Chuc
Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Published 27-03-2022

Keywords

  • hydrazine,
  • graphene oxide,
  • acetylcholinesterase,
  • FET

How to Cite

Nguyen, T. T. N., Vu, T. T., Nguyen, D. T., Nguyen, T. L., Duong, T. T., Cao, T. T., & Nguyen, V. C. (2022). Liquid-gated Field-effect-transistor Based on Chemically Reduced Graphene Oxide for Sensing Neurotransmitter Acetylthiocholine. Communications in Physics, 32(3), 253. https://doi.org/10.15625/0868-3166/16737

Abstract

In this work, an enzymatic liquid-gated field-effect-transistor sensor based on chemically reduced graphene oxide film was develop for determination of acetylthiocholine in aqueous conditions. The device was designed with interdigitated electrode configuration and then manufactured by combining lithography and chemical vapor deposition techniques in clean room. Graphene oxide material (prepared by Hummer method) was chemically reduced using a strong reducing agent hydrazine, and then drop-casted onto the channel region. The results have demonstrated a successful reduction of graphene oxide with clearly shifting of 02 characteristic peaks comparing with graphene oxide. Consequently, the transfer curve of as-prepared reduced graphene oxide based transistor exhibits ambipolar characteristics with a V-shape. Acetylcholinesterase was immobilized on top of reduced graphene oxide film with the aid of glutaraldehyde trapping agent. It was found that the release of proton from enzymatic hydrolysis of acetylthiocholine has caused significant variation in charge concentration and mobility in the channel, thus generated a significant blue shift in position of Dirac point on ambipolar curve. The developed sensor exhibits good sensing performances with LOD of 250 µM in concentration range 0 – 0.8 mM.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

  1. P. Aspermair, V. Mishyn, J. Bintinger, H. Happy, K. Bagga, P. Subramanian, W. Knoll, R. Boukherroub, S. Szunerits, Analytical and Bioanalytical Chemistry 413 (2021) 779. DOI: https://doi.org/10.1007/s00216-020-02879-z
  2. X. Sui, H. Pu, A. Maity, J. Chang. B. Jin, G. Lu, Y. Wang, R. Ren, S. Mao and J. Chen, ECS Journal of Solid State Science and Technology 9 (2020) 115012. DOI: https://doi.org/10.1149/2162-8777/abaaf4
  3. J. Sengupta and C. M. Hussain, Carbon Ttrens 2 (2021). DOI: https://doi.org/10.1016/j.cartre.2020.100019
  4. D. Wu, H. Zhang, D. Jin, D. W. Pang, M. M. Xiao, Z. L. Zhang, Z. Y. Zhang, Analyst 144 (2019) 6055. DOI: https://doi.org/10.1039/C9AN01332F
  5. T. Q. Trung, N. T. Tien, D. Kim, M. Jang, O. J. Yoon and N. –E. Lee, Adv.Funct. Mater.(2013).
  6. C. R. Rozman, A. Kotlowski and W. Knoll, Biosensors 6 (2016).
  7. M. Hasegawa, Y. Hirayama, Y. Ohno, K. Maehashi and K. Matsumoto, Jpn. J. Appl. Phys 53 (2014). DOI: https://doi.org/10.7567/JJAP.53.05FD05
  8. T. Quast, F. Mariani, E. Scavetta, W. Schuhmann and C. Andronescu, ChemElectroChem 7 (2020) 1922. DOI: https://doi.org/10.1002/celc.202000162
  9. M. Sun, C. Zhang. D. Chen, J. Wang, Y. Ji, N. Liang, H. Gao, S. Cheng and H. Liu, SmartMat. 2 (2021) 213. DOI: https://doi.org/10.1002/smm2.1030
  10. A. D. Rashid, A. R. Ruslinda, M. F. Fatin, U. Hashim, M. K. Arshad, AIP Conf Proc. 1733 (2015) 020076. DOI: https://doi.org/10.1063/1.4948894
  11. X. Jin, H. Zhang, Y. T. Li, M. M. Xiao, Z. L. Zhang, D. W. Pang, G. Wong, Z. Y. Zhang, G. J. Zhang, Microchimica Acta (2019) 186. DOI: https://doi.org/10.1007/s00604-019-3256-5
  12. M. S. Chae, Y. K. Yoo, J. Kim. T. G. Kim. K. S. Hwang, Sensors and Actuators B 272 (2018) 448. DOI: https://doi.org/10.1016/j.snb.2018.06.010
  13. P. Bhattacharyya, IEEE Sensors Journal, 21 (2021) 10231. DOI: https://doi.org/10.1109/JSEN.2021.3060463
  14. N. T. Lan, D. T. Chi, N. X. Dinh, N. D. Hung, H. Lan, P. A. Tuan, L. H. Thang, N. N. Trung, N. Q. Hoa, T. Q. Huy. N. V. Quy, T. T. Duong, V. N. Phan, A. T. Le, Journal of Alloys and Compounds 615 (2014) 843. DOI: https://doi.org/10.1016/j.jallcom.2014.07.042
  15. M. R. Martínez, M. A. Álvarez, M. V. L. Ramón, G. C. Quesada, J. R. Utrilla and M. S. Polo, Catalysts 10 (2020) 520. DOI: https://doi.org/10.3390/catal10050520
  16. H. Su, C. Zhang, X. Li, L. Wu and Y. Chen, RSC Adv. 8 (2018) 39140. DOI: https://doi.org/10.1039/C8RA07263A
  17. D. Konios, M. M. Stylianakis, E, Stratakis, E. Kymakis, Journal of Colloid and Interface Science 430 (2014) 108. DOI: https://doi.org/10.1016/j.jcis.2014.05.033
  18. A. C. Ferrari, Solid State Communications 143 (2007) 47. DOI: https://doi.org/10.1016/j.ssc.2007.03.052
  19. V. Scardaci and G. Compagnini, C 7 (2021) 48. DOI: https://doi.org/10.3390/c7020048
  20. M. Srivastava, A. K. Das, P. Khanra, M. E. Uddin, N. H. Kim and J. H. Lee, J. Mater. Chem. A 1 (2013) 9792. DOI: https://doi.org/10.1039/c3ta11311f
  21. J. Ding, S. Zhu, T. Zhu, W. Sun, Q. Li, G. Wei and Z. Su, RSC Adv. 5 (2015( 22935. DOI: https://doi.org/10.1039/C5RA00884K
  22. C. T. Thanh, N. H. Binh, N. V. Tu, V. T. Thu, M. Bayle, M. Pailler, J. L. Sauvajol, P. B. Thang, T. D. Lam, P. N. Minh, N. V. Chuc, Sensors and Actuators B 260 (2018) 78. DOI: https://doi.org/10.1016/j.snb.2017.12.191
  23. T. T. Cao, V. C. Nguyen, H. B. Nguyen, H. T. Bui, T. T. Vu, N. H. Phan, B. T. Phan, l. Hoang. M. Bayle, M. Paillet, J. L. Sauvajol, N. M. Phan, D. L. Tran, Adv. Nat. Sci. Nanosci. Nanotechnoli 7 (2016) 035007. DOI: https://doi.org/10.1088/2043-6262/7/3/035007
  24. T. T. Vu, T. N. N. Dau, C. T. Ly, D. C. Pham, T. T. N. Nguyen and V. T. Pham, J Mater Sci (2020).
  25. I. -Y. Sohn, D. -J. Kim, J. -H. Jung, O. J. Yoon, T. N. Thanh, T. T. Quang, N. -E. Lee, Biosensors and Bioelectronics 45 (2013) 70. DOI: https://doi.org/10.1016/j.bios.2013.01.051
  26. C. R. Rozman, M. Larisika, C. Nowak, W. Knoll, Biosensors and Bioelectronics 70 (2015) 21. DOI: https://doi.org/10.1016/j.bios.2015.03.013