Ambiguities from Nuclear Interactions in the \(^{12}\)C(p,2p)\(^{11}\)B Reaction
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16496Keywords:
DWIA, knockout, spectroscopic factor, optical potentialAbstract
We investigate the impact of ambiguities coming from the choice of optical potentials and nucleon-nucleon scattering cross sections on the spectroscopic factors extracted from the 12C(p,2p)11B reaction. These ambiguities are evaluated by analyzing the cross sections of the 12C(p,2p)11B reaction at 100 and 200 MeV within the framework of the distorted-wave impulse approximation with realistic choices of nuclear inputs. The results show that the studied ambiguities are considerably large in this energy region and careful choices of nuclear inputs used in the reaction calculations are required to extract reliable structure information.
Downloads
Metrics
References
G. Jacob and T. A. J. Maris, Quasi-free scattering and nuclear structure, Rev. Mod. Phys. 38 (1966) 121. DOI: https://doi.org/10.1103/RevModPhys.38.121
G. Jacob and T. A. J. Maris, Quasi-free scattering and nuclear structure. ii., Rev. Mod. Phys. 45 (1973) 6. DOI: https://doi.org/10.1103/RevModPhys.45.6
P. Kitching, W. J. McDonald, T. A. J. Maris and C. A. Z. Vasconcellos, Advances in Nuclear Physics, vol. 15. Springer, Boston, 1985.
T. Wakasa, K. Ogata and T. Noro, Proton-induced knockout reactions with polarized and unpolarized beams, Prog. Part. Nucl. Phys. 96 (2017) 32. DOI: https://doi.org/10.1016/j.ppnp.2017.06.002
T. Suda and H. Simon, Prospects for electron scattering on unstable, exotic nuclei, Prog. Part. Nucl. Phys. 96 (2017) 1. DOI: https://doi.org/10.1016/j.ppnp.2017.04.002
T. Aumann, C. Barbieri, D. Bazin, C. Bertulani, A. Bonaccorso, W. Dickhoff et al., Quenching of single-particle strength from direct reactions with stable and rare-isotope beams, Prog. Part. Nucl. Phys. 118 (2021) 103847. DOI: https://doi.org/10.1016/j.ppnp.2021.103847
T. Kobayashi, K. Ozeki, K. Watanabe, Y. Matsuda, Y. Seki, T. Shinohara et al., (p,2p) reactions on 9–16c at 250 mev/a, Nucl. Phys. A 805 (2008) 431c. DOI: https://doi.org/10.1016/j.nuclphysa.2008.02.282
A. Obertelli and T. Uesaka, Hydrogen targets for exotic-nuclei studies developed over the past 10 years, Eur. Phys. J. A 47 (2011) 105. DOI: https://doi.org/10.1140/epja/i2011-11105-5
T. Nakamura, H. Sakurai and H. Watanabe, Exotic nuclei explored at in-flight separators, Prog. Part. Nucl. Phys. 97 (2017) 53. DOI: https://doi.org/10.1016/j.ppnp.2017.05.001
V. Panin, T. Aumann and C. A. Bertulani, Quasi-free scattering in inverse kinematics as a tool to unveil the structure of nuclei, The Eur. Phys. J. A 57 (2021) 103. DOI: https://doi.org/10.1140/epja/s10050-021-00416-9
M. Patsyuk, J. Kahlbow, G. Laskaris, M. Duer, V. Lenivenko, E. P. Segarra et al., Unperturbed inverse kinematics nucleon knockout measurements with a carbon beam, Nat. Phys 17 (2021) 693.
N. Paul, A. Obertelli, C. A. Bertulani, A. Corsi, P. Doornenbal, J. L. Rodriguez-Sanchez et al., Prominence of pairing in inclusive (p;2p) and (p; pn) cross sections from neutron-rich nuclei, Phys. Rev. Lett. 122 (2019) 162503.
A. Frotscher, M. G´omez-Ramos, A. Obertelli, P. Doornenbal et al., Sequential nature of (p;3p) two-proton knockout from neutron-rich nuclei, Phys. Rev. Lett. 125 (2020) 012501.
S. Kawase, T. Uesaka, T. L. Tang et al., Exclusive quasi-free proton knockout from oxygen isotopes at intermediate energies, Prog. Theor. Exp. Phys. 2018 (2018) 021D01. DOI: https://doi.org/10.1093/ptep/pty011
T. L. Tang, T. Uesaka, S. Kawase et al., How different is the core of 25F from 24og.s.?, Phys. Rev. Lett. 124 (2020) 212502.
Y. Kubota, A. Corsi et al., Surface localization of the dineutron in 11Li, Phys. Rev. Lett. 125 (2020) 252501.
Z. H. Yang, Y. Kubota, A. Corsi, K. Yoshida, X.-X. Sun et al., Quasifree neutron knockout reaction reveals a small s-orbital component in the borromean nucleus 17B, Phys. Rev. Lett. 126 (2021) 082501. DOI: https://doi.org/10.1103/PhysRevLett.126.082501
L. Olivier, S. Franchoo, M. Niikura, Z. Vajta, D. Sohler, P. Doornenbal et al., Persistence of the z = 28 shell gap around 78Ni: First spectroscopy of 79Cu, Phys. Rev. Lett. 119 (2017) 192501.
S. Chen, J. Lee, P. Doornenbal, A. Obertelli et al., Quasifree neutron knockout from 54Ca corroborates arising n = 34 neutron magic number, Phys. Rev. Lett. 123 (2019) 142501.
F. Browne, S. Chen, P. Doornenbal, A. Obertelli, K. Ogata, Y. Utsuno et al., Pairing forces govern population of doubly magic 54Ca from direct reactions, Phys. Rev. Lett. 126 (2021) 252501. DOI: https://doi.org/10.1103/PhysRevLett.126.252501
R. Taniuchi, C. Santamaria, P. Doornenbal, A. Obertelli, K. Yoneda et al., 78ni revealed as a doubly magic stronghold against nuclear deformation, Nature 569 (2019) 53. DOI: https://doi.org/10.1038/s41586-019-1155-x
N. T. T. Phuc, K. Yoshida and K. Ogata, Toward a reliable description of (p; pn) reactions in the distorted-wave impulse approximation, Phys. Rev. C 100 (2019) 064604. DOI: https://doi.org/10.1103/PhysRevC.100.064604
N. T. T. Phuc, M. Lyu, Y. Chiba and K. Ogata, Manifestation of the divergence between antisymmetrized-molecular-dynamics and container pictures of 9be via 9be(p,pn)8be knockout reaction, Phys. Lett. B 819 (2021) 136466. DOI: https://doi.org/10.1016/j.physletb.2021.136466
K. Yoshida, K. Minomo and K. Ogata, Investigating a clustering on the surface of 120Sn via the (p; pa) reaction, and the validity of the factorization approximation, Phys. Rev. C 94 (2016) 044604. DOI: https://doi.org/10.1103/PhysRevC.94.044604
K. Yoshida, M. G´omez-Ramos, K. Ogata and A. M. Moro, Benchmarking theoretical formalisms for (p; pn) reactions: The 15C(p; pn)14C case, Phys. Rev. C 97 (2018) 024608. DOI: https://doi.org/10.1103/PhysRevC.97.024608
A. Mecca, E. Cravo, A. Deltuva, R. Crespo, A. Cowley, A. Arriaga et al., Interplay of dynamical and structure effects in the observables for 12c(p,2p) near 400 mev with polarized and unpolarized beams, Phys. Lett. B 798 (2019) 134989. DOI: https://doi.org/10.1016/j.physletb.2019.134989
M. G´omez-Ramos, A. Deltuva and A. M. Moro, Benchmarking faddeev and transfer-to-the-continuum calculations for (p; pn) reactions, Phys. Rev. C 102 (2020) 064613. DOI: https://doi.org/10.1103/PhysRevC.102.064613
A. A. Cowley, J. V. Pilcher, J. J. Lawrie and D. M. Whittal, Protons of 200 mev incident on 12C. ii. quasifree proton knockout, Phys. Rev. C 40 (1989) 1950. DOI: https://doi.org/10.1103/PhysRevC.40.1950
D. W. Devins, D. L. Friesel, W. P. Jones, A. C. Attard, I. D. Svalbe, V. C. Officer et al., The 12c(p,2p)11b reaction at 100 mev, Aust. J. Phys. 32 (1979) 323. DOI: https://doi.org/10.1071/PH790323
K. Ogata, K. Yoshida and K. Minomo, Asymmetry of the parallel momentum distribution of (p; pn) reaction residues, Phys. Rev. C 92 (2015) 034616. DOI: https://doi.org/10.1103/PhysRevC.92.034616
E. F. Redish, G. J. Stephenson and G. M. Lerner, Off-shell effects in knockout reactions, Phys. Rev. C 2 (1970) DOI: https://doi.org/10.1103/PhysRevC.2.1665
C. Møller, General properties of the characteristic matrix in the theory of elementary particles i, Det Kongelige Danske Videnskabernes Selskab. Matematisk-fysiske Meddelelser 23 (1945) 1.
A. Kerman, H. McManus and R. Thaler, The scattering of fast nucleons from nuclei, Ann. Phys. 281 (2000) 853. DOI: https://doi.org/10.1006/aphy.2000.6024
G. Kramer, H. Blok and L. Lapik´as, A consistent analysis of (e,e’p) and (d,3he) experiments, Nucl. Phys. A 679 (2001) 267. DOI: https://doi.org/10.1016/S0375-9474(00)00379-1
G. Van Der Steenhoven, H. Blok, E. Jans, M. De Jong, L. Lapik´as, E. Quint et al., Knockout of 1p protons from 12c induced by the (e, e’p) reaction, Nucl. Phys. A 480 (1988) 547. DOI: https://doi.org/10.1016/0375-9474(88)90463-0
K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu and M. Yahiro, Brieva–rook localization of the microscopic nucleon–nucleus potential, Journal of Physics G 37 (2010) 085011. DOI: https://doi.org/10.1088/0954-3899/37/8/085011
M. Toyokawa, K. Minomo and M. Yahiro, Mass-number and isotope dependence of local microscopic optical potentials for polarized proton scattering, Phys. Rev. C 88 (2013) 054602. DOI: https://doi.org/10.1103/PhysRevC.88.054602
K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis and J. Raynal, Advances in Nuclear Physics, vol 25. Springer, Boston, 2002.
R. Machleidt, K. Holinde and C. Elster, The bonn meson-exchange model for the nucleon—nucleon interaction, Phys. Rep. 149 (1987) 1. DOI: https://doi.org/10.1016/S0370-1573(87)80002-9
A. Bohr and B. R. Mottelson, Nuclear Structure Volume 1: Single-Particle Motion. World Scientific, Singapore, 1969.
A. Koning and J. Delaroche, Local and global nucleon optical models from 1 kev to 200 mev, Nucl. Phys. A 713 (2003) 231. DOI: https://doi.org/10.1016/S0375-9474(02)01321-0
A. Auce, A. Ingemarsson, R. Johansson, M. Lantz, G. Tibell, R. F. Carlson et al., Reaction cross sections for protons on 12C;40 Ca;90 Zr, and 208Pb at energies between 80 and 180 mev, Phys. Rev. C 71 (2005) 064606.
R. K. Bhowmik, C. C. Chang, J. P. Didelez and H. D. Holmgren, (p;2p) reaction on 7Li and 12C at 100 mev, Phys. Rev. C 13 (1976) 2105.
C. Samanta, N. S. Chant, P. G. Roos, A. Nadasen, J. Wesick and A. A. Cowley, Tests of the factorized distorted wave impulse approximation for (p,2p) reactions, Phys. Rev. C 34 (1986) 1610. DOI: https://doi.org/10.1103/PhysRevC.34.1610
E. D. Cooper, S. Hama, B. C. Clark and R. L. Mercer, Global dirac phenomenology for proton-nucleus elastic scattering, Phys. Rev. C 47 (1993) 297. DOI: https://doi.org/10.1103/PhysRevC.47.297
T. Noro, T. Wakasa, T. Ishida, H. P. Yoshida et al., Experimental study of (p, 2p) reactions at 392 MeV on 12C, 16O, 40Ca and 208Pb nuclei leading to low-lying states of residual nuclei, Prog. Theor. Exp. Phys. 2020 (2020) 093D02. DOI: https://doi.org/10.1093/ptep/ptaa109
F. G. Perey, Direct Interactions and Nuclear Reaction Mechanism. Gordon and Breach Science Publishers, New York, 1963.
L. J. Titus and F. M. Nunes, Testing the perey effect, Phys. Rev. C 89 (2014) 034609. DOI: https://doi.org/10.1103/PhysRevC.89.034609
F. Perey and B. Buck, A non-local potential model for the scattering of neutrons by nuclei, Nuclear Physics 32 (1962) 353. DOI: https://doi.org/10.1016/0029-5582(62)90345-0
L. G. Arnold, B. C. Clark, R. L. Mercer and P. Schwandt, Dirac optical model analysis of (vec{p}) - (^{40})Ca elastic scattering at 180 mev and the wine-bottle-bottom shape, Phys. Rev. C 23 (1981) 1949. DOI: https://doi.org/10.1103/PhysRevC.23.1949
G. H. Rawitscher, Interpretation of the perey-buck nonlocality in terms of the relativistic optical model formalism, Phys. Rev. C 31 (1985) 1173. DOI: https://doi.org/10.1103/PhysRevC.31.1173
M. A. Franey and W. G. Love, Nucleon-nucleon t-matrix interaction for scattering at intermediate energies, Phys. Rev. C 31 (1985) 488. DOI: https://doi.org/10.1103/PhysRevC.31.488
R. A. Arndt, L. D. Roper, R. A. Bryan, R. B. Clark, B. J. VerWest and P. Signell, Nucleon-nucleon partial-wave analysis to 1 gev, Phys. Rev. D 28 (1983) 97. DOI: https://doi.org/10.1103/PhysRevD.28.97
V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen and J. J. de Swart, Construction of high-quality nn potential models, Phys. Rev. C 49 (1994) 2950. DOI: https://doi.org/10.1103/PhysRevC.49.2950
V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester and J. J. de Swart, Partial-wave analysis of all nucleon-nucleon scattering data below 350 mev, Phys. Rev. C 48 (1993) 792. DOI: https://doi.org/10.1103/PhysRevC.48.792
A. M. Moro, Three-body model for the analysis of quasifree scattering reactions in inverse kinematics, Phys. Rev. C 92 (2015) 044605. DOI: https://doi.org/10.1103/PhysRevC.92.044605
R. B. Wiringa, V. G. J. Stoks and R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking, Phys. Rev. C 51 (1995) 38. DOI: https://doi.org/10.1103/PhysRevC.51.38
R. Machleidt, High-precision, charge-dependent bonn nucleon-nucleon potential, Phys. Rev. C 63 (2001) 024001. DOI: https://doi.org/10.1103/PhysRevC.63.024001
R. Crespo, A. Arriaga, R. Wiringa, E. Cravo, A. Mecca and A. Deltuva, Many-body effects in (p,pn) reactions within a unified approach, Phys. Lett. B 803 (2020) 135355. DOI: https://doi.org/10.1016/j.physletb.2020.135355
R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Updated analysis of nn elastic scattering to 3 GeV, Phys. Rev. C 76 (2007) 025209. DOI: https://doi.org/10.1103/PhysRevC.76.025209
J. V. Pilcher, A. A. Cowley, D. M. Whittal and J. J. Lawrie, Protons of 200 mev incident on 12C. i. coincident proton emission from the continuum, Phys. Rev. C 40 (1989) 1937. DOI: https://doi.org/10.1103/PhysRevC.40.1937
J. V. Pilcher, Ph.D. thesis. University of Cape Town, 1989.
E. D. Cooper, S. Hama and B. C. Clark, Global dirac optical potential from helium to lead, Phys. Rev. C 80 (2009) 034605. DOI: https://doi.org/10.1103/PhysRevC.80.034605
H. F. Arellano, F. A. Brieva and W. G. Love, In-medium full-folding optical model for nucleon-nucleus elastic scattering, Phys. Rev. C 52 (1995) 301. DOI: https://doi.org/10.1103/PhysRevC.52.301
C. A. Bertulani and C. De Conti, Pauli blocking and medium effects in nucleon knockout reactions, Phys. Rev. C 81 (2010) 064603. DOI: https://doi.org/10.1103/PhysRevC.81.064603
T. Noro, Y. Shindo, M. Tabata, T. Akieda, D. Eto, H. Fujioka et al.RCNP Annual Report (2015) .
P. C. Wright, R. G. Storer and I. E. McCarthy, Theory of (p;2p) reactions at medium energies, Phys. Rev. C 17 (1978) 473. DOI: https://doi.org/10.1103/PhysRevC.17.473
J. Lee, J. A. Tostevin, B. A. Brown, F. Delaunay, W. G. Lynch, M. J. Saelim et al., Reduced neutron spectroscopic factors when using potential geometries constrained by hartree-fock calculations, Phys. Rev. C 73 (2006) 044608. DOI: https://doi.org/10.1103/PhysRevC.73.044608
Y. Xu, D. Pang, X. Yun, C. Wen, C. Yuan and J. Lou, Proton–neutron asymmetry independence of reduced single-particle strengths derived from (p,d) reactions, Phys. Lett. B 790 (2019) 308. DOI: https://doi.org/10.1016/j.physletb.2019.01.034
E. T. Li, Z. H. Li, Y. J. Li, B. Guo, Y. B. Wang, D. Y. Pang et al., Proton spectroscopic factor of the 12C ground state from the 12C(11B; 12C) 11B elastic transfer reaction, Phys. Rev. C 90 (2014) 067601.
S. Cohen and D. Kurath, Spectroscopic factors for the 1p shell, Nucl. Phys. A 101 (1967) 1. DOI: https://doi.org/10.1016/0375-9474(67)90285-0
B. A. Brown, P. G. Hansen, B. M. Sherrill and J. A. Tostevin, Absolute spectroscopic factors from nuclear knockout reactions, Phys. Rev. C 65 (2002) 061601. DOI: https://doi.org/10.1103/PhysRevC.65.061601
N. K. Timofeyuk, Spectroscopic factors and asymptotic normalization coefficients for 0p-shell nuclei: Recent updates, Phys. Rev. C 88 (2013) 044315. DOI: https://doi.org/10.1103/PhysRevC.88.044315
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 28-10-2021
Published 27-03-2022