Structural, Electronic, and Magnetic Properties of Sr\(_{1-x}\)Mn\(_{x}\)F\(_{2}\) Alloys Studied by First-principles Calculations
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/16457Abstract
In this work, the structural, electronic, and magnetic properties of the Sr\(_{1-x}\)Mn\(_{x}\)F\(_{2}\) (x = 0, 0.25, 0.5, 0.75, and 1) compounds are investigated using first-principles calculations. Crystallizing in fluorite structure, SrF\(_{2}\) is a magnetism-free indirect gap insulator with band gap of 11.61 eV as determined by the reliable mBJK functional. Mn substitution induces the magnetic insulator behavior as both spin configurations exhibit large band gaps with a strong spin-polarization. Specifically, spin-up energy gaps of 8.554, 7.605, 6.902, and 6.154 eV are obtained for Sr\(_{0.75}\)Mn\(_{0.25}\)F\(_{2}\), Sr\(_{0.5}\)Mn\(_{0.5}\)F\(_{2}\), Sr\(_{0.25}\)Mn\(_{0.75}\)F\(_{2}\), and MnF\(_{2}\), respectively. Whereas, the spin-down state shows larger values of 8.569, 8.864, 9.307, and 9.837 eV, respectively. Consequently, significant magnetization is induced and an integer total spin magnetic moment of 5 \(\mu_{B}\) is obtained, being produced mainly by the spin-up Mn-3d state. Finally, the formation enthalpy and cohesive energy are determined, which indicate good thermodynamic and structural stability of the studied materials. Results suggest that Mn substitution at the Sr-sites of SrF\(_{2}\) compound may be an efficient approach to create new magnetic materials to be used in the spintronic devices.
Downloads
Metrics
References
A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Di´eny, P. Pirro et al., Review on spintronics: Principles and device applications, J. Magn. Magn. Mater. 509 (2020) 166711. DOI: https://doi.org/10.1016/j.jmmm.2020.166711
S. Bader and S. Parkin, Spintronics, Annu. Rev. Condens. Matter Phys. 1 (2010) 71. DOI: https://doi.org/10.1146/annurev-conmatphys-070909-104123
J. Cibert, J.-F. Bobo and U. L¨uders, Development of new materials for spintronics, C R Phys. 6 (2005) 977. DOI: https://doi.org/10.1016/j.crhy.2005.10.008
V. Alijani, J. Winterlik, G. H. Fecher, S. S. Naghavi and C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications, Phys. Rev. B 83 (2011) 184428. DOI: https://doi.org/10.1103/PhysRevB.83.184428
J. Coey and C. Chien, Half-metallic ferromagnetic oxides, MRS Bull. 28 (2003) 720. DOI: https://doi.org/10.1557/mrs2003.212
J.-W. Yoo, C.-Y. Chen, H. Jang, C. Bark, V. Prigodin, C. Eom et al., Spin injection/detection using an organic-based magnetic semiconductor, Nat. Mater. 9 (2010) 638. DOI: https://doi.org/10.1038/nmat2797
T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma and M. Kawasaki, Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics, Appl. Surf. Sci. 223 (2004) 62. DOI: https://doi.org/10.1016/S0169-4332(03)00898-5
F. Ibraheem, M. A. Mahdy, E. A. Mahmoud, J. E. Ortega, C. Rogero, I. A. Mahdy et al., Tuning paramagnetic effect of Co-doped CdS diluted magnetic semiconductor quantum dots, J. Alloys Compd. 834 (2020) 155196. DOI: https://doi.org/10.1016/j.jallcom.2020.155196
K. A. Bogle, S. Ghosh, S. D. Dhole, V. N. Bhoraskar, L.-f. Fu, M.-f. Chi et al., Co:CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant- defect complex formation, and unexpected magnetism, Chem. Mater. 20 (2008) 440. DOI: https://doi.org/10.1021/cm702118w
G. Nabi, M. A. Kamran, Z. Usman, A. Majid, T. Alharbi, A. Abdullah et al., Substitutional site effects of Cr (II) ions on optical and magnetic properties of 1d cds semiconductor nanoneedles for optoelectronic and spintronic applications, Inorg. Chem. Commun. 121 (2020) 108224. DOI: https://doi.org/10.1016/j.inoche.2020.108224
S. Salimian and S. F. Shayesteh, Structural, optical and magnetic properties of Mn-doped CdS diluted magnetic semiconductor nanoparticles, J. Supercond. Nov. Magn. 25 (2012) 2009. DOI: https://doi.org/10.1007/s10948-012-1549-6
B. Poornaprakash, S. Ramu, S.-H. Park, R. Vijayalakshmi and B. Reddy, Room temperature ferromagnetism in Nd doped ZnS diluted magnetic semiconductor nanoparticles, Mater. Lett. 164 (2016) 104. DOI: https://doi.org/10.1016/j.matlet.2015.10.119
D. Saikia, R. Raland and J. Borah, Influence of Fe doping on the structural, optical and magnetic properties of ZnS diluted magnetic semiconductor, Physica E Low Dimens. Syst. Nanostruct. 83 (2016) 56. DOI: https://doi.org/10.1016/j.physe.2016.04.016
C. Bourouis and A. Meddour, First-principles study of structural, electronic and magnetic properties in Cd1-xFe(_x)S diluted magnetic semiconductors, J. Magn. Magn. Mater. 324 (2012) 1040. DOI: https://doi.org/10.1016/j.jmmm.2011.10.022
Z. Abdelli, A. Meddour, C. Bourouis and M. H. Gous, Theoretical investigation of the electronic structure and magnetic properties in ferromagnetic rock-salt and zinc blende structures of 3 d (V)-doped MgS, J. Electron. Mater. 48 (2019) 3794. DOI: https://doi.org/10.1007/s11664-019-07112-x
K. Berriah, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer et al., Theoretical investigation of electronic performance, half-metallicity, and magnetic properties of Cr-substituted BaTe, J. Comput. Electron. 17 (2018) 909. DOI: https://doi.org/10.1007/s10825-018-1192-y
Z. Addadi, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer et al., Electronic and ferromagnetic properties of 3d (V)-doped (BaS) barium sulfide, J. Supercond. Nov. Magn. 30 (2017) 917. DOI: https://doi.org/10.1007/s10948-016-3894-3
M. Sajjad, S. Alay-e Abbas, H. Zhang, N. Noor, Y. Saeed, I. Shakir et al., First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y= N, P, As) compounds, J. Magn. Magn. Mater. 390 (2015) 78. DOI: https://doi.org/10.1016/j.jmmm.2015.04.065
M. M. Obeid, H. R. Jappor, S. J. Edrees, M. M. Shukur, R. Khenata and Y. Mogulkoc, The electronic, half-metallic, and magnetic properties of CaCa1-xCrxS ternary alloys: insights from the first-principle calculations, J. Mol. Graph. Model. 89 (2019) 22. DOI: https://doi.org/10.1016/j.jmgm.2019.02.004
X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian and J. Lin, Solvothermal synthesis of well-dispersed MF2 (M= Ca, Sr, Ba) nanocrystals and their optical properties, Nanotechnology 19 (2008) 075603. DOI: https://doi.org/10.1088/0957-4484/19/7/075603
Z. Quan, D. Yang, C. Li, P. Yang, Z. Cheng, J. Yang et al., SrF2 hierarchical flowerlike structures: Solvothermal synthesis, formation mechanism, and optical properties, Mater. Res. Bull. 44 (2009) 1009. DOI: https://doi.org/10.1016/j.materresbull.2008.11.011
Z. Wang, W. Han and H. Liu, EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1, 1-difluoroethane to vinylidene fluoride, CrystEngComm 21 (2019) 1691. DOI: https://doi.org/10.1039/C8CE01546E
G. W. Rubloff, Far-ultraviolet reflectance spectra and the electronic structure of ionic crystals, Phys. Rev. B 5 (1972) 662. DOI: https://doi.org/10.1103/PhysRevB.5.662
I. Richman, Longitudinal optical phonons in CaF2, SrF2, and BaF2, J. Chem. Phys. 41 (1964) 2836. DOI: https://doi.org/10.1063/1.1726360
S. Jiayue, X. Jianbo, X. Zhang and D. Haiyan, Hydrothermal synthesis of SrF2:Yb3+/Er{3+ micro-/nanocrystals with multiform morphologies and upconversion properties, J. Rare Earths. 29 (2011) 32. DOI: https://doi.org/10.1016/S1002-0721(10)60396-1
C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li et al., Mesoporous SrF2 and SrF2:Ln3+ (Ln= Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties, J. Phys. Chem. C 114 (2010) 6928. DOI: https://doi.org/10.1021/jp911775z
C. Park and S. Park, Effective up-conversion behaviors for Er3+–Yb3+-doped SrF2 phosphors synthesized by flux-assist method, J. Mater. Sci.: Mater. Electron. 31 (2020) 832. DOI: https://doi.org/10.1007/s10854-019-02592-3
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133
K. Schwarz and P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259. DOI: https://doi.org/10.1016/S0927-0256(03)00112-5
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin et al., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406. DOI: https://doi.org/10.1103/PhysRevLett.100.136406
A. Becke and E. Johnson, A simple effective potential for exchange., J. Chem. Phys. 124 (2006) 221101. DOI: https://doi.org/10.1063/1.2213970
F. Tran, P. Blaha and K. Schwarz, Band gap calculations with Becke–Johnson exchange potential, J. Phys. Condens. Matter. 19 (2007) 196208. DOI: https://doi.org/10.1088/0953-8984/19/19/196208
F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009) 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401
D. Koller, F. Tran and P. Blaha, Improving the modified Becke-Johnson exchange potential, Phys. Rev. B 85 (2012) 155109. DOI: https://doi.org/10.1103/PhysRevB.85.155109
H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res. Solid Earth 83 (1978) 1257. DOI: https://doi.org/10.1029/JB083iB03p01257
R. Wyckoff, Crystal Structures, no. v. 1 in Crystal Structures. Wiley, 1963.
L. Vegard, Formation of mixed crystals by solid-state contact, J. Phys. 5 (1921) 393. DOI: https://doi.org/10.1007/BF01327675
B. Jobst, D. Hommel, U. Lunz, T. Gerhard and G. Landwehr, E 0 band-gap energy and lattice constant of ternary Zn1-xMgxSe as functions of composition, Appl. Phys. Lett. 69 (1996) 97. DOI: https://doi.org/10.1063/1.118132
F. E. H. Hassan and H. Akbarzadeh, First-principles investigation of BNxP1-x, BNxAs1-x and BPxAs1-x ternary alloys, Mater Sci Eng B Solid State Mater Adv Technol. 121 (2005) 170.
S. Gehrsitz, H. Sigg, N. Herres, K. Bachem, K. K¨ohler and F. Reinhart, Compositional dependence of the elastic constants and the lattice parameter of Al(_x)xGa1−xAs, Phys. Rev. B 60 (1999) 11601 DOI: https://doi.org/10.1103/PhysRevB.60.11601
G.-X. Miao and J. S. Moodera,Spin manipulation with magnetic semiconductor barriers,Physical ChemistryChemical Physics17(2015) 751. DOI: https://doi.org/10.1039/C4CP04599H
J. Radovanović, V. Milanović, Z. Ikonić and D. Indjin, Optimization of spin-filtering properties in dilutedmagnetic semiconductor heterostructures, J. Appl. Phys. 99 (2006) 073905. DOI: https://doi.org/10.1063/1.2188052
S. Belbachir, C. Abbes, M. Belkaid and A. H. Belbachir,First-principle study of structural, elastic, electronicand magnetic properties of the quaternary heusler CoZrFeP, J. Supercond. Nov. Magn. 33 (2020) 2899. DOI: https://doi.org/10.1007/s10948-020-05598-9
X. Li, J. Lu, G. Peng, L. Jin and S. Wei,Solvothermal synthesis of MnF2nanocrystals and the first-principlestudy of its electronic structure, Journal of Physics and Chemistry of Solids 70 (2009) 609. DOI: https://doi.org/10.1016/j.jpcs.2009.01.004
J. Zhao, H. Zhang, C. Niu, J. Zhang, Z. Zeng and X. Wang, Investigations of high-pressure properties of mnf2based on the first-principles method, The Journal of Physical Chemistry C 125 (2021) 21709. DOI: https://doi.org/10.1021/acs.jpcc.1c06568
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 12-11-2021
Published 27-03-2022