Structural, Electronic, and Magnetic Properties of Sr\(_{1-x}\)Mn\(_{x}\)F\(_{2}\) Alloys Studied by First-principles Calculations

Hoat Do Minh, Jonathan Guerrero Sanchez, Rodrigo Ponce Perez, Juan Francisco Rivas Silva, Gregorio Hernandez Cocoletzi
Author affiliations

Authors

  • Hoat Do Minh \(^1\)Computational Laboratory for Advanced Materials and Structures, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    \(^2\)Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
  • Jonathan Guerrero Sanchez Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California, Código Postal 22800, Mexico
  • Rodrigo Ponce Perez Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California, Código Postal 22800, Mexico
  • Juan Francisco Rivas Silva Benemérita Universidad Autónoma de Puebla, Instituto de Física, Apartado Postal J-48, Puebla 72570, Mexico
  • Gregorio Hernandez Cocoletzi Benemérita Universidad Autónoma de Puebla, Instituto de Física, Apartado Postal J-48, Puebla 72570, Mexico

DOI:

https://doi.org/10.15625/0868-3166/16457

Abstract

In this work, the structural, electronic, and magnetic properties of the Sr\(_{1-x}\)Mn\(_{x}\)F\(_{2}\) (x = 0, 0.25, 0.5, 0.75, and 1) compounds are investigated using first-principles calculations. Crystallizing in fluorite structure, SrF\(_{2}\) is a magnetism-free indirect gap insulator with band gap of 11.61 eV as determined by the reliable mBJK functional. Mn substitution induces the magnetic insulator behavior as both spin configurations exhibit large band gaps with a strong spin-polarization. Specifically, spin-up energy gaps of 8.554, 7.605, 6.902, and 6.154 eV are obtained for Sr\(_{0.75}\)Mn\(_{0.25}\)F\(_{2}\), Sr\(_{0.5}\)Mn\(_{0.5}\)F\(_{2}\), Sr\(_{0.25}\)Mn\(_{0.75}\)F\(_{2}\), and MnF\(_{2}\), respectively. Whereas, the spin-down state shows larger values of 8.569, 8.864, 9.307, and 9.837 eV, respectively. Consequently, significant magnetization is induced and an integer total spin magnetic moment of 5 \(\mu_{B}\) is obtained, being produced mainly by the spin-up Mn-3d state. Finally, the formation enthalpy and cohesive energy are determined, which indicate good thermodynamic and structural stability of the studied materials. Results suggest that Mn substitution at the Sr-sites of SrF\(_{2}\) compound may be an efficient approach to create new magnetic materials to be used in the spintronic devices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Di´eny, P. Pirro et al., Review on spintronics: Principles and device applications, J. Magn. Magn. Mater. 509 (2020) 166711. DOI: https://doi.org/10.1016/j.jmmm.2020.166711

S. Bader and S. Parkin, Spintronics, Annu. Rev. Condens. Matter Phys. 1 (2010) 71. DOI: https://doi.org/10.1146/annurev-conmatphys-070909-104123

J. Cibert, J.-F. Bobo and U. L¨uders, Development of new materials for spintronics, C R Phys. 6 (2005) 977. DOI: https://doi.org/10.1016/j.crhy.2005.10.008

V. Alijani, J. Winterlik, G. H. Fecher, S. S. Naghavi and C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications, Phys. Rev. B 83 (2011) 184428. DOI: https://doi.org/10.1103/PhysRevB.83.184428

J. Coey and C. Chien, Half-metallic ferromagnetic oxides, MRS Bull. 28 (2003) 720. DOI: https://doi.org/10.1557/mrs2003.212

J.-W. Yoo, C.-Y. Chen, H. Jang, C. Bark, V. Prigodin, C. Eom et al., Spin injection/detection using an organic-based magnetic semiconductor, Nat. Mater. 9 (2010) 638. DOI: https://doi.org/10.1038/nmat2797

T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma and M. Kawasaki, Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics, Appl. Surf. Sci. 223 (2004) 62. DOI: https://doi.org/10.1016/S0169-4332(03)00898-5

F. Ibraheem, M. A. Mahdy, E. A. Mahmoud, J. E. Ortega, C. Rogero, I. A. Mahdy et al., Tuning paramagnetic effect of Co-doped CdS diluted magnetic semiconductor quantum dots, J. Alloys Compd. 834 (2020) 155196. DOI: https://doi.org/10.1016/j.jallcom.2020.155196

K. A. Bogle, S. Ghosh, S. D. Dhole, V. N. Bhoraskar, L.-f. Fu, M.-f. Chi et al., Co:CdS diluted magnetic semiconductor nanoparticles: radiation synthesis, dopant- defect complex formation, and unexpected magnetism, Chem. Mater. 20 (2008) 440. DOI: https://doi.org/10.1021/cm702118w

G. Nabi, M. A. Kamran, Z. Usman, A. Majid, T. Alharbi, A. Abdullah et al., Substitutional site effects of Cr (II) ions on optical and magnetic properties of 1d cds semiconductor nanoneedles for optoelectronic and spintronic applications, Inorg. Chem. Commun. 121 (2020) 108224. DOI: https://doi.org/10.1016/j.inoche.2020.108224

S. Salimian and S. F. Shayesteh, Structural, optical and magnetic properties of Mn-doped CdS diluted magnetic semiconductor nanoparticles, J. Supercond. Nov. Magn. 25 (2012) 2009. DOI: https://doi.org/10.1007/s10948-012-1549-6

B. Poornaprakash, S. Ramu, S.-H. Park, R. Vijayalakshmi and B. Reddy, Room temperature ferromagnetism in Nd doped ZnS diluted magnetic semiconductor nanoparticles, Mater. Lett. 164 (2016) 104. DOI: https://doi.org/10.1016/j.matlet.2015.10.119

D. Saikia, R. Raland and J. Borah, Influence of Fe doping on the structural, optical and magnetic properties of ZnS diluted magnetic semiconductor, Physica E Low Dimens. Syst. Nanostruct. 83 (2016) 56. DOI: https://doi.org/10.1016/j.physe.2016.04.016

C. Bourouis and A. Meddour, First-principles study of structural, electronic and magnetic properties in Cd1-xFe(_x)S diluted magnetic semiconductors, J. Magn. Magn. Mater. 324 (2012) 1040. DOI: https://doi.org/10.1016/j.jmmm.2011.10.022

Z. Abdelli, A. Meddour, C. Bourouis and M. H. Gous, Theoretical investigation of the electronic structure and magnetic properties in ferromagnetic rock-salt and zinc blende structures of 3 d (V)-doped MgS, J. Electron. Mater. 48 (2019) 3794. DOI: https://doi.org/10.1007/s11664-019-07112-x

K. Berriah, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer et al., Theoretical investigation of electronic performance, half-metallicity, and magnetic properties of Cr-substituted BaTe, J. Comput. Electron. 17 (2018) 909. DOI: https://doi.org/10.1007/s10825-018-1192-y

Z. Addadi, B. Doumi, A. Mokaddem, M. Elkeurti, A. Sayede, A. Tadjer et al., Electronic and ferromagnetic properties of 3d (V)-doped (BaS) barium sulfide, J. Supercond. Nov. Magn. 30 (2017) 917. DOI: https://doi.org/10.1007/s10948-016-3894-3

M. Sajjad, S. Alay-e Abbas, H. Zhang, N. Noor, Y. Saeed, I. Shakir et al., First principles study of structural, elastic, electronic and magnetic properties of Mn-doped AlY (Y= N, P, As) compounds, J. Magn. Magn. Mater. 390 (2015) 78. DOI: https://doi.org/10.1016/j.jmmm.2015.04.065

M. M. Obeid, H. R. Jappor, S. J. Edrees, M. M. Shukur, R. Khenata and Y. Mogulkoc, The electronic, half-metallic, and magnetic properties of CaCa1-xCrxS ternary alloys: insights from the first-principle calculations, J. Mol. Graph. Model. 89 (2019) 22. DOI: https://doi.org/10.1016/j.jmgm.2019.02.004

X. Zhang, Z. Quan, J. Yang, P. Yang, H. Lian and J. Lin, Solvothermal synthesis of well-dispersed MF2 (M= Ca, Sr, Ba) nanocrystals and their optical properties, Nanotechnology 19 (2008) 075603. DOI: https://doi.org/10.1088/0957-4484/19/7/075603

Z. Quan, D. Yang, C. Li, P. Yang, Z. Cheng, J. Yang et al., SrF2 hierarchical flowerlike structures: Solvothermal synthesis, formation mechanism, and optical properties, Mater. Res. Bull. 44 (2009) 1009. DOI: https://doi.org/10.1016/j.materresbull.2008.11.011

Z. Wang, W. Han and H. Liu, EDTA-assisted hydrothermal synthesis of cubic SrF2 particles and their catalytic performance for the pyrolysis of 1-chloro-1, 1-difluoroethane to vinylidene fluoride, CrystEngComm 21 (2019) 1691. DOI: https://doi.org/10.1039/C8CE01546E

G. W. Rubloff, Far-ultraviolet reflectance spectra and the electronic structure of ionic crystals, Phys. Rev. B 5 (1972) 662. DOI: https://doi.org/10.1103/PhysRevB.5.662

I. Richman, Longitudinal optical phonons in CaF2, SrF2, and BaF2, J. Chem. Phys. 41 (1964) 2836. DOI: https://doi.org/10.1063/1.1726360

S. Jiayue, X. Jianbo, X. Zhang and D. Haiyan, Hydrothermal synthesis of SrF2:Yb3+/Er{3+ micro-/nanocrystals with multiform morphologies and upconversion properties, J. Rare Earths. 29 (2011) 32. DOI: https://doi.org/10.1016/S1002-0721(10)60396-1

C. Zhang, Z. Hou, R. Chai, Z. Cheng, Z. Xu, C. Li et al., Mesoporous SrF2 and SrF2:Ln3+ (Ln= Ce, Tb, Yb, Er) hierarchical microspheres: hydrothermal synthesis, growing mechanism, and luminescent properties, J. Phys. Chem. C 114 (2010) 6928. DOI: https://doi.org/10.1021/jp911775z

C. Park and S. Park, Effective up-conversion behaviors for Er3+–Yb3+-doped SrF2 phosphors synthesized by flux-assist method, J. Mater. Sci.: Mater. Electron. 31 (2020) 832. DOI: https://doi.org/10.1007/s10854-019-02592-3

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133. DOI: https://doi.org/10.1103/PhysRev.140.A1133

K. Schwarz and P. Blaha, Solid state calculations using WIEN2k, Comput. Mater. Sci. 28 (2003) 259. DOI: https://doi.org/10.1016/S0927-0256(03)00112-5

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin et al., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008) 136406. DOI: https://doi.org/10.1103/PhysRevLett.100.136406

A. Becke and E. Johnson, A simple effective potential for exchange., J. Chem. Phys. 124 (2006) 221101. DOI: https://doi.org/10.1063/1.2213970

F. Tran, P. Blaha and K. Schwarz, Band gap calculations with Becke–Johnson exchange potential, J. Phys. Condens. Matter. 19 (2007) 196208. DOI: https://doi.org/10.1088/0953-8984/19/19/196208

F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009) 226401. DOI: https://doi.org/10.1103/PhysRevLett.102.226401

D. Koller, F. Tran and P. Blaha, Improving the modified Becke-Johnson exchange potential, Phys. Rev. B 85 (2012) 155109. DOI: https://doi.org/10.1103/PhysRevB.85.155109

H. J. Monkhorst and J. D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res. Solid Earth 83 (1978) 1257. DOI: https://doi.org/10.1029/JB083iB03p01257

R. Wyckoff, Crystal Structures, no. v. 1 in Crystal Structures. Wiley, 1963.

L. Vegard, Formation of mixed crystals by solid-state contact, J. Phys. 5 (1921) 393. DOI: https://doi.org/10.1007/BF01327675

B. Jobst, D. Hommel, U. Lunz, T. Gerhard and G. Landwehr, E 0 band-gap energy and lattice constant of ternary Zn1-xMgxSe as functions of composition, Appl. Phys. Lett. 69 (1996) 97. DOI: https://doi.org/10.1063/1.118132

F. E. H. Hassan and H. Akbarzadeh, First-principles investigation of BNxP1-x, BNxAs1-x and BPxAs1-x ternary alloys, Mater Sci Eng B Solid State Mater Adv Technol. 121 (2005) 170.

S. Gehrsitz, H. Sigg, N. Herres, K. Bachem, K. K¨ohler and F. Reinhart, Compositional dependence of the elastic constants and the lattice parameter of Al(_x)xGa1−xAs, Phys. Rev. B 60 (1999) 11601 DOI: https://doi.org/10.1103/PhysRevB.60.11601

G.-X. Miao and J. S. Moodera,Spin manipulation with magnetic semiconductor barriers,Physical ChemistryChemical Physics17(2015) 751. DOI: https://doi.org/10.1039/C4CP04599H

J. Radovanović, V. Milanović, Z. Ikonić and D. Indjin, Optimization of spin-filtering properties in dilutedmagnetic semiconductor heterostructures, J. Appl. Phys. 99 (2006) 073905. DOI: https://doi.org/10.1063/1.2188052

S. Belbachir, C. Abbes, M. Belkaid and A. H. Belbachir,First-principle study of structural, elastic, electronicand magnetic properties of the quaternary heusler CoZrFeP, J. Supercond. Nov. Magn. 33 (2020) 2899. DOI: https://doi.org/10.1007/s10948-020-05598-9

X. Li, J. Lu, G. Peng, L. Jin and S. Wei,Solvothermal synthesis of MnF2nanocrystals and the first-principlestudy of its electronic structure, Journal of Physics and Chemistry of Solids 70 (2009) 609. DOI: https://doi.org/10.1016/j.jpcs.2009.01.004

J. Zhao, H. Zhang, C. Niu, J. Zhang, Z. Zeng and X. Wang, Investigations of high-pressure properties of mnf2based on the first-principles method, The Journal of Physical Chemistry C 125 (2021) 21709. DOI: https://doi.org/10.1021/acs.jpcc.1c06568

Downloads

Published

27-03-2022

How to Cite

[1]
H. Do Minh, J. G. Sanchez, R. P. . Perez, J. F. . Rivas Silva, and G. H. Cocoletzi, “Structural, Electronic, and Magnetic Properties of Sr\(_{1-x}\)Mn\(_{x}\)F\(_{2}\) Alloys Studied by First-principles Calculations”, Comm. Phys., vol. 32, no. 2, p. 157, Mar. 2022.

Issue

Section

Papers
Received 21-08-2021
Accepted 12-11-2021
Published 27-03-2022