Compression Effects on Structural Relaxation Process of Amorphous Indomethacin

Tran Dinh Cuong, Anh D. Phan
Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/15377

Keywords:

compression effects, structural relaxation, amorphous drug, indomethacin

Abstract

Indomethacin is a common nonsteroidal anti-inflammatory drug, but its glass transition behaviors remain ambiguous. Here we present a simple theoretical approach to investigate the molecular mobility of amorphous indomethacin under compression. In our model, the relaxation of a particle is governed by its nearest-neighbor interactions and long-range cooperative effects of fluid surroundings. On that basis, the temperature and pressure dependence of the structural relaxation time is deduced from the thermal expansion process. Additionally, we also consider correlations between the activated dynamics and the shear response in the deeply supercooled state. Our numerical calculations agree quantitatively well with previous experimental works.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

R. J. Flower, Nat. Rev. Drug Discov. 2 (2003) 179.

https://www.nature.com/articles/nrd1034

T. X. Xiang and B. D. Anderson, Mol. Pharm. 10 (2013) 102.

https://pubs.acs.org/doi/abs/10.1021/mp3000698

X. Yuan, T. X. Xiang, B. D. Anderson, and E. J. Munson, Mol. Pharm. 12 (2015) 4518.

https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.5b00705

S. Lucas,Headache 56 (2016) 436.

https://headachejournal.onlinelibrary.wiley.com/doi/abs/10.1111/head.12769

D. W. Dodick, Curr. Pain Headache Rep. 8 (2004) 19.

https://link.springer.com/article/10.1007/s11916-004-0036-6

K. C. Sekar and K. E. Corff, J. Perinatol. 28 (2008) 60.

https://www.nature.com/articles/jp200852

H. Zhang, J. Fan, J. Wang, B. Dou, F. Zhou, J. Cao, J. Qu, Z. Cao, W. Zhao, and X. Peng, J. Am. Chem. Soc. 135 (2013) 17469.

https://pubs.acs.org/doi/abs/10.1021/ja4085308

H. Zhang, J. Fan, J. Wang, S. Zhang, B. Dou, and X. Peng, J. Am. Chem. Soc. 135 (2013) 11663.

https://pubs.acs.org/doi/abs/10.1021/ja4056905

X. Cao, T. Gao, J. Dong, X. Jiang, H. Zou, T. Liu, K. Yu, and W. Zeng, New J. Chem. 43 (2019) 7874.

https://pubs.rsc.org/lv/content/articlelanding/2019/nj/c9nj01473j/unauth#!divAbstract

www.drugbank.ca/drugs/DB00328

N. N. Shahin, N. F. Abdelkader, and M. M. Safar, Sci. Rep. 8 (2018) 1.

https://www.nature.com/articles/s41598-018-22727-6

M. Rams-Baron, R. Jachowicz, E. Boldyreva, D. Zhou, W. Jamroz, and M. Paluch, Amorphous Drugs, Springer, Heidelberg (2018).

https://www.springer.com/gp/book/9783319720012

B. C. Hancock and M. Parks, Pharm. Res. 17 (2000) 397.

https://link.springer.com/article/10.1023/A:1007516718048

K. Grzybowska, S. Capaccioli, and M. Paluch, Adv. Drug Deliv. Rev. 100 (2016) 158.

https://www.sciencedirect.com/science/article/pii/S0169409X15300028?casa_token=I-vPuS4nQAQAAAAA:e1ObtRnU8GobOewyKlBs38URvJwi6ry-0ugB-NesZb1xaoo3qcPKrX9Ix7bbWW4KcTzajdDDiWQ

E. Kaminska, K. Adrjanowicz, D. Zakowiecki, B. Milanowski, M. Tarnacka, L. Hawelek, M. Dulski, J. Pilch, W.Smolka, I. Kaczmarczyk-Sedlak, and K. Kaminski, Pharm. Res. 31 (2014) 2887.

https://link.springer.com/article/10.1007/s11095-014-1385-4

S. Mohapatra, S. Samanta, K. Kothari, P. Mistry, and R. Suryanarayanan, Cryst. Growth Des. 17 (2017) 3142.

https://pubs.acs.org/doi/abs/10.1021/acs.cgd.7b00096

Z. Wojnarowska, K. Adrjanowicz, P. Wlodarczyk, E. Kaminska, K. Kaminski, K. Grzybowska, R. Wrzalik, M.Paluch, and K. L. Ngai, J. Phys. Chem. B 113 (2009) 12536.

https://pubs.acs.org/doi/abs/10.1021/jp905162r

A. D. Phan, J. Knapik-Kowalczuk, M. Paluch, T. X. Hoang, and K. Wakabayashi, Mol. Pharm. 16 (2019) 2992.

https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.9b00230

A. D. Phan, K. Wakabayashi, M. Paluch, and V. D. Lam, RSC Adv. 9 (2019) 40214.

https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra08441j

A. D. Phan, T. T. T. Thuy, N. T. K. An, J. Knapik-Kowalczuk, M. Paluch, and K. Wakabayashi, AIP Adv. 10 (2020) 025128.

https://aip.scitation.org/doi/full/10.1063/1.5139101

A. D. Phan, A. Jedrzejowska, M. Paluch, and K. Wakabayashi, ACS Omega 5 (2020) 11035.

https://pubs.acs.org/doi/abs/10.1021/acsomega.0c00860

A. D. Phan and K. Wakabayashi, Pharmaceutics 12 (2020) 177.

https://www.mdpi.com/1999-4923/12/2/177/htm

J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London (2006).

https://www.elsevier.com/books/theory-of-simple-liquids/hansen/978-0-12-370535-8

K. S. Schweizer and E. J. Saltzman, J. Chem. Phys. 119 (2003) 1181.

https://aip.scitation.org/doi/abs/10.1063/1.1578632

K. S. Schweizer, J. Chem. Phys. 123 (2005) 244501.

https://aip.scitation.org/doi/abs/10.1063/1.2137701

G. Ngele and J. Bergenholtz, J. Chem. Phys. 108 (1998) 9893.

https://aip.scitation.org/doi/abs/10.1063/1.476428

A. D. Phan and K. S. Schweizer, J. Phys. Chem. B 122 (2018) 8451.

https://pubs.acs.org/doi/abs/10.1021/acs.jpcb.8b04975

K. S. Schweizer, and G. Yatsenko, J. Chem. Phys. 127 (2007) 164505.

https://aip.scitation.org/doi/abs/10.1063/1.2780861

S. Mirigian and K. S. Schweizer, J. Phys. Chem. Lett. 4 (2013) 3648.

https://pubs.acs.org/doi/abs/10.1021/jz4018943

S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140 (2014) 194506.

https://aip.scitation.org/doi/abs/10.1063/1.4874842

S. Mirigian and K. S. Schweizer, J. Chem. Phys. 140 (2014) 194507.

https://aip.scitation.org/doi/abs/10.1063/1.4874843

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Permagon Press, London (1975).

S. P. Andersson and O. Andersson, Macromolecules 31 (1998) 2999.

https://pubs.acs.org/doi/abs/10.1021/ma971282z

N. Dass and M. Kumari, Phys. Status Solidi (b) 124 (1984) 531.

https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.2221240211

I. Avramov, A. Grzybowski, and M. Paluch, J. Non-Cryst. Solids 355 (2009) 733.

https://www.sciencedirect.com/science/article/pii/S0022309309000878?casa_token=AIbdv8I0bIAAAAAA:RrmsLS_7jfL6hCmVTeSMP0ZXH78GH3evogNicPcvlJiWJVVO3FFKo_MZemx1kYnQ126ArRPBfYs

M. Paluch, C. M. Roland, J. Gapinski, and A. Patkowski, J. Chem. Phys. 118 (2003) 3177.

https://aip.scitation.org/doi/abs/10.1063/1.1538597

Z. Wojnarowska, K. Adrjanowicz, K. Kaminski, L. Hawelek, and M. Paluch, J. Phys. Chem. B 114 (2010) 14815.

https://pubs.acs.org/doi/abs/10.1021/jp104444q

K. Adrjanowicz, K. Kaminski, Z. Wojnarowska, M. Dulski, L. Hawelek, S. Pawlus, M. Paluch, and W. Sawicki, J. Phys. Chem. B 114 (2010) 6579.

https://pubs.acs.org/doi/abs/10.1021/jp910009b

K. Adrjanowicz, K. Kaminski, M. Paluch, and K. Niss, Cryst. Growth Des. 15 (2015) 3257.

https://pubs.acs.org/doi/abs/10.1021/acs.cgd.5b00373

A. Patkowski, J. Gapinski, and G. Meier, Colloid Polym. Sci. 282 (2004) 874.

https://link.springer.com/article/10.1007/s00396-004-1102-7

C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68 (2005) 1405.

https://iopscience.iop.org/article/10.1088/0034-4885/68/6/R03/meta?casa_token=j1aaYOl14zoAAAAA:VBw83To17Muz1zi5tEwlp3El92GyztJyKtui7Ejxl85rdjykhzPJPwagRqE7CwMZxZToYMSZLoVlVm0

R. Casalini and C. M. Roland, Phys. Rev. B 71 (2005) 014210.

https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.014210

M. Paluch, E. Masiewicz, A. Grzybowski, S. Pawlus, J. Pionteck, and Z. Wojnarowska, J. Chem. Phys. 141 (2014) 134507.

https://aip.scitation.org/doi/abs/10.1063/1.4897208

E. Masiewicz, A. Grzybowski, A. P. Sokolov, and M. Paluch, J. Phys. Chem. Lett. 3 (2012) 2643.

https://pubs.acs.org/doi/abs/10.1021/jz301168c

T. D. Cuong, A. D. Phan, K. Wakabayashi, and P. T. Huy, J. Non-Cryst. Solids 538 (2020) 120024.

https://www.sciencedirect.com/science/article/pii/S0022309320301411?casa_token=pwbttbP8nzAAAAAA:2lI245JOZA3TmMppms_IRhuvQBs5bq0txdxSeT_oPpxolFjlLbUacp2ZTmVu50CbXSC-8QoJtCQ

J. C. Dyre, J. Non-Cryst. Solids 235 (1998) 142.

https://www.sciencedirect.com/science/article/pii/S002230939800502X?casa_token=YKIemLEHHp4AAAAA:TsnJuCQA37D8OibTxtbExnNqzZypfKVhh1ogoyWvZjwQYkYaK9RTe-y-IIscQTLqA_FgnmckV2E

C. Klieber, T. Hecksher, T. Pezeril, D. H. Torchinsky, J. C. Dyre, and K. A. Nelson, J. Chem. Phys. 138 (2013) 12A544.

https://aip.scitation.org/doi/abs/10.1063/1.4789948

K. L. Kearns, T. Still, G. Fytas, and M. D. Ediger, Adv. Mater. 22 (2010) 39.

https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200901673

T. Hecksher and J. C. Dyre, J. Non-Cryst. Solids 407 (2015) 14.

https://www.sciencedirect.com/science/article/pii/S0022309314004529?casa_token=5D_HhpBPMLcAAAAA:eKMNI01BXz4Tj1Kw6s2dX1-s6kD8zhkl6yVM2zuv5tedGlcI6kGhT-u-TlDFS4dzIUmCDXaS_i0

T. Hecksher, D. H. Torchinsky, C. Klieber, J. A. Johnson, J. C. Dyre, and K. A. Nelson, Proc. Natl. Acad. Sci.U.S.A. 114 (2017) 8710.

https://www.pnas.org/content/114/33/8710.short

Downloads

Published

06-01-2021

How to Cite

[1]
T. D. Cuong and A. D. Phan, Compression Effects on Structural Relaxation Process of Amorphous Indomethacin, Comm. Phys. 31 (2021) 67. DOI: https://doi.org/10.15625/0868-3166/15377.

Issue

Section

Papers
Received 15-08-2020
Accepted 16-10-2020
Published 06-01-2021