Effect of Sm and Mn Co-doping on the Crystal Structure and Magnetic Properties of \(\text{BiFeO}_{3}\) Polycrystalline Ceramics

Hao Nguyen Van, Hai Pham Van, Thao Truong Thi, Hong Nguyen Thi Minh, Tho Pham Truong
Author affiliations

Authors

  • Hao Nguyen Van Faculty of Physics and Technology, Thai Nguyen University of Sciences Tan Thinh ward, Thai Nguyen City, Vietnam
  • Hai Pham Van Faculty of Physics, Hanoi National University of Education. 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
  • Thao Truong Thi Thai Nguyen University of Sciences
  • Hong Nguyen Thi Minh Faculty of Engineering Physics and Nanotechnology, VNU University of Engineering and Technology
  • Tho Pham Truong Department of Physics and Technology, Thai Nguyen University of Sciences Tan Thinh ward, Thai Nguyen City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/30/3/14882

Keywords:

BiFeO3-multiferroics, crystal structure, magnetic properties.

Abstract

The crystal structure, phonon vibration, microstructure, and magnetic properties have been investigated in multiferroics Bi0.9Sm0.1Fe1-xMnxO3 for \(x = 0.02 – 0.1\). The structural analysis by XRD and Rietveld refinement suggest that Mn doping compounds crystallize in the polar R3c rhombohedral symmetry (isostructural with BiFeO3). Raman analysis confirms no structural transformation but the change of line widths and peak intensities reveal the lattice distortion in Mn-substitution samples. The study of microstructure shows no obvious change of grain size and shape. The magnetic properties of the as-prepared samples show the linear magnetic field dependence of magnetization, suggesting the antiferromagnetic feature of polycrystalline ceramics. The field dependence of magnetization measured after two-years synthesis and after applying an electric field reveal a decrease of maximum magnetization but the hysteresis loops retain the antiferromagnetic behavior. The implication of these results is that the magnetic properties of single structural phase compound, including coercivity and remanent magnetization, do not show the aging behavior as observed in the morphotropic phase boundary systems.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J. M. Hu, Z. Li, L. Q. Chen, and C. W. Nan, Nat. Commun. 2, (2011).

J. M. Hu, L. Q. Chen, and C. W. Nan, Adv. Mater. 28, 15 (2016). DOI: https://doi.org/10.1002/adma.201502824

V. G. Bhide and M. S. Multani, Solid State Commun. 3, 271 (1965). DOI: https://doi.org/10.1016/0038-1098(65)90031-1

D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl. Phys. Lett. 91, 10 (2007). DOI: https://doi.org/10.1063/1.2753390

C. Tab Ares-Muñoz, J. P. Rivera, A. Bezinges, A. Monnier, and H. Schmid, Jpn. J. Appl. Phys. 24, 1051 (1985). DOI: https://doi.org/10.7567/JJAPS.24S2.1051

J. Singh, A. Agarwal, S. Sanghi, M. Yadav, T. Bhasin, and U. Bhakar, Appl. Phys. A Mater. Sci. Process. 125, 0 (2019). DOI: https://doi.org/10.1007/s00339-019-2431-1

D. V. Karpinsky, I. O. Troyanchuk, A. V. Trukhanov, M. Willinger, V. A. Khomchenko, A. L. Kholkin, V. Sikolenko, T. Maniecki, W. Maniukiewicz, S. V. Dubkov, and M. V. Silibin, Mater. Res. Bull. 112, 420 (2019). DOI: https://doi.org/10.1016/j.materresbull.2018.08.002

F. Pedro-García, L. G. Betancourt-Cantera, A. M. Bolarín-Miró, C. A. Cortés-Escobedo, A. Barba-Pingarrón, and F. Sánchez-De Jesús, Ceram. Int. 45, 10114 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.02.058

S. K. S. Patel, J. H. Lee, M. K. Kim, B. Bhoi, and S. K. Kim, J. Mater. Chem. C 6, 526 (2018). DOI: https://doi.org/10.1039/C7TC05362B

L. Pan, Q. Yuan, Z. Liao, L. Qin, J. Bi, D. Gao, J. Wu, H. Wu, and Z. G. Ye, J. Alloys Compd. 762, 184 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.05.241

P. T. Phong, N. H. Thoan, N. T. M. Hong, N. V. Hao, L. T. Ha, T. N. Bach, T. D. Thanh, C. T. A. Xuan, N. V. Quang, N. V. Dang, T. A. Ho, and P. T. Tho, J. Alloys Compd. 152245 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.152245

D. V. Karpinsky, I. O. Troyanchuk, M. Tovar, V. Sikolenko, V. Efimov, and A. L. Kholkin, J. Alloys Compd. 555, 101 (2013). DOI: https://doi.org/10.1016/j.jallcom.2012.12.055

D. V. Karpinsky, I. O. Troyanchuk, V. Sikolenko, V. Efimov, E. Efimova, M. Willinger, A. N. Salak, and A. L. Kholkin, J. Mater. Sci. 49, 6937 (2014). DOI: https://doi.org/10.1007/s10853-014-8398-6

E. Gil-González, A. Perejón, P. E. Sánchez-Jiménez, M. A. Hayward, J. M. Criado, M. J. Sayagués, and L. A. Pérez-Maqueda, J. Alloys Compd. 711, 541 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.03.289

Z. Liao, W. Sun, Q. Zhang, J. F. Li, and J. Zhu, J. Appl. Phys. 125, (2019). DOI: https://doi.org/10.1007/s00340-019-7312-y

A. A. Belik, A. M. Abakumov, A. A. Tsirlin, J. Hadermann, J. Kim, G. Van Tendeloo, and E. Takayama-Muromachi, Chem. Mater. 23, 4505 (2011). DOI: https://doi.org/10.1021/cm201774y

K. Shigematsu, T. Asakura, H. Yamamoto, K. Shimizu, M. Katsumata, H. Shimizu, Y. Sakai, H. Hojo, K. Mibu, and M. Azuma, Appl. Phys. Lett. 112, 1 (2018). DOI: https://doi.org/10.1063/1.5024710

S. M. Selbach, T. Tybell, M. A. Einarsrud, and T. Grande, Chem. Mater. 21, 5176 (2009). DOI: https://doi.org/10.1021/cm9021084

J. Anthoniappen, W. S. Chang, A. K. Soh, C. S. Tu, P. Vashan, and F. S. Lim, Acta Mater. 132, 174 (2017). DOI: https://doi.org/10.1016/j.actamat.2017.04.034

M. D. Chermahini, I. Safaee, M. Kazazi, and M. M. Shahraki, Ceram. Int. 44, 14281 (2018). DOI: https://doi.org/10.1016/j.ceramint.2018.05.032

G. S. Arya, R. K. Sharma, and N. S. Negi, Mater. Lett. 93, 341 (2013). DOI: https://doi.org/10.1016/j.matlet.2012.11.131

V. A. Khomchenko, I. O. Troyanchuk, M. I. Kovetskaya, and J. A. Paixão, J. Appl. Phys. 111, (2012). DOI: https://doi.org/10.1063/1.3676205

S. D. Zhou, Y. G. Wang, Y. Li, H. Ji, and H. Wu, Ceram. Int. 44, 13090 (2018). DOI: https://doi.org/10.1016/j.ceramint.2018.04.129

R. Pandey, C. Panda, P. Kumar, and M. Kar, J. Sol-Gel Sci. Technol. 85, 166 (2018). DOI: https://doi.org/10.1007/s10971-017-4537-2

S. Saxin and C. S. Knee, Dalt. Trans. 40, 3462 (2011). DOI: https://doi.org/10.1039/c0dt01754j

M. Gowrishankar, D. R. Babu, and P. Saravanan, Mater. Lett. 171, 34 (2016). DOI: https://doi.org/10.1016/j.matlet.2016.02.044

V. A. Khomchenko, D. V Karpinsky, I. O. Troyanchuk, V. V Sikolenko, D. M. Többens, M. S. Ivanov, M. V Silibin, R. Rai, and J. A. Paixão, J. Phys. D. Appl. Phys. 51, 165001 (2018). DOI: https://doi.org/10.1088/1361-6463/aab58f

V. A. Khomchenko, D. V. Karpinsky, L. C. J. Pereira, A. L. Kholkin, and J. A. Paixão, J. Appl. Phys. 113, (2013). DOI: https://doi.org/10.1063/1.4810764

J. Hlinka, J. Pokorny, S. Karimi, and I. M. Reaney, Phys. Rev. B 83, 020101 (2011). DOI: https://doi.org/10.1103/PhysRevB.83.020101

J. Bielecki, P. Svedlindh, D. T. Tibebu, S. Cai, S.-G. Eriksson, L. Börjesson, and C. S. Knee, Phys. Rev. B 86, 184422 (2012). DOI: https://doi.org/10.1103/PhysRevB.86.184422

Y. J. Wu, J. Zhang, X. K. Chen, and X. J. Chen, Solid State Commun. 151, 1936 (2011).

L. Chen, Y. He, J. Zhang, Z. Mao, Y. J. Zhao, and X. Chen, J. Alloys Compd. 604, 327 (2014). DOI: https://doi.org/10.1016/j.jallcom.2014.03.108

C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401(R) (2005). DOI: https://doi.org/10.1103/PhysRevB.71.060401

P. T. Tho, N. V. Dang, N. X. Nghia, L. H. Khiem, C. T. A. Xuan, H. S. Kim, and B. W. Lee, J. Phys. Chem. Solids 121, 157 (2018). DOI: https://doi.org/10.1016/j.jpcs.2018.05.025

I. O. T. I. Sosnowska, W. Schäfer, W. Kockelmann, K.H. Andersen, Appl. Phys. A Mater. Sci. Process. 74, S1040 (2002). DOI: https://doi.org/10.1007/s003390201604

T. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett. 7, 766 (2007). DOI: https://doi.org/10.1021/nl063039w

A. Singh, A. Senyshyn, H. Fuess, S. J. Kennedy, and D. Pandey, Phys. Rev. B 89, 024108 (2014).

V. A. Khomchenko, J. A. Paixão, V. V. Shvartsman, P. Borisov, W. Kleemann, D. V. Karpinsky, and A. L. Kholkin, Scr. Mater. 62, 238 (2010). DOI: https://doi.org/10.1016/j.scriptamat.2009.11.005

T. H. Le, N. V. Hao, N. H. Thoan, N. T. M. Hong, P. V. Hai, N. V. Thang, P. D. Thang, L. V. Nam, P. T. Tho, N. V. Dang, and X. C. Nguyen, Ceram. Int. 45, 18480 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.06.066

P. T. Tho, N. X. Nghia, L. H. Khiem, N. V. Hao, L. T. Ha, V. X. Hoa, C. T. A. Xuan, B. W. Lee, and N. V. Dang, Ceram. Int. 45, 3223 (2019). DOI: https://doi.org/10.1016/j.ceramint.2018.10.225

X. X. Shi, X. Q. Liu, and X. M. Chen, Adv. Funct. Mater. 27, 1604037 (2017). DOI: https://doi.org/10.1002/adfm.201604037

Downloads

Published

22-07-2020

How to Cite

[1]
H. Nguyen Van, H. Pham Van, T. Truong Thi, H. Nguyen Thi Minh and T. Pham Truong, Effect of Sm and Mn Co-doping on the Crystal Structure and Magnetic Properties of \(\text{BiFeO}_{3}\) Polycrystalline Ceramics, Comm. Phys. 30 (2020) 257. DOI: https://doi.org/10.15625/0868-3166/30/3/14882.

Issue

Section

Papers
Received 10-03-2020
Accepted 16-06-2020
Published 22-07-2020