Detection of Luminescence Centers in Colloidal Cd\(_{0.3}\)Zn\(_{0.7}\)S Nanocrystals by Synchronous Luminescence Spectroscopy
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/30/2/13819Keywords:
colloidal Cd0.3Zn0.7S nanocrystals, synchronous luminescence spectroscopy, luminescence centersAbstract
With the advantages of selectivity, spectral resolution and reduction of interference on account of light scattering, synchronous luminescence spectroscopy (SLS) is successfully applied to analyze complex mixtures with overlapped emission and/or excitation spectra. In fact, it is difficult to clearly distinguish the contributions of various luminescence centers to low-energy band of semiconductor nanocrystals (NCs). Herein, we report the application of SLS method to detect luminescence centers in colloidal Cd<sub>0.3</sub>Zn<sub>0.7</sub>S NCs. Their conventional luminescence and synchronous luminescence spectra were comparatively investigated. Differently from conventional luminescence spectrum, the emission peaks at 460 and 515 nm were found using SLS method. They are attributed to the emission transitions related to sulfur and zinc/cadmium vacancies. The obtained results are useful to clarify the nature of luminescence centers as well as relaxation mechanism in Cd<sub>x</sub>Zn<sub>1-x</sub>S NCs.
Downloads
Metrics
References
. D. Denzler, M. Olschewski, and K. Sattler, J. Appl. Phys. vol. 84, 1998, pp. 2841-2845. DOI: https://doi.org/10.1063/1.368425
. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Springer, 2006. DOI: https://doi.org/10.1007/978-0-387-46312-4
. M.A. Osman, and A.G. Abd-Elrahim, Opt. Mater. vol. 77, 2018, pp. 1-12. DOI: https://doi.org/10.1016/j.optmat.2018.01.011
. T. Vo-Dinh, Anal. Chem. vol. 50, 1978, pp. 396-401. DOI: https://doi.org/10.1021/ac50025a010
. D. Patra, and T.H. Ghaddar, Talanta vol. 77, 2009, pp. 1549-1554. DOI: https://doi.org/10.1016/j.talanta.2008.09.007
. S. Taylor, and A. Samokhvalov, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy vol. 174, 2017, pp. 54-61. DOI: https://doi.org/10.1016/j.saa.2016.11.011
. A. Alzahrani, and A. Samokhvalov, J. Porous Mater. vol. 24, 2017, pp. 1145-1154. DOI: https://doi.org/10.1007/s10934-016-0354-1
. A. Samokhvalov, J. Lumin. vol 192, 2017, pp. 388-396. DOI: https://doi.org/10.1016/j.jlumin.2017.07.009
. A. Samokhvalov, J. Phys. Chem. C vol. 121, 2017, pp. 21985-21994. DOI: https://doi.org/10.1021/acs.jpcc.7b02540
. V. Kumar, S. Kumari, P. Kumar, M. Kar, and L. Kumar, Adv. Mater. Lett. vol. 6, 2015, pp. 139-147. DOI: https://doi.org/10.5185/amlett.2015.5632
. J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, J. Parisi, and J. Kolny-Olesiak, CrystEngComm vol. 17, 2015, pp. 5634-5643. DOI: https://doi.org/10.1039/C5CE00380F
. S. Sain, and S.K. Pradhan, J. Alloy Compd. vol. 509, 2011, pp. 4176-4184. DOI: https://doi.org/10.1016/j.jallcom.2011.01.035
. A. K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7).
. H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, and N. Taghavinia, J. Alloys Compd. vol. 586, 2014, pp. 380-384. DOI: https://doi.org/10.1016/j.jallcom.2013.09.190
. J. Li, and L.W . Wang, Nano lett. vol. 3, 2003, pp. 1357-1363. DOI: https://doi.org/10.1021/nl034488o
. J. Jasieniak, C. Bullen, J.V. Embden, and P. Mulvaney J. Phys. Chem. B vol. 109, 2005, pp. 20665-20668. DOI: https://doi.org/10.1021/jp054289o
. A.K. Chawla, S. Singhal, S. Nagar, H. Gupta, and R. Chandra, J. Appl. Phys. vol. 108, 2010, pp. 123519 (1-7). DOI: https://doi.org/10.1063/1.3524516
. J. Kim, J. Lee, H.S. Jang, D.Y. Jeon, and H. Yang, J. Nanosci. Nanotechnol. vol. 11, 2011, pp. 725-729. DOI: https://doi.org/10.1166/jnn.2011.3193
. J. Yang, Y.Q. Gao, J. Wu, Z.M. Huang, X.J. Meng, M.R. Shen, J.L. Sun, and J.H. Chu, J. Appl. Phys. vol. 108, 2010, pp. 114102 (1-5). DOI: https://doi.org/10.1063/1.3516157
. B. Choudhury, B. Borah, and A. Choudhury, Photochemistry and Photobiology vol. 88, 2012, pp. 257–264. DOI: https://doi.org/10.1111/j.1751-1097.2011.01064.x
. P. Guyot-Sionnest, E. Lhuillier, and H. Liu, J. Chem. Phys. vol. 137, 2012, pp. 154704 (1-6). DOI: https://doi.org/10.1063/1.4758318
. J. Manam, V. Chattejee, S. Das, A. Choubey, and S.K. Sharma, J. Lumin. vol. 130, 2010, pp. 292-297. DOI: https://doi.org/10.1016/j.jlumin.2009.09.005
. P.K. Narayanam, P. Soni, R.S. Srinivasa, S.S. Talwar, and S.S. Major, J. Phys. Chem. C vol. 117, 2013, pp. 4314–4325. DOI: https://doi.org/10.1021/jp312546a
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 14-05-2020
Published 26-05-2020