Generation of Maximally Entangled States by a Kerr-like Nonlinear Coupler Interacting with External Fields
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/29/3/13742Keywords:
03.65.Ud, 42.50.DvAbstract
We study a model with two nonlinear oscillators (Kerr-like nonlinear coupler) pumped by two external coherent fields as a nonlinear quantum scissor (NQS). Using the numerical simulation method introduced before for quantum state engineering in NQS of such type, we obtain the wave function describing the evolution of the system as a combination of n-photon states. Considered NQS generates a truncation of optical states that leads to achieve two-qubit states due to the nonlinear properties of oscillators and their interaction. In particular, evolution of the system generates maximally entangled states as so-called Bell-like states. We will show that a proper choice of initial conditions for such evolution implies the increase of efficiency of entanglement creation process. We consider our model for both damping and without damping cases.Downloads
Metrics
References
A. Steane, Rep. Prog. Phys. 61 (1998) 117. DOI: https://doi.org/10.1088/0034-4885/61/2/002
R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81 (2009) 865. DOI: https://doi.org/10.1103/RevModPhys.81.865
J. I. Chirac and P. Zoller, Phys. Rev. Lett. 74 (1995) 4091. DOI: https://doi.org/10.1103/PhysRevLett.74.4091
D. Loss and D. P. DiVincenzo, Phys. Rev. A 57 (1998) 120. DOI: https://doi.org/10.1103/PhysRevA.57.120
J. Vidal, G. Palacios and C. Aslangul, Phys. Rev. A 70 (2004) 062304. DOI: https://doi.org/10.1103/PhysRevA.70.062304
D. Bouwmeester, A. Ekert and A. Zeilinger, The Physics of Quantum Information, Berlin Springer, Press, 2000. DOI: https://doi.org/10.1007/978-3-662-04209-0
D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A. Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman and J.
D. Franson, J. Mod. Opt. 51 (2004) 1499. DOI: https://doi.org/10.1109/TBME.2004.833913
A. J. Miller, S. W. Nam, J. M. Martinis and A. V. Sergienko, App. Phys. Lett. 83 (2003) 791. DOI: https://doi.org/10.1063/1.1596723
M. Hamar, J. Perina Jr, O. Haderka and V. Michalek, Phys. Rev. A 81 (2010) 043827. DOI: https://doi.org/10.1103/PhysRevA.81.043827
J. Kim, S. Takeuchi, Y. Yamamoto and H. H. Hogue, App. Phys. Lett. 74 (1999) 902. DOI: https://doi.org/10.1063/1.123404
M. Bondani, A. Allevi and A. Andreoni, Adv. Sci. Lett. 2 (2009) 463. DOI: https://doi.org/10.1166/asl.2009.1052
A. Kowalewska-Kudlaszyk and W. Leonski, Progress in Optics 56 (2011) 131. DOI: https://doi.org/10.1016/B978-0-444-53886-4.00003-4
A. Miranowicz and W. Leonski, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 1683. DOI: https://doi.org/10.1088/0953-4075/39/7/011
A. Kowalewska-Kudlaszyk and W. Leonski, Phy. Rev. A 73 (2006) 042318. DOI: https://doi.org/10.1103/PhysRevA.73.042318
A. Kowalewka - Kudlaszyk, W. Leonski and J. Perina Jr, Phys. Rev. A 83 (2011) 052326.
J. K. Kalaga, A. Kowalewska-Kudlaszyk, W. Leonski and A. Barasinski, Phys. Rev. A 94 (2016) 032304. DOI: https://doi.org/10.1103/PhysRevA.94.032304
J. K. Kalaga and W. Leonski, Quantum Information Processing 16 (2017) 175. DOI: https://doi.org/10.1007/s11128-017-1627-6
J. K. Kalaga, W. Leonski and J. Perina Jr., Phys. Rev. A 97 (2018) 042110. DOI: https://doi.org/10.1103/PhysRevA.97.042110
V. Perinova, A. Luks, J. Krepelka, W. Leonski and J. Perina Jr., Optics Communications 414 (2018) 146. DOI: https://doi.org/10.1016/j.optcom.2018.01.017
J. S. Bell, Physics 1 (1964) 195. DOI: https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47 (1935) 777. DOI: https://doi.org/10.1103/PhysRev.47.777
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press,
M. Hayashi, Quantum information. An introduction, Berlin Heidelberg Springer Press, 2006.
P. Lambropoulos and D. Petrosyan, Fundamentals of quantum optics and quantum information, Berlin Heidelberg
Springer Press, 2007.
L. Diosi, Lecture notes in physics, Berlin Heidelberg, Springer, 2007
G. Jaeger, Quantum information. An overview, Springer Science C Media, LLC New York, 2007.
V. Le Duc and V. Cao Long, Comput. Meth. Sci. Technol. 22 (2016) 245. DOI: https://doi.org/10.12921/cmst.2016.0000062
W. Leonski and V. Cao Long, Proc. SPIE 8697 (2012) 869728. DOI: https://doi.org/10.1117/12.2006899
G. Jaeger, Phys. Rev. A 18 (2009) 50. DOI: https://doi.org/10.1016/j.reaurg.2009.08.009
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with CIP agree with the following terms:- The manuscript is not under consideration for publication elsewhere. When a manuscript is accepted for publication, the author agrees to automatic transfer of the copyright to the editorial office.
- The manuscript should not be published elsewhere in any language without the consent of the copyright holders. Authors have the right to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of their work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are encouraged to post their work online (e.g., in institutional repositories or on their websites) prior to or during the submission process, as it can lead to productive exchanges or/and greater number of citation to the to-be-published work (See The Effect of Open Access).
Accepted 22-07-2019
Published 13-08-2019