Nonlinear Optical Tweezers As an Optical Method for Controlling Particles with High Trap Efficiency

Ho Quang Quy
Author affiliations

Authors

  • Ho Quang Quy Hochiminh University of Food Industry, 140, Le Trong Tan, Tan Phu, HCM City

DOI:

https://doi.org/10.15625/0868-3166/29/3/13733

Keywords:

Nonlinear physics, Biophysics, Optical tweezers, DNA molecule.

Abstract

Optical tweezers have seen as an essential tool for the manipulation dielectric microparticles and nanoparticles due to its non-contact action and high resolution of optical force. Up to now, there has been a lot of optical tweezers applications in the fields of biophysics, chemistry, medical science and nanoscience. Recently, optical tweezers have been theoretically and experimentally developing for the nanomechanical characterization of various kinds of biological cells. The configuration of optical tweezers has been day after day improving to enhance the trapping efficiency, spatial and temporal resolution and easy to control trapped objects. In common trend of optical tweezers improvements, we will discuss in detail of the several configurations of nonlinear optical tweezers using nonlinear materials as the added lens. We will also address the advantages of nonlinear optical tweezers, such as enhance optical efficiency, reduce trapping region, simplify controlling all-optical method. Finally, we present discussions about the specific properties of nonlinear optical tweezers used for stretch DNA molecule as example and an ideal to improve nonlinear  optical tweezers using thin layer of organic dye  proposed for going time.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

. Huisstede, H. G.: Scanning probe optical tweezers: A new tool to study DNA-protein interactions. Printed by FEBODRUK BV, Enschede (2006) DOI: https://doi.org/10.1002/jemt.20382

. Y. Sun, G. Gu, X. Sui, Y. Li, and S. Xu, IEEE Photonics Journal, 9(3) (2017) 1-9.

. Ashkin, A., Phys. Rev. Lett., 24 (4), (1970) 156–159. DOI: https://doi.org/10.1103/PhysRevLett.24.156

. MacDonald, M.P., Peterson, I., Sibbett, W., Dholakia, K., Opt. Lett. 26 (2002) 863-865. DOI: https://doi.org/10.1364/OL.26.000863

. Min, D., Arbing, M.A., Jefferson, R.E. & Bowie, J.U., Protein Sci. 25 (2016) 1535-1544.

. T. Thai Dinh, K. Doan Quoc, K. Bui Xuan, Q. Ho Quang, Opt. Quant. Electron. 48 (2016) 561. DOI: https://doi.org/10.1007/s11082-016-0843-0

. Duarte, M.F. et al, IEEE signal processing magazine 25 (2) (2008) 83-91. DOI: https://doi.org/10.1109/MSP.2007.914730

. Y. Sun, Y., Gu, G., Sui,X., Li, Y. and Xu, S., IEEE Photonics Journal, 9(3) (2017) 1-9. DOI: https://doi.org/10.1109/JPHOT.2017.2696519

. European Network of Excellence for Biophotonics, Networking for Better Health Care.http://WWW.Photonics4life.eu/lavout/set/Consortium/P4L-DB/All-items/ (2014).

. Dufresne, E.R. et al, Rev. science instruments 72 (2001) 1810-1816 DOI: https://doi.org/10.1063/1.1344176

. Tanaka, Y. et al, Opt. Express 17 (2009) 24102-24111 DOI: https://doi.org/10.1364/OE.17.024102

. Min, D. et al, Protein Sci. 25 (2016) 1535-1544 DOI: https://doi.org/10.1002/pro.2952

. Hao, Y., Canavan, C., Susan, S. T., Rodrigo, A. M., Scientific reports 7 (2017) 1-8 DOI: https://doi.org/10.1038/s41598-017-11214-z

. H. V. Nam, C. T. Le, H. Q. Quy, Commun. in Phys. 23 (2) (2013) 155

. Q. Q. Ho, V. N. Hoang, J. Phys. Scien. And Appl. 2 (2012) 414-419.

. H. Okamoto, Y. Jiang, T. Narushuima, Progress in Electromagnetic Research Symposium (PIERS), 8-11 Aug. 2016

. Thanh Thai Doan, Khoa Doan Quoc, Quy Ho Quang, Optical and Quantum Electronics, Jan. 2018, 50:51. DOI: https://doi.org/10.1007/s11082-018-1323-5

. J. M. Weber, CRC Handbook of Optical Material, Vol. III (CRC Press, 2003)

. M.Jahja, Internat. Symp. on Modern Opt. and Its Appl. (2011)

K.Tanaka, J. Mater. Sci. Mater. Electron. 16(10) (2005) 633–643 DOI: https://doi.org/10.1007/s10854-005-3738-6

. A. Devi, A. K. DE, OPTICS EXPRESS 24 (19)(2016) 21485 DOI: https://doi.org/10.1364/OE.24.021485

. Y. Jiang, T. Narushima, and H. Okamoto, NATURE PHYSICS, Advance online publication (2010)

. Q. Wu, S. Chang, and X. Huang, Frontiers in Optics / Laser Science, OSA Technical Digest (2018) JW3A.119.

. H. Q. Quy, T. B. Chu, Comm. in Phys. 6 (2) (1996) 23-31

. E. Koushki, A. Farzaneh, S.H. Mousavi, Appl Phys. B99, 565-570 (2010)

. R.R. Krishnamurthy, R. Alkondan, Opt. Appl. XL (2010) 187-196

. S. Jeyaram, T.Geethakrishnan, Optics & Laser Technology 89 (2017) 179-185 DOI: https://doi.org/10.1016/j.optlastec.2016.10.006

. Lam Thanh Nguyen et al, J. Nonlinear Optic. Phys. Mat. 23 (2014) 1450020 DOI: https://doi.org/10.1142/S0218863514500209

. Quy. Ho Quang et al, Opt. Commun. 421 (2018) 94-98 DOI: https://doi.org/10.1016/j.optcom.2018.03.068

. Quy. Ho Quang et al, Opt. Commun. 427 (2018) 341-347 DOI: https://doi.org/10.1016/j.optcom.2018.06.062

. T. Doan Quoc et al, J. of MST, Special Issure 57A (2018) 97-105

. J. Du et al, Scientific Reports 7 (2017) 18042 DOI: https://doi.org/10.1038/s41598-017-17874-1

. Godazgar T., Shokri R, Reihani SN, Opt Lett. 36(16) (2011) 3284-6 DOI: https://doi.org/10.1364/OL.36.003284

. H. Q. Quy, M. V. Luu, H. D. Hai and Donan Zhuang, Chinese Optic Letters 8(3) (2010) 332-334 DOI: https://doi.org/10.3788/COL20100803.0332

. A. Ashkin, Biophysical J. 61(2) (1992) 569-582 DOI: https://doi.org/10.1016/S0006-3495(92)81860-X

. Van Nam Hoang, Thanh Le Cao, Quang Quy Ho, IJEIT 3(4) (2013) 134-138

. B.E.A. Saleh and M.C. Teich, Fundamentals of photonics, John Willey & Sons, Inc., New York (1991) 84. DOI: https://doi.org/10.1002/0471213748

. Hoang Van Nam, Cao Thanh Le, Ho Quang Quy, Commun. in Phys. 23(2) (2013) 155-161 DOI: https://doi.org/10.15625/0868-3166/23/2/2732

. Volpe, G., Volpe, G., Am. J. Phys. 81 (2013) 224-230 DOI: https://doi.org/10.1119/1.4772632

. Mangeol D. Cote et al, Eur. Phys. E19 (2006) 311-317 DOI: https://doi.org/10.1140/epje/i2005-10060-4

. T. D. Trung, Doctor thesis, Vinh (2017)

. E. Koushki, A. Farzaneh, S.H. Mousavi, Appl Phys. B99 (2010) 565-570 DOI: https://doi.org/10.1007/s00340-010-3913-1

. D.T. Thai, V.L. Chu, Q.Q. Ho, IJEIT 3(10) (2014) 1-4

. C. G. Bauman et al, Biophys. J. 78 (2000) 1965-1978 DOI: https://doi.org/10.1016/S0006-3495(00)76744-0

. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC., Mol Microbiol. 85 (2012) 21-38 DOI: https://doi.org/10.1111/j.1365-2958.2012.08081.x

. A. Keloth, O. Anderson, D. Risbridger and L. Paterson, Micromachines 9 (2018) 434 DOI: https://doi.org/10.3390/mi9090434

. F. Falleroni, V. Torre and D. Cojoc, Front Cell Neurosci. (2018 June 20) 12: 180 DOI: https://doi.org/10.3389/fncel.2018.00130

. J. Liu and Z. Li, Micromachines 9 (2018) 232 DOI: https://doi.org/10.3390/mi9050232

. A. A. R. Neves et al, Phys. Rev. E 76 (2007) 061917 DOI: https://doi.org/10.1103/PhysRevA.76.032314

Downloads

Published

13-08-2019

How to Cite

[1]
H. Q. Quy, “Nonlinear Optical Tweezers As an Optical Method for Controlling Particles with High Trap Efficiency”, Comm. Phys., vol. 29, no. 3, p. 197, Aug. 2019.

Issue

Section

Papers
Received 05-04-2019
Accepted 20-06-2019
Published 13-08-2019