Tuning Electronic Transport Properties of Zigzag Graphene Nanoribbons with Stone-Wales Defect

Tien Thanh Nguyen, Hoc Thai Bui, Ut Van Nguyen, Tuan Le
Author affiliations

Authors

  • Tien Thanh Nguyen College of Natural Sciences, Can Tho University
  • Hoc Thai Bui College of Natural Sciences, Can Tho University
  • Ut Van Nguyen College of Natural Sciences, Can Tho University
  • Tuan Le School of Engineering Physics, Hanoi University of Science and Technoloy, 1 Dai Co Viet Road, Hanoi, Vietnam. https://orcid.org/0000-0003-4705-7250

DOI:

https://doi.org/10.15625/0868-3166/28/3/12670

Keywords:

density-functional theory, non-equilibrium, Green function, electronic transport, graphene nanoribbon, transmission spectrum, current\textendash voltage characteristics

Abstract

Influences of the symmetric Stone-Wales (SW) defect on the electronic transport properties of the zigzag graphene nanoribbons (ZGNRs) has been studied using $\it{ab}$ $\it{ initio}$ simulation based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) technique. The calculated transmission spectra T(E) at various bias windows, device densities of states (DDOS), current characteristics as well as local density of states (LDOS) of the defective asymmetric and symmetric ZGNRs are presented in comparison of those for the pristine ZGNRs. It has been established the metallic character of the electronic transport in asymmetric ZGNRs, and in symmetric ones, the current has a semiconductor behavior, with negative differential resistance (NDR) effect. Symmetric SW defect, as a most unfavorable SW defect type for electric conductance, remarkably decreases the current values, but does not change the character of conductivity in both the asymmetric and symmetric ZGNRs. NDR has been explained by the altering by SW defect the number of frontier molecular orbitals entering bias windows.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. S. Novoselov, A.K.Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V.Grigorieva and A. A. Firsov,

Science 306 (2004) 666. DOI: https://doi.org/10.1126/science.1102896

K. S. Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, M.I.Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A.

Firsov, Nature 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233

J. P. Llinas, A. Fairbrother, G. B. Barin, W. Shi, K. Lee, S. Wu, B. Y. Choi, R. Braganza, J. Lear, N. Kau,

W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, K. M¨ullen, F. Fischer, A. Zettl, P. Ruffieux,

E. Yablonovitch, M. Crommie, R. Fasel and J. Bokor, Nature Communications 8 (2017) 633. DOI: https://doi.org/10.1038/s41467-017-01658-2

M. Choudhury, Y. Yoon, J. Guo and K. Mohanram, Proceedings of the 45th annual Design Automation Conference

(2008) 272–277.

F. Banhart, J. Kotakoski and A. V. Krasheninnikov, Acs Nano 5 (2011) 26. DOI: https://doi.org/10.1021/nn102598m

J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik and M. Batzill, Nature Nanotechnology 5 (2010) 326. DOI: https://doi.org/10.1038/nnano.2010.53

G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, D. Y. Kim and K. M. Ho, Physical Review Letters 95 (2005) DOI: https://doi.org/10.1103/PhysRevLett.95.205501

L. Li, S. Reich and J. Robertson, Physical Review B 72 (2005) 184109. DOI: https://doi.org/10.1103/PhysRevB.72.184109

Z. Li, B. Huang and W. Duan, Nanoscience and Nanotechnology 10 (2010) 5374. DOI: https://doi.org/10.1166/jnn.2010.1955

X. Li, D. Zou, B. Cui, C. Fang, J. Zhao, D. Li and D. Liu, The Royal Society of Chemistry 2017 7 (2017) 25244. DOI: https://doi.org/10.1039/C7RA02624B

K. Li and X. H. Zhang, Physics Letters A 382 (2018) 1167. DOI: https://doi.org/10.1016/j.physleta.2018.02.033

W. L. F. H. Meng, J. H. Zhao and X. H. Jiang, Theoretical and Computational Chemistry 16 (2017) 1750032. DOI: https://doi.org/10.1142/S0219633617500328

Y. Ren and K. Q. Chene, Phys. Rev. Lett. 107 (2010) 044514. DOI: https://doi.org/10.1063/1.3309775

J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13 (1976) 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

S. Grimme, J. Comput. Chem. 27 (2006) 1787. DOI: https://doi.org/10.1002/jcc.20495

R. Landauer, IBM J. Res. Dev. 1 (1957) 223. DOI: https://doi.org/10.1147/rd.13.0223

J. Ma, D. Alf`e, A. Michaelides and E. Wang, Physical Review B 80 (2009) 033407. DOI: https://doi.org/10.1103/PhysRevB.80.033407

R. Dettori, E. Cadelano and L. Colombo, Physics: Condensed Matter 24 (2012) 104020. DOI: https://doi.org/10.1088/0953-8984/24/10/104020

H. Zeng, J. P. Leburton, Y. Xu and J. Wei, Nanoscale Research Letters 6 (2011) 254. DOI: https://doi.org/10.1186/1556-276X-6-254

Y. Zou, M. Long, M. Li, X. Zhang, Q. Zhang and H. Xu, The Royal Society of Chemistry 5 (2015) 19152. DOI: https://doi.org/10.1039/C4RA12924E

Downloads

Published

14-11-2018

How to Cite

[1]
T. T. Nguyen, H. T. Bui, U. V. Nguyen, and T. Le, “Tuning Electronic Transport Properties of Zigzag Graphene Nanoribbons with Stone-Wales Defect”, Comm. Phys., vol. 28, no. 3, p. 201, Nov. 2018.

Issue

Section

Papers
Received 13-06-2018
Accepted 14-08-2018
Published 14-11-2018