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Abstract. In this paper we review our works in the field of nonlinear optics in waveguide arrays
(WAs) and photonic nanowires. We first focus on the new equation governing light propaga-
tion in optical fibers with sub-wavelength cores which simultaneously takes into account (i) the
vector nature of the electromagnetic modes inside fibers, (ii) the strong dispersion of the nonlin-
earity inside the spectral body of the pulse, (iii) and the full variations of the vector mode profiles
with frequency. From this equation we have shown that a new kind of nonlinearity emerges in
subwavelength-core fibers which can suppress the Raman self-frequency shift of solitons. We then
discuss some nonlinear phenomena in WAs such as the emission of the diffractive resonant radia-
tion from spatial discrete solitons and the anomalous recoil effect. Finally, we review our works on
the optical analogues of Dirac solitons in quantum relativistic physics in binary waveguide arrays
for both fundamental and higher-order solitons, and its interaction.
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I. INTRODUCTION

Optical fibers [1,2] and waveguide arrays (WAs) [3,4] are optical systems exhibiting many
important and interesting nonlinear phenomena, and are fundamental components of the modern
optical technologies from both the fundamental and practical viewpoints. Evolution equations that
accurately describe the propagation of short pulses in nonlinear media are extremely valuable tools
in modern nonlinear optics, especially in fiber optics [1,2]. Different approximations based on
various versions of the nonlinear Schrodinger equation (NLSE) have been used quite successfully
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in the past to describe a variety of linear and nonlinear effects in large-core optical fibers. Amongst
them, we can mention phenomena such as soliton propagation [1,5], modulational instabilities and
four-wave mixing [1], and third and higher-order dispersive effects [1]. An extended version of the
NLSE (also called the generalized NLSE, or GNLSE), which also includes terms describing the
Raman effect [6], self-steepening and the full complexity of the group velocity dispersion (GVD)
of the optical fiber [1], has been used to describe the important phenomenon of supercontinuum
generation (SCG) with striking success [7]. This equation has led to important advances in the
theoretical understanding of SCG in ultra-small core fibers such as tapered fibers [8] and photonic
crystal fibers (PCFs) [9, 10]. In particular, the phenomena of emission of solitonic dispersive
resonant radiation [11] and the stabilization of the Raman self-frequency shift (RSFS) of solitons
by means of such radiation [12, 13] are recent important advances that can be explained by the
GNLSE.

The GNLSE is based on several approximations. The most important approximation used
in all NLSEs is the slowly-varying envelope approximation (SVEA) in both space and time [1].
This approximation is only possible if the envelope profile contains many oscillations, which are
typically the case in the visible and mid infrared regime when the pulse duration is larger than
a few tens of femtoseconds. SVEA reduces the second-order wave equation for the electric field
into a first-order equation in which the evolution coordinate is z, the longitudinal spatial coordinate
along the fiber. Therefore, the computational complexity in simulations is hugely reduced.

The most crucial assumption on which the GNLSE is based is that the z-component of the
electric field is very small with respect to its transverse components. The weak guidance regime
represents a very good assumption for large-core fibers and for fibers with a low contrast between
the refractive indices of the core and the cladding. Recently, however, new types of waveguides
with a sub-wavelength size of the core (broadly referred to as photonic nanowires) have been
successfully fabricated. The first class of these photonic nanowires is step-index silica wires with
sub-wavelength cores [14]. The second class of these photonic nanowires possesses a complex
cladding structure that allows one to support solid cores with a sub-wavelength diameter, and
have a strong contrast between the refractive indices of the core and the cladding. To this class
of waveguides belong some specific examples of PCFs, such as the extremely small interstitial
features of Kagome hollow-core PCFs [15], and tapered fibers, i.e. silica rods with sub-micron
diameters surrounded by air or vacuum [8]. As mentioned above, the common feature of all these
structures is the non-negligible nature of the longitudinal component of the electric field (strong
guidance regime) [16]. The importance of such component in the dynamics of light has not been
clearly recognized in the past, until very recently [16]. In this latter work the authors demonstrate
that the calculation of the nonlinear coefficient of photonic nanowires performed in the scalar
theory [17-19] underestimates its real magnitude of approximately a factor 2, while the correct
result can be found by using the more complete vector theory [16].

Inspired by these recent achievements, in our works [20,21] we have advanced further the
theoretical understanding of the evolution equations in optical fibers with sub-wavelength core
structures. In [20,21] we have derived a new, logically self-consistent forward-evolution equa-
tion for photonic nanowires, based on SVEA, that simultaneously takes into account (i) the vector
nature of the EM field (polarization and z-component included), (ii) the strong dispersion of the
nonlinearity inside the spectral body of the pulse, and (iii) the full variations of the vector mode
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profiles with frequency. In all relevant previous works on the subject [16,22-25], all these proper-
ties were not included in the derivation at the same time. Considering (i), (ii) and (iii) altogether
and with a minimal amount of assumptions, leads to new qualitative results that have not been pos-
sible to investigate with previous formulations. In particular, we have demonstrated analytically
and through a series of accurate simulations that (iii) leads to the emergence of new nonlinear
terms that are also indirectly responsible for appreciable modifications in the dynamics of RSFS,
in particular a suppression of the latter. Thus, even though the vector nature of the electromagnetic
(EM) field in photonic nanowires may lead to an enhancement of the nonlinear coefficient [16],
our results show that this is actually counterbalanced by terms and effects that partially suppress
such enhancement. These recent results of our works will be reviewed later in Sec. II.

Waveguide arrays consisting of identical, equally spaced waveguides, present a unique
discrete platform to explore many interesting fundamental phenomena such as discrete diffrac-
tion [4, 26], discrete solitons [27, 28]. Recently, WAs have been used intensively to simulate
the evolution of non-relativistic quantum mechanical particles in a periodic potential. Many fun-
damental phenomena in nonrelativistic classical and quantum mechanics, such as Bloch oscil-
lations [29, 30], Zener tunneling [31, 32], optical dynamical localization [33], and Anderson lo-
calization in disordered lattices [34] have been simulated both theoretically and experimentally
with WAs. Recently, binary waveguide arrays (BWAs) have also been used to mimic relativistic
phenomena typical of quantum field theory, such as Klein tunneling [35, 36], the Zitterbewegung
(trembling motion of a free Dirac electron) [37, 38], and fermion pair production [39], which are
all based on the properties of the Dirac equation [40]. Although there is as yet no evidence for
fundamental quantum nonlinearities, nonlinear versions of the Dirac equation have been studied
for a long time. One of the earlier extensions was provided by Heisenberg [41] in the context
of field theory and was motivated by the question of mass. In the quantum mechanical context,
nonlinear Dirac equations have been used as effective theories in atomic, nuclear and gravitational
physics [42—45]. In this regard, BWAs can offer a quite unique model system to simulate nonlinear
extensions of the Dirac equation when probed at high light intensities.

In this work we review our recent results on nonlinear phenomena in WAs and BWAs. First,
we review our discovery of the diffractive resonant radiation [46 — 48] in WAs in Sec. III. Then, in
Sec. IV we move on to review ours latest works on the optical analogues of the quantum relativistic
Dirac solitons in BWAs [49-52]. Finally, the conclusions are given in Sec. V.

II. NEW NONLINEARITY IN PHOTONIC NANOWIRES

In this Section we review our works on the new equation governing light propagation in
optical fibers with sub-wavelength core [20] and the new kind of nonlinearity emerging in these
fibers [21].

I1.1. Light propagation equation in fibers with sub-wavelength core

As mentioned in the Introduction, in conventional optical fibers the core is much larger than
the wavelength, thus the EM modes of these fibers can be considered transverse. In this case, it
is quite safe to ignore the z-component of the EM mode, the dispersion of the nonlinearity coef-
ficient, and the variation of mode profiles with respect to wavelength. In this circumstance, the
GNLSE can be used successfully and has become standard in large-core optical fibers [1]. How-
ever, for optical fibers with sub-wavelength cores all these assumptions, and thus GNLSE, become
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Fig. 1. (a,b) Transverse and longitudinal components of the electric field, respectively,
in a silica strand in air of diameter d = 2 pm, for a pump wavelength A = 1 um. (c,d)
The same as (a,b), but for diameter d = 0.6 um. The silica core is indicated with a
dashed black line. Note the expulsion of the total field from the core towards the low-
index medium and the enhancement of the z-component for small cores. This figure is
reproduced from our original work in Ref. [20].

problematic. For instance, the z-component of the EM mode now is more enhanced and one can-
not neglect it. As an example, in Fig. 1 we show the transverse and longitudinal components of
EM modes in a silica strand in air [20]. As shown in Fig. 1(a,b), when the diameter of the core
(d =2 um) is larger than the wavelength (A = 1 um) one can see that the transverse component
(Fig. 1(a)) is much stronger than the z-component. However, when the core size is reduced to
d = 0.6 um as in Fig. 1(c,d) the z-component becomes pronounced. This enhancement of the
z-component is even stronger for smaller cores. In order to take into account the above-mentioned
distinguishing features of fibers with sub-wavelength core, in our works [20,21] we describe the
variations of the normalized EM mode é’w (71) (where 7, are the transverse coordinates) with
respect to the frequency w through the Taylor series:
) J

i) = L 60 (50) M)

A o
where Aw = @ — @ is the frequency detuning from an arbitrary reference frequency @, and the

quantity fé{)) is proportional to the jth frequency derivative of the mode profile. As shown in
detail in Ref. [20] one can rigorously prove that the equation governing the light propagation of
the fundamental EM mode of the photonic nanowires is given by:

i0.0+D(id)0+ Y """ G/ (id,) """ =0. )

Jhpv
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In Eq. (2) letters j, h, p, v are used for derivative indices, Q(z,t) is the electric envelope,
D(id,) = B(wo+id;) — B () is the conventional dispersion operator that contains all information
on the fiber GVD around ®q [1], B is the w-dependent propagation constant of the fundamental
mode, G/ (id;) = [1 + (i/wy) ] [(i/wy) ;)7 is the operator which contains the shock term [1] and
the zeroth order of the Taylor expansion (j = 0). The convoluted nonlinear fields in Eq. (2) are
defined as follows (see Ref. [20] for more details):

[(i9)"Q] {R® ([(i9,)* Q] [(~id),)*Qx])}

h Y
@, +p+v

(Phpv(Z,l> = 3)

where symbol ® denotes a time convolution. In Eq. (3) R(f) = (1-0)5(¢) + Oh(z) is the nonlin-
ear response function of the core which includes the instantaneous Kerr (1*' term) and the non-
instantaneous Raman (2" term) with 6 being the relative importance between the two [1]. Note
that in Eq. (3), ¢"% = Q [R(t —¢')|Q(¢')|?dt’ gives the conventional, zeroth order convolution
that is used in GNLSE [1]. The generalized nonlinear coefficient y Jhpv is defined as follows (see
Refs. [20,21] for more details):

[0 78 [F0 7] + [ 7)) [ 7

[ ] [ )
Jjlh!pv!

Y () = 1o / dF 1 ek (7L -

where )()((i))cx is the third-order susceptibility which is a function of the transverse coordinates in

the waveguide. Eq. (4) is a generalization of the nonlinear coefficient commonly used in fiber
optics [1], and takes into account the full vector nature of the field profile as well as its frequency
variation. Such variations are at the very core of the new nonlinearities described in the next sub-
section, since the Taylor series of Eq. (1) implies the existence of an infinite number of additional
terms that depend on higher-order time derivatives of the envelope. The quantities y /*7” satisfy
some symmetry relations [20] that significantly reduce the number of independent nonlinear coef-

ficients for each order of the derivative: y /7Y = yViPJ = y JPhv = oy vPhj oy jhhlt — o hjlth oy i — o
hjjh

I1.2. A new Kkind of nonlinearity in photonic nanowires

As mentioned above, higher-order derivatives of the mode profiles embedded into Eq. (3)
are responsible for the emergence of new nonlinear terms. These new terms obviously become
increasingly small with increasing order of derivatives, since for every derivation there is a factor
1/wg. However, as demonstrated in Refs. [20,21], the new first order term has a strength compa-
rable with or sometimes even larger than the Raman term. In this subsection, we just focus on the
two dominant nonlinear coefficients: the conventional zeroth-order and the new first-order coeffi-
cients. From the expression in Eq. (4) one can define the zeroth-order nonlinear coefficient of the
optical fiber [21]: 7o = 7°°%°, which is a conventional definition of the nonlinear coefficient in fiber
optics [1]. To the first-order expansion in Eq. (2) one can define the coefficient y; = 71000/(a)0t0),
associated with nonlinear convoluted fields that contain only one time derivative of the envelope.
Then, in Ref. [20] we have shown that one can obtain the following evolution equation for long
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pulses:

A . y
i9.0+D(i3)0+% | | 14—, | |0Po—Tr0a/ 0P| + “1|0]28.0 =0. )
) —— —\— o

In Eq. (5), the term indicated by 70 represents the well-known shock operator [1]. Terms
T'1 and T2 in Eq. (5) correspond to the conventional Kerr effect and Raman self-frequency shift,
respectively, where Tz = [~ t'R(¢')dt’ is the first moment of the Raman nonlinear response func-
tion [1]. The additional term 7’3 is connected to a nonlinear change of the group velocity. This
nonlinear term is strictly related to the mode profile variations with respect to the frequency.
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Fig. 2. (a) Schematics of the proposed PCF nanowire geometry. The central nanowire
core is made of tellurite glass (77TeO; -10Na;O - 10ZnO- 3PbO composition from
Ref. [53]), while the cladding is made of silica with a triangular lattice of air holes. Pa-
rameters of the PCF are pitch A = 1.4 um, air hole radius R = 0.56 um, core radius R,
= 0.5 um. Inset: The density plot of the mode profile intensity of the waveguide for
A = 1.55 um is shown. (b) Profile of the Raman gain spectrum for the tellurite glass.
Solid blue line, experimental data taken from Ref. [53]; dotted red line, fit used in our
simulations. This figure is reproduced from our original work in Ref. [21].

In Ref. [20] we considered only the circular geometry for photonic nanowires. However,
circular strands of high-refractive index material in a homogeneous cladding, including in air, are
not optimal for experimentally detecting the effects of new nonlinear terms, because the maxi-
mum of the new nonlinear coefficient is located, as a rule, far away in a region of strong normal
dispersion, where bright solitons cannot exist. In fact, as has been anticipated in Ref. [20], the
new nonlinearity is visible only in the presence of solitons, and its effects are nearly invisible in
the normal dispersion regime. In Ref. [21] we have proposed to use a silica-based PCF with a
triangular arrangement of the air holes (see Fig. 2(a)). In Ref. [21] we have demonstrated that,
by means of careful choice of parameters in the design of PCFs, one can move the maximum of
the new nonlinearity inside the region of anomalous dispersion. This will make it much easier
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to observe the new nonlinearity experimentally, and can cause a considerable suppression of the
RSEFES of the soliton from the very start of the propagation.
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Fig. 3. Linear and nonlinear data for the PCF design of Fig. 2(a). (a) Blue solid and red
dashed lines indicate, respectively, Yo and 7y;versus wavelength. (b) Blue dots indicate
the GVD of the waveguide, with zero-GVD points located at A = 0.84 um and A = 2.4
wum. Red solid line indicates parameter r = y'9%0/9%000 " This figure is reproduced from
our original work in Ref. [21].

Figure 3(a) shows plots of ¥y and 7y; versus reference wavelength for the fiber design in
Fig. 2(a). The fiber GVD is shown in Fig. 3(b) with blue dots. It is clear from this figure that
Yodecreases monotonically for longer wavelengths (a well-known fact). However, it is interesting
to note that the new nonlinear coefficient 7; initially increases, but then reaches a maximum near
the infrared zero-GVD point of the fiber (located at A = 2.4 um), and then tends to zero for
even longer wavelengths. The close vicinity of max(7;) to the anomalous GVD of the fiber is an
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atypical feature that we have found only in a few very specific designs, including the one presented
in Fig. 2(a). The “normal” situation, which is also true for circular photonic nanowires surrounded
by homogeneous media (such as, for instance, tapered fibers), is that max(y;) is located well
within the region of normal GVD [20].

We now show that the emergence of the new nonlinearity leads to a strong suppression of
the RSFS. In order to do this, we compare two direct numerical simulations of pulse propagation,
the first one obtained by truncating the expansion of Eq. (2) to the zeroth order (one nonlinear
convolution, corresponding to the conventional GNLSE) (Fig. 4(a)), the second one obtained
by truncating the same sum to the second-order (15 nonlinear convolutions in total), which thus
takes into account the dominant terms of the new nonlinearities (Fig. 4(b)). It is easily seen
by comparing Fig. 4(a) with Fig. 4(b) that the net effect of the additional nonlinearities is to
reduce considerably the RSFS in the fiber. Thus a unique interplay between the new nonlinearities
and the RSFS takes place in properly designed photonic nanowires. It is possible to qualitatively
understand the reason of the above RSFS suppression mechanism by using the so-called moment
method which keeps tracks of the solitonic parameters under the influence of small perturbations
(see Ref. [21] for more details).
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Fig. 4. (a) Density plot showing nonlinear evolution of a pulse with 7o = 150 fs, P = 1kW
in the waveguide of Fig. 2(a) according to Eq. (2) truncated at the Oth order, i.e., by using
the conventional GNLSE. Second-order dispersion length is Lpy = 6 cm. (b) Same as (a)
but truncating Eq. ( 2) at the 2nd order. Vertical white lines indicate the two zero-GVD
wavelengths. This figure is reproduced from our original work in Ref. [21].
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III. DIFFRACTIVE RESONANT RADIATION IN WAVEGUIDE ARRAYS

In this Section we review our works on discovery of the diffractive resonant radiation
(DifRR) emitted by discrete spatial solitons in WAs. The concept of dispersive resonant radia-
tion (DisRR), which is emitted from an optical pulse propagating in a single optical fiber due to
higher-order dispersion terms, has been well studied in the temporal case [11]. When an ultra-
short pulse is launched into an optical fibers, it can generate one or more new frequencies if the
phase matching condition is satisfied [11]. This DisRR, together with other nonlinear effects such
as self- and cross-phase modulation, soliton fission [54], and stimulated Raman scattering [55],
are the main ingredients of the supercontinuum generation [1,2,56], particularly in highly nonlin-
ear PCFs [9]. Supercontinuum generation is one of most important phenomena in nonlinear fiber
optics which has led to a number of important technological advances in various fields, such as
spectroscopy and medical imaging, metrology, and the realization of broadband sources [1].

Inspired by advances in DisRR studies, in one of our works [46] the DifRR which occurs
when a continuous-wave (CW) beam or a relatively long pulse is launched into WAs has been
discovered for the first time. Similarities and differences between DisRRs and DifRRs have been
analyzed in Ref. [46]. We have shown that when the phase matching condition is satisfied, a spatial
soliton emits DifRR with a new well-defined direction, i.e., a transverse wave number. Moreover,
due to the periodicity of discrete systems, and thus the existence of a Brillouin zone, unusual
effects which cannot exist in continuous media can now occur. One of these is the anomalous
solitonic recoil described in Ref. [46] for the first time.

I1I.1. Phase matching condition for the diffractive resonant radiation

Light propagation in a discrete, periodic array of Kerr nonlinear waveguides can be de-
scribed, in the CW regime, by the following well-known dimensionless coupled-mode equations
(CMEs) [2,4,28]:

day(z

l;§)+c[an+l(z)+anl(z)]+ ‘an(z)‘zan(z) :O, (6)
where a,, is the electric field amplitude in the nth waveguide, z is the longitudinal spatial coordi-
nate, c is the coupling coefficient resulting from the field overlap between neighboring waveguides.
By using the stationary discrete plane wave solution for the nth waveguidea,(z) = ag expli(nk.d
+ K;z) one arrives, in the linear case, at the well-known dispersion relation between k; and k,[4]:

K, (ky) = 2ccos(kd), 7

where d is the center-to-center spacing between two adjacent waveguides, and k, is the transverse
wave number; see the solid blue line of Fig. 5(a) . It is clear from Eq. (7) that k; is periodic in k¥ =
kyd, which represents the phase difference between adjacent waveguides. Thus, within the coupled
mode approximation, it suffices to investigate the first Brillouin zone of the folded dispersion, -7
<k<m.

Since a typical input beam has a finite width covering several waveguides, its Fourier spec-
trum has a certain bandwidth with a central transverse wave number Ky, which is fixed by the input
angle of incidence of the exciting beam. We can then use a Taylor expansion of Eq. (7) as follows:

K. (x) = K:(Kko) + D—':’AK’", 8)
oS m!
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where Ak = kK — Ky, and D, = (d"'k;/dK™)|«o is the mth order diffractive Taylor coefficient. In
Fig. 5(a) we plot a typical curve for D,(x) (dashed red line), showing the existence of two zero-
diffraction points located at ¥ = /2. This shape of D, is analogous to the GVD of PCFs in the
temporal case [9]. In Ref. [46], we made full use of this analogy when we describe the dynamics
and the formation of the DifRR.

Following Ref. [4], we now approximate the discrete variable n with a continuous one. This
is justified since we shall use pulses and solitons that extend for several waveguides (typically,
5 waveguides or more are enough for the continuous model to give excellent results), and this
approximation is fully vindicated by our numerical simulations in the next subsection. Defining n
as a continuous variable of the distributed amplitude function a(n,z)—a, ; exp(-ikon) we eliminate
the zeroth order term k.(ko), which is responsible for the general phase evolution through the
substitution a(n,z) — a(n,z)exp[ik:(ko)z]. The first order term, -iD; d,, takes into account the
transverse velocity and can also be eliminated by introducing a comoving frame, n — n + D z.
After dropping these two low-order terms one arrives at the following equation:

9. — %a,f +Y %(—ian)m Fla(n,2)?| a(n,z) = 0. ©)
m>3

Equation (9) is formally identical to the well-known GNLSE, which describes the evolution
of pulses in a single optical fiber, plus higher-order dispersion (HOD) terms [1]. In Eq. (9) we
have the transverse spatial variable » instead of the temporal variable ¢ of the conventional GNLSE.
Unlike the temporal GNLSE, where a Taylor series for the fiber dispersion can usually be expanded
up to a small number of terms (because HOD coefficients become rapidly very small), in Egs. (8)
and (9) many higher-order diffraction terms D,,>>should be taken into account, since their absolute
values will be either |2¢ sin(ko)| or |2¢ cos(kp)|, and the sum only converges due to the factorial
in the denominator.

In the temporal version of the GNLSE, it is well known that a temporal soliton propagating
in a fiber emits small amplitude, dispersive, and quasimonochromatic waves at well-defined fre-
quencies (the DisRR) when the linear fiber dispersion and the nonlinear soliton dispersion (which
is constant and proportional to its peak power) are matched [11, 13]. It is thus natural to conjec-
ture that, in a WA, a spatial soliton, which in the continuous variable approximation extends over
several waveguides, emits during the propagation a similar kind of small-amplitude diffractive ra-
diation, within a narrow wave number range, due to the phase matching between the spatial soliton
nonlinear dispersion and the linear array dispersion given by Eq. (7). By using the perturbation
approach, which was developed for DisRRs [11], in Ref. [46] we have derived the phase-matching
condition for the DifRR in a similar way. We first nd the unperturbed soliton solution of Eq. (9)
where all diffractive terms D,,>3 are dropped. Under these conditions, the soliton solution is given
by:

flAQ
agq1(z,n) = Apsech | ———— | exp(ik12), 10
SO]( ) 0 ( ZCCOS(K0)> p( sol ) (10)

where kg, = A(2)/2 is the spatial soliton longitudinal wave number, identical to its temporal coun-
terpart. The bright soliton solution (10) only exists when 2¢ cos(ky) ¢ 0, i.e., only in half of the
Brillouin zone, where —7/2 < xp < m/2. Now we look for the linearized dispersion relation of
plane wave solutions of Eq. (9), by substituting exp[i(k;i,z + Akn)] into Eq. (9) and using Eq. (8).
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Fig. 5. (a) Solid blue line: WA dispersion k; vs k. Dashed red line: D vs k, showing the
two zero-diffraction points located at ¥ = +7/2. (b) Wave number kgg of the generated
DifRR, as a function of the input soliton wave number k. The red dashed line indicates
the approximated formula kgg = Ky + 3/ tan(kp ) for the position of the resonant radiation,
while the blue solid line is the result of the exact implicit formula given by Egs. (11) and
(12). In both (a) and (b) the gray shaded area indicates the region where bright solitons
can propagate. (c),(d) Beam propagation in the (n, z) plane (c) and (k, z) plane (d).
Parameters are Ay = 0.8, c = 1.2, xp = 0.7. This figure is reproduced from our original
work in Ref. [46].

We obtain:
D,, .
kiin(AK) = ) —FAK" = 2c[cos(k) —cos(Ko) + sin(Ko)Ak] . (11)

s m!

In Eq. (11), ko is the central wave number (which is related to the incident angle) of the
incident beam, while Ax is the detuning from ko, and k¥ = K¢ + Ak. Energy exchange between
radiation and solitons is possible for those values of Ak that satisfy

kjin (AK) = kgo (12)

where ky,; is constant and has been defined above. This phase matching condition, an implicit
equation for the radiation wave number detuning Ak, is the central result of our work in Ref. [46].
It is important to note that although the phase-matching condition expressed in Eq. (12) has been
derived from the continuous model of Eq. (9), such a formula very accurately predicts the DifRR
wave number in the full original discrete model of Eq. (6), as we shall show below.
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Incidentally, if we would have followed what is commonly done for optical fibers, i.e.,
taking into account only D, and D3 in Eq. (11), and ignoring the power dependence (ks,; — 0),
one can easily get the approximate DifRR wave number in the form xgg ~ KI; r = Ko+3/tan(kp).
Such approximations are perfectly fine in fiber optics when dealing with DisRR — they lead to
very accurate predictions of the DisRR frequency. However, the same approximation is not good
enough for the case of WAs, since, as explained above, the coefficients (D,,/m!) decay not as
rapidly as in the temporal case, and a large number of orders must be taken into account, as we
show explicitly in the next section. However, even if not explicit as in the case of the temporal
DisRR, Eq. (12) is exact and can be easily solved numerically.

II1.2. Emission of DifRR and soliton anomalous recoil

We now prove numerically the formation of DifRR in the full discrete model of Eq. (6),
and the accuracy of the predictions made by the phase-matching condition Eq. (12).

In Fig. 5(b) we show the DifRR wave number kzr = Ky + Ak as a function of the input
soliton wave number (which is related to the angle of incidence) ky. The blue solid curve is
obtained by finding numerically the roots Ax of Eq. (12), while the dashed red curve shows the
approximated analytical expression given in the previous section. It is clear that k;gR is not accurate
enough to be used in practice, when compared to the solid line, which shows a complexity that goes
beyond any truncation of the Taylor expansion in Eq. (3), especially when the power dependence
is included via the right-hand side of Eq. (7).

In Fig. 5(b) we depict the full range of the first Brillouin zone for completeness, but only
the interval —m/2 < Ky < 7/2 (indicated by a gray shaded area), in which pulses experience
“anomalous” diffraction (i.e., D, < 0), should be considered, since this is the only region where
solitons can form in the WA (for focusing nonlinearity), analogously to the anomalous dispersion
frequency range of optical fibers. Parameters used in Fig. 1 are A9 =0.8, c =1.2, and xp = 0.7.
For these parameters, in the range 0.235 < |ky| < 7/2, one can find only one solution for kgg,
but when 0 < |xp| < 0.235, Eq. (12) shows several roots (see the solid blue curve in Fig. 5(b)).
Thus, one should expect to simultaneously generate several DifRRs with different wave numbers
in the latter interval. However, full numerical simulations of Eq. (6) show that only the solution
corresponding to the branch that is the closest to the central horizontal axis (i.e., the axis kgg = 0)
can be generated and observed, and all other DifRR waves corresponding to roots from other
branches are too weak to be seen numerically, since the overlap between the soliton spectral tail
and the radiation wave numbers becomes exponentially small. When k¢ = 0, i.e., for a normal
incidence of the input CW beam, there is no solution for Eq. (12), regardless of the parameters
used. This is also confirmed by the direct simulation of Eq. (6).

The evolution of a CW beam along z according to Eq. (6) is shown in Fig. 5(c). After
some propagation, around z = 3, a DifRR is emitted by the soliton. The evolution of the Fourier
transform of the field a(n) of Fig. 5(c) along z is shown in Fig. 5(d). The dashed green horizontal
line represents the input wave number (kp = 0.7), while the solid white line is obtained by solving
Eq. (12) numerically, showing excellent agreement with the pulse propagation. In Fig. 5(b) one
can notice that the soliton emits the DifRR with a positive detuning Ak when 0 < kp < 7/2. For
instance, when ko = 0.7, then from Eq. (12) one gets kgg = ko + Ak = 3.53. However, since
the Brillouin zone has a limited extension, when 27 > kgr > 7 the DifRR will be emitted with
a negative detuning due to the folding of the band structure. In the example shown in Fig. 5(d)



TRAN XUAN TRUONG 13

the effective DifRR wave number will be equal to kgr — 27 ~ —2.75 (see the white solid line in
Fig. 5(d)). This means that in real space the soliton, instead of recoiling in an opposite direction
than the DifRR, will recoil towards the DifRR itself, see the white arrows in Fig. 5(c). The same
phenomenon occurs in the wave number space: the soliton spectral momentum, instead of recoil-
ing away from the radiation, moves slightly towards it (see Fig. 5(d)). We call this unique effect
(which cannot be found in continuous media such as fibers due to the lack of a Brillouin zone)
anomalous recoil. This kind of anomalous recoil in WAs takes places not only with the DifRR,
but also with other beams and discrete solitons as investigated in details in our recent work [48]
where we analyze the control of a strong discrete soliton by a much weaker beam. In Ref. [47] we
have shown that the emission of DifRRs is a universal effect in WAs and it takes place not only
with optical beams, but also with pulses launched into the system.

IV. DIRAC SOLITONS IN BINARY WAVEGUIDE ARRAYS

Waveguide arrays investigated in Section III consist of identical waveguides which are pe-
riodically laid next to each other in such a way that their individual modes overlap. As mentioned
in the Introduction, WAs have been used intensively to simulate many fundamental phenomena in
nonrelativistic classical and quantum mechanics. However, it was a common belief that the use of
WAs as a model system for quantum mechanics carries the intrinsic drawback of being limited to
nonrelativistic phenomena. Only recently, it turns out that binary waveguide arrays - an alternat-
ing sequence of two different types of waveguides - can be used to mimic relativistic phenomena
typical of quantum field theory, such as Klein tunneling [35, 36], the Zitterbewegung [37,38], and
fermion pair production [39], which are all based on the properties of the Dirac equation [40]. In
this Section we review ours latest works on the optical analogues of the quantum relativistic Dirac
solitons in BWAs [49-52].

IV.1. Analytical soliton solutions in binary waveguide arrays

Light propagation in a discrete, periodic BWA of Kerr nonlinearity can be described, in the
CW regime, by the following dimensionless coupled-mode equations [57]:

ida" ()
dz

where 20 is the propagation mismatch between two adjacent waveguides of the array, and 7 is
the nonlinear coefficient of waveguides, which is positive for self-focusing, but negative for self-
defocusing media. In the dimensionless form, in general, one can normalize variables in the above
equation such that both y and care equal to unity in the self-focusing case. However, throughout
our works in [49, 52] and in this Section these parameters are kept explicitly in Eq. (13). The
only difference between Eq. (6) and Eq. (13) is that in Eq. (13) there is a new term containing ¢
which emerges due to the binary character of the new system. In [49] we have found the analytical
solutions for fundamental Dirac solitons as follows:
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This analytical Dirac soliton solution in BWAs is a one-parameter family where one param-
eter, such as soliton peak amplitude or width, can be arbitrary, provided that the soliton width is
large enough (the beam width parameter ny > 3.5, see Ref. [49] for more details). The Dirac soli-
ton solution in the form of Eq. (14) is valid in the case when 7y and ¢ are positive. However, with
this solution one can easily construct other Dirac soliton solutions for any sign of each parameter
Y and o [49].

a o4 b 0.4

0.2} 1 0.2

...}LAA A:AA.-_... = O_T...AVAA AA.A.V...
v V VVV

-20 -10 0 10 2;3 -20 -10 0 10 20
waveguide position n waveguide position n

Fig. 6. Discrete soliton profiles (a, b) for even and odd symmetry, respectively. Full
circles mark the field amplitudes across the BWA. Parameters in (a): c=1; y=1; 0 =
—1.2; and ny = 5. This figure is reproduced from our original work in Ref. [49].

In Fig. 6(a) we plot the soliton profile with even symmetry calculated by using Eq. (14)
at z = 0 with full circles marking the field amplitudes across BWAs, for the parameters given in
the caption. Note that the soliton profile in Fig.6 (a) consists of two components: one strong
component ay, and another much weaker component a,,_(see also Fig. 7(c)). Once we get the
soliton solution in Fig. 6(a), we can construct another soliton solution of the same physical system
by changing the sign of ¢ and following the rules explained [49].

As an example, in Fig. 7(a) we show the soliton propagation along z as obtained by nu-
merically solving Eq. (13) with an input soliton taken from Eq. (14) at z = 0, demonstrating that
the soliton profile is well preserved during propagation. The parameters used for Fig. 7 are the
same as in Fig. 6(a). The evolution of the Fourier transform of the field a, in Fig. 7(a) along z
is shown in Fig. 7(b), where the wave number k represents the phase difference between adjacent
waveguides. Due to the periodic nature of BWAs, within the coupled mode approximation, it
suffices to investigate Kk in the first Brillouin zone —7 < k¥ < 7 [4]. One very important feature
of the wavenumber evolution in Fig. 7(b) is the fact that there are two components of wavenum-
ber centered at k = +7/2 which correspond to two Bragg angles [38] with opposite inclinations.
These two wavenumber components are generated at the input and preserve their shapes during
propagation along z. This feature of k indicates that the soliton operates in the region where CMEs
could potentially be converted into the relativistic Dirac equations describing the evolution of a
freely moving relativistic particle [37,38]. We will come back to this important point again later.
Fig. 7(c) shows the two components of the soliton profile at odd and even waveguide positions
n. The strong component with solid curves and square markers represents the field profile |a,|



TRAN XUAN TRUONG

waveguide position n

0 50 100 150 200
propagation distance z

=20 0 20
waveguide position n

wave number k/1r

phase &/

15

o

-0.5
0
0.5
1
0 50 100 150 200
propagation distance z
1
0.5
0 L
-0.5 U
=20 -10 0 10 20

waveguide position n

Fig. 7. (a,b) Soliton propagation in the (1, z)-plane (a) and its Fourier transform in the (x,
z)-plane (b) with an even symmetry profile at the input. (c) Absolute values of the field
amplitudes for intense (|ay,| with solid line and square markers) and weak (|az,—| with
dashed—dotted curves and round markers) soliton components at four different values of z
=0 (red curves); 50 (blue curves); 140 (green curves); and 200 (black curves). The soliton
profile is so well preserved that all these curves just stay on top of each other and one can
see only the output black curves. (d) Phase pattern 8/ of soliton profiles at the four
above values of z. Colors of curves in (d) have the same meaning as in (c). Parameters:
c=1;y=1; 0 =—1.2; and np = 5. All contour plots are shown on a logarithmic scale.
This figure is reproduced from our original work in Ref. [49].

at even waveguide positions, whereas the weak component with dashed—dotted curves and round
markers represents the field profile |az,—1| at odd waveguide positions. Field profiles in Fig. 7(c)
are taken at four values of propagation distance z = 0 (red curves); 50 (blue curves); 140 (green
curves); and 200 (black curves) —only the black curves are actually visible since the profile is per-
fectly preserved during propagation with a very high precision. The soliton profile also perfectly
preserves its phase pattern across the array (Fig. 7(d)). From Eq. (14), one can easily see that
as the waveguide position variable n runs, the phase pattern of the soliton must be periodic as
follows: 6, =---(p, p), (p + w, p + @), (p, p)... where p also changes with z. This pattern is
only broken at the soliton center point where the function fanh in Eq. (14) changes its sign. This
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phase pattern is shown in Fig. 7(d), where different colors with meanings as in Fig. 7(c) depict
pattern at different values of z. The sequence in the phase is important because it allows us to
convert Eq. (13) into the nonlinear Dirac equation, as we shall show shortly. Note that the soliton
whose propagation is shown in Fig. 7 is the one with even symmetry in Fig. 6(a). Our simulations
similarly show that the profile of solitons with odd symmetry in Fig. 6(b) is also well preserved
during propagation, and we have checked that this is true even in the presence of quite a strong
numerical noise, demonstrating the robustness and the stability of our solutions.

IV.2. Dirac solitons

In this subsection we will report on the simulation of nonlinear relativistic Dirac solitons
in BWAs. As shown in Refs. [37,38], linear CMEs (Eq. (13)) for a beam with phase difference
equal to /2 can be converted into the linear one-dimensional relativistic Dirac equation (DE).
Note that Eq. (13) can be converted into the DE only for beams with special phase patterns; for
instance, at normal beam incidence Eq. (13) cannot be converted into the DE. It turns out that
with the soliton solution given by Eq. (14), one can also successfully convert Eq. (13) into the
nonlinear relativistic Dirac equation (NDE). Thus, one can use BWAs to mimic the relativistic
Dirac solitons, and soliton solutions in BWAs given by Eq. (14) can be used to construct directly
the Dirac soliton. Although the solution of Eq. (14) does not possess a phase difference equal
to /2 between adjacent waveguides (see Fig. 7(d)), the fact that it exhibits two wavenumbers
K = £m/2 (see Fig. 7(b)) gives us some hope that the NDE can also be obtained in this case.
Indeed, this is the case, as shown below. In general, suppose that [a2,(z), a2, (Z)]T =" [g(2n, 2),
q(2n—1, z)]7, where the two functions g and ¢ are smooth and their derivatives d,g and d,q exist
in the quasicontinuous limit (Eqs. 14) satisfy these requirements). After setting ¥ (n) = (—1)"az,
and ¥, (n) = i(—1)"ay,—1, and following the standard approach developed in Refs. [37,38], we can
introduce the continuous transverse coordinate & «» n and the two-component spinor ¥(§,z) =
(W1,¥>)" which satisfies the 1D NDE:

i0,¥ = —icads ¥ + oY — G, (15)

where the nonlinear term G = (|¥; |*¥1, |¥2|*¥,)”, B =diag(1,-1) is the Pauli matrix o; and « is
the Pauli matrix o, with diagonal elements equal to zero, but off-diagonal elements equal to unity.
Note that Eq. (15) is identical to the DE obtained in Refs. [37, 38], with the only difference that
now we have the nonlinear term G in Eq. (15). Similar soliton solutions have been found for the
NDE in Ref. [58], but with a different kind of nonlinearity in the context of quantum field theory.
Using the soliton solution given by Eq. (14) and the above relation between a, and ¥ one can
easily obtain the Dirac soliton solution of Eq. (15) as follows:

2¢ 2§ iZ(#—G)
sech (—) e \"0°
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The above solution is obtained for ¢ ;, 0 and 7 > 0. One can use the symmetry properties
of Eq. (13) to construct other Dirac soliton solutions of Eq. (15), with different sign combinations
between o and 7y (for more details see Ref. [49]). The expressions given by Eq. (16) give the
main result of our work in Ref. [49]. The robustness of these Dirac solitons has been numerically
demonstrated in Ref. [50]. We have shown in Ref. [50] that even though the initial beam can be
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different from the exact Dirac soliton, during propagation in BWAs the beam can gradually evolve
toward the exact Dirac soliton. During propagation, it is also possible to form stable structures
consisting of many interacting Dirac solitons from inputs made of many quasi-solitons that initially
have slightly different peak amplitudes [50]. Many interaction features of these solitons are similar
to those of NLSE solitons: two in-phase solitons will attract each other and two out-of-phase
solitons will repel each other, they can also exchange energy for intermediate values of phase
difference between two solitons. However, the interaction behavior of two in-phase discrete spatial
solitons in BWAs is quite different from that of two in-phase NLSE solitons at the later stage
after the first collision. Unlike two NLSE in-phase interacting solitons where periodic pattern
(including collision) is formed, the collision between two solitons in BWAs happens more and
more frequently, and finally just one beam is formed [50].

IV.3. Higher-order Dirac solitons

Soliton solutions to the well-known nonlinear Schrodinger equation governing the pulse
propagation in an optical fiber have been thoroughly investigated among various classes of soli-
tons [1,28,59]. The shape of the fundamental temporal soliton obtained from the NLSE (further
referred to as NLS solitons) is described by the hyperbolic function u(7) = sech(7). This shape
is absolutely retained during propagation of the fundamental NLS soliton along the optical fiber.
In light of this, the DS investigated above in the form of Eq. (14) can also be termed as the fun-
damental DS, because its profile is also conserved during propagation along the longitudinal axis
of BWAs. However, apart from the fundamental soliton solution, the NLSE also has so-called
higher-order (HO) soliton solutions with initial shapes being described by Nsech(7) where N is
an arbitrary integer provided that N > 2 [1, 60, 61] (further referred to as HONLS solitons). Un-
like the fundamental NLS soliton, HONLS solitons have profiles which repeat periodically during
propagation. Thus, it is natural to expect that in addition to the fundamental DS, one can also have
HODSs in BWAs whose profiles repeat periodically during propagation. The aim of our recent
work in Ref. [51] is to investigate the properties and dynamics of these HODSs and to compare
them with HONLS solitons.

Supposing that a, is the analytical fundamental DS solution in the form of Eq. (14), we
investigate the propagation of the initial beam a, — ra,, where r = 2. In analogy to HONLS
solitons, one can expect that a beam with this initial profile shows the distinguishing feature of
HO solitons, i.e., its profile changes in a periodic manner during propagation. Indeed, this is the
case as shown in Fig. 8. The propagation of this beam is illustrated in Fig. 8(a) where one can
see that the main body of the beam changes periodically during propagation. At first, the beam is
compressed in space, then after the maximum compression it broadens again, and after reaching
the maximum broadening it gets compressed. The amplitude |a,(z)| is periodic in z with the period
length L=12.6 for the specific set of parameters used in Fig. 8. In Fig. 8(a) one can also see weak
radiations emitted from the body of the beam. This radiation is relativistic Zitterbewegung found
in BWAs [38].

Fig. 8(b) shows the two components of the beam profile at odd and even waveguide posi-
tions n. The strong component with solid curves and square markers represents the field profile
|az,| at even waveguide positions, whereas the weak component with dashed curves and round
markers represents the field profile |ay,+1| at odd waveguide positions. Field profiles in Fig. 8(b)
are taken at three values of propagation distance within one period: z; = 119.2 (blue curves — the
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beginning of one period); zp = z1 + 0.5L = 125.5 (black curves — the middle of this period); and
73 =71+ L =131.8 (red curves — the end of this period). One can see that the red curves (profiles
at the end of one period) completely coincide with the blue curves (profiles at the beginning of
this period), as a result, one can hardly see the blue curves because they are hidden behind the
red curves. Note that in Fig. 8(b) we intentionally select the greater thickness for the blue curves
as compared to other curves such that one can still recognize them behind the thinner red curves.
From Figs. 8(a) and (b) one can clearly see that at the beginning and the end of one period most
of light energy is localized in the central waveguide with position n = 0; then during propagation
the beam gradually broadens, as a result the light energy is transferred to other waveguides at two
sides of the central waveguide; at the middle of this period represented by black curves in Fig. 8(b)
most of light energy now is located at two waveguides with position n = 2. Note that the initial
input profile most resembles the black curves with the only significant exception that the black
curve for even component |ay,| has a dip in the center (n = 0), whereas the even component of the
initial input curve is monotonically decaying from the center. This feature shows that the estab-
lished periodic pattern is very robust and can be formed from the initial condition which is not the
“exact” oscillatory solution. In Figs. 8(c) and (d) we show the propagation of intense even com-
ponent |az,|, and weak odd component |az, 1|, respectively, for two periods where the periodic
pattern during propagation is also clearly illustrated. In Fig. 8(e) we show the propagation of the
central part of the beam in Fig. 8(a), but with much longer propagation distance which exceeds
any length of a BWA implementation for all current practical purposes. Our simulations show that
after radiating some extra energy to the periphery of the BWA at the beginning of the propagation,
the periodic regime of the beam is established over long propagation distances without any loss of
energy due to radiation. So, this kind of beams can be called higher-order Dirac solitons (HODSs)
in BWAs in analogy to higher-order NLS solitons in optical fibers [1,28,59]. Like the soliton order
N for HONLS solitons, the parameter r can also be called the “order”of HODSs. It is worth noting
that, like the fundamental DS in the form of Eq. (14), those HODSs also satisfy all necessary
conditions to convert Eq. (13) into the nonlinear relativistic 1D Dirac equation (see Ref. [49] for
more details).

It is well-known that if the NLSE in optical fibers is presented in the dimensionless canon-
ical form, then the period for HONLS solitons is /2 in dimensionless unit where the length scale
is the dispersion length Lp = T?/|B2| with Ty being the pulse duration and 3, being the group
velocity dispersion parameter of the fiber [1]. As mentioned above, in the case of NLS solitons
in optical fibers, the true HONLS solitons have the order N which is an arbitrary integer provided
that N > 2. In that case the shape of the solitons absolutely repeats after each period 7 /2. When
the parameter N is not an integer, some weak radiation is emitted continuously from the body of
solitons during propagation, but the shape of the central part of solitons also practically repeats
after the period 7 /2 which is independent of the specific value of N. For HODSs, when the pa-
rameter » (which plays the role of the parameter N for HONLS solitons) varies continuously in a
certain range the main part of the solitons also repeats periodically during propagation like in the
case with » = 2 shown in Fig. 8(a), however, the period L does depend on the specific value of r.
This nontrivial feature of HODSs is illustrated in Figs. 9(a) — (c) where we show their propagation
with different values of the parameter r = 1.5, 1.8, and 2.2, respectively. All other parameters
in Fig. 9 are the same as in Fig. 8. It is clear that all features in Fig. 8(a) (where the case with
r =2 is presented) are reproduced in Figs. 9(a)—(c) (where scenarios with r not being an integer
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Fig. 8. (a) The propagation of a higher-order Dirac soliton with the parameter r = 2. (b)
Profiles of the higher-order Dirac soliton at three specific propagation distances within
one period: blue curves — the beginning of one period, black curves — the middle of
this period, and red curves — the end of this period. (c¢) The propagation of intense even
component |ay,| for two periods. (d) The propagation of weak odd component |ay, 1| for
two periods. (e) The same as (a), but with much longer propagation distance. Parameters:
c=1; y=1; 0 =-1.2; the beam width parameter ng = 5; and the order parameter r = 2.
This figure is reproduced from our original work in Ref. [51].

are presented) with the only exception that the period L in these Figures is different depending
on the parameter r. It is important to emphasize that unlike HONLS solitons, in order to obtain
HODSs in BWAs the parameter r cannot be too large, otherwise, the periodic change of the HODS
amplitudes during propagation will cease to exist from the very beginning as clearly demonstrated
in Fig. 9(d) where the propagation of a beam with r = 3 (all other parameters are also the same as
in Fig. 8) is illustrated. In this case, after a certain propagation distance (z =~ 20 in Fig. 9(d)) most
of light energy is just locked in the central waveguide. This feature is due to the discrete nature
in BWAs. It is well-known that the discreteness in WAs can create a periodic potential which is
known from solid state physics as the Peierls—Nabarro (PN) potential [4]. At high powers like
the case shown in Fig. 9(d) the increase of the PN potential results in a strong localization of the
beam, mainly in a single waveguide which is effectively decoupled from the rest of the array. For
more detailed information on how the period L depends on various parameters such as the order
parameter r and the propagation mismatch ¢ readers can see our original work in Ref. [51].
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Fig. 9. (a) — (c) The propagation of higher-order Dirac solitons with the order parameter
r=1.5, 1.8, and 2.2, respectively. (d) The propagation of a beam with » = 3.0. All other
parameters are exactly the same as in Fig. 8.

A natural question is what makes HODSs different from HONLS solitons in the sense that
the period of the HODSs depends substantially on the order parameter, whereas the period of the
HONLS solitons remains constant. One may think that the discreteness of BWAs is the major
contributing factor in this matter. However, as clearly shown in [51], this is not the case. So, we
conjecture that the binary character (represented by the parameter o) plays the key role to make
the period of HODSs depend on the order parameter r. In addition, when the beam width is large
enough, one can convert the CME in WAs (Eq. (13), but with ¢ = 0) into the NLSE as shown
in [2,62]; however, in BWAs where ¢ # 0, one can only convert Eq. (13) into the relativistic Dirac
equation [49, 52], but not into the NLSE. Note also that the NLSE is integrable [1], whereas as far
as we know the Dirac equation with Kerr nonlinearity is nonintegrable. This fact is probably the
fundamental reason why HODSs are different from HONLS solitons.

In Refs. [49-51] the Dirac solitons in a 1D BWA have been investigated. We have shown in
Ref. [52] that Dirac solitons can also exist in square (2D) binary lattices. These 2D Dirac solitons
are also quite robust like the 1D counterparts. We have demonstrated in [52] that with the found 2D
Dirac solitons, the coupled mode equations governing light dynamics in square binary waveguide
lattices can be converted into the nonlinear relativistic 2D Dirac equation with the four-component
bispinor.
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V. CONCLUSIONS

In this paper we review our works on several new nonlinear effects that we have found in
waveguide arrays and in photonic nanowires with sub-wavelength cores. We have shown that for
photonic nanowires a new equation should be used to accurately investigate the pulse propagation
in the nonlinear regime which takes into account the three following factors at the same time: the
vector nature of the electromagnetic modes inside fibers, the strong dispersion of the nonlinearity
inside the spectral body of the pulse, and the full variations of the vector mode profiles with fre-
quency. For conventional optical fibers where the core is significantly larger than the wavelength
all these three factors are negligible, and thus, one can use the well-known NLSEs to successfully
describe the pulse propagation process. However, for photonic nanowires all these three factors
are now significant and cannot be ignored anymore. From this new equation we have discovered
a new kind of nonlinearity which in some cases can suppress the Raman self-frequency shift of
solitons and pulses in nanowires. In WAs we have discovered the diffractive resonant radiation
emitted from the discrete solitons. The anomalous recoil effect of this DifRR has also been dis-
covered in this process. In BWAs we have found the optical analogues of both fundamental and
higher-order Dirac solitons in quantum relativistic physics in 1D and 2D structures. This paves the
way for using binary waveguide arrays and lattices as classical simulators of quantum nonlinear
effects arising from the 1D and 2D Dirac equations, something that is thought to be impossible to
achieve in conventional (i.e., linear) quantum field theory.
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