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Abstract. In present article, the anharmonic correlated Einstein model has been used to study
the temperature dependence of Extended X-ray absorption fine structure (EXAFS) cumulants of
silicon and germanium crystals. The analytical expressions of the first, second and third cumulants
of silion and germanium have been derived. Our numerical calculations are compared with the
experimental values and also with other theoretical results showing the good agreement.

I. INTRODUCTION

The formalism for including anharmonic effects in X-ray absorption fine structure
(XAFS) is often based on the cumulant expansion [1], where the even cumulants contribute
to amplitude and the odd ones to the phase of XAFS spectra. Quantitative relations
between XAFS cumulants and force constants of one-dimensional anharmonic potential
have been studied by using the quantum statistical perturbative approach [2, 3]. A simple
connection between Extended-XAFS (EXAFS) cumulants and pair interaction potential
has been obtained for a cluster of atoms using a correlated Einstein model and first-order
thermodynamic perturbation theory [4, 5].

Monte Carlo calculations of the mean-square fluctuations in interatomic distances
based on lattice dynamical models have been performed for monatomic FCC and BCC
crystals [6]. Recently, path-integral Monte Carlo (PIMC) allows to study anharmonicity
and low temperature quantum effects [7] and PIMC calculations of EXAFS cumulants
have been performed for copper by using a many-body potential [8, 9].

First-principle calculations of EXAFS cumulants from the force constants of the
crystal potential were proposed by Fujikawa and Miyanaga [10], and have been performed
for monatomic FCC crystals [11]. The first-shell effective pair potential of copper has been
evaluated in terms of the Morse interaction potential [4], and more recently from ab initio

calculations [12]. Ab initio study of the mean-square atomic displacements in EXAFS has
been also performed for silicon [13] and other semiconductors [17-24]. The first-principle
calculations of the Debye-Waller factors in XAFS, based on density functional theory
(DFT) calculations of the dynamical matrix, together with an efficient Lanczos algorithm
for the projected phonon spectra have been carried out recently [12].
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The purpose of the present article is to investigate EXAFS cumulants of semicon-
ductors by using the anharmonic correlated Einstein model (ACEM) [4]. We present the
ACEM study of the temperature dependence of EXAFS cumulants using two pair inter-
action and many-body potentials. We will compare the ACEM calculations of EXAFS
cumulants using the Morse and Stilling-Weber potentials with those of other theoretical
calculations as well as with the available experimental results.

II. ANHARMONIC CORRELATED EINSTEIN MODEL (ACEM)

To interpret anharmonic contributions in the structural information and to fit the
EXAFS, the cumulant expansion approach [1] has been developed according to which the
EXAFS function contains the factor

eW (k); W (k) = 2iσ(1) − 2k2σ2 −
4

3
ik3σ(3) + ... (1)

where σ(1) is the first cumulant or net thermal expansion, σ2 is the second cumulant or
Debye-Waller factor and σ(3) is the third cumulant.

The anharmonic correlated Einstein model (ACEM) is used widely in EXAFS data
analysis to investigate the cumulants [4]. This model is characterized by the effective
interaction Einstein potential of the system:

Veff (x) =
1

2
keffx2 + k3x

3 + ... = V (x) +
∑

j 6=i

V

(

µ

Mi
.x.R̂12R̂ij

)

(2)

where µ = M1M2
M1+M2

,
−→
R is the bond unit vector, x is deviation of instantaneous bond length

between the two atoms from equilibrium, keff is the effective spring constant, and k3 is
the cubic anharmonicity parameter. The correlated Einstein model may be defined as an
oscillation of a pair of atoms with masses M1 and M2 (e.g., absorber and back-scatterer)
in a given system. Their oscillation is influenced by their neighbors given by the last term
in the left hand side of Eq.(2), where the sum i is over absorber (i = 1) and back-scatterer
(i = 2), and the sum j is over all their nearest neighbors, excluding the absorber and
back-scatterer themselves whose contributions are described by the term V (x).

For the calculation of thermodynamical parameters, we use the further definition
x = r − r0, a = 〈r − r0〉 and y = x − a [2, 4] to re-write Eq.(2) as

Veff (y) = Veff (a) +
1

2
keffy2 + δVeff (y) (3)

where δVeff (y) is the anharmonic contribution of the effective pair potential.
Making use of quantum statistical method, the cumulants are determined by the

averaging procedure using the statistical density matrix ρ and the canonical partition
function Z, e.g.

〈ym〉 =
1

Z
Tr (ρym) , m = 1, 2, 3, ... (4)

Atomic vibrations are quantized in terms of phonons, and anharmonicity is the
result of phonon-phonon interaction, that is why we express y in terms of annihilation
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and creation operators, â and â+, respectively

y ≡ σ0

(

â + â+
)

; σ0 =

√

~

2µωE
(5)

and use the harmonic oscillator state |n〉 as the eigenstate with the eigenvalue En = n~ωE ,
ignoring the zero-point energy of convenience (here ωE is the Einstein frequency, to which
it corresponds the Einstein temperature θE = ~ωE/kB).

By using the Eqs. (4), (5) and the first order thermodynamic perturbation theory,
we derived the second cumulant

σ2 =
〈

y2
〉

' 1
Z0

Tr
(

ρ0y
2
)

= 1
Z0

∑

n e−nβ~ωE
〈

n
∣

∣y2
∣

∣ n
〉

= σ2
0

1+z
1−z ,

(6)

where σ2
0 is the zero-point contribution to σ2,

Z0 = Trρ0 =

∞
∑

n

exp (−nβ~ωE) =

∞
∑

n=0

exp (−nβ~ωE) =

∞
∑

n=0

zn =
1

1 − z
(7)

with β = 1
kBT

and z = exp (−β~ωE) = exp (−θE/T ) .

The first and the third cumulants are given by:

σ(1) = −
3kBσ2

0

keff

1 + z

1− z

σ(3) =
〈

y3
〉

= 1
Z

Tr
(

ρy3
)

∼= 1
Z0

∑

n,n′

(e−βEn−e
−βE

n′ )
En−En′

〈n |δVeff |n
′〉

〈

n′
∣

∣y3
∣

∣ n
〉

= −
2k3σ4

0
keff

z2+10z+1
(1−z)2

,
(8)

where

ωE =
√

keff/µ, δVeff (y) = k3y
3 + k4y

4 + ... (9)

II.1. Morse interaction potential:

We present the ACEM for diamond crystals with the nearest neighbors of absorber
(A) and back-scatterer (S) as schematically shown in Fig.1. In this part, the interaction
potential between atoms is considered as the Morse pair potential [14]

ϕ (r) = D
[

e−2α(r−r0) − 2e−α(r−r0)
]

, (10)

where D, r0, and α are determined to fit to the experimental data (e.g., cohesive energy
and elastic modulus).

Expanding the Morse potential (10) to third order at its minimum r = r0, the
interaction potential can be written as:

ϕ (r) = D
[

e−2α(r−r0) − 2e−α(r−r0)
]

≈ D
[

−1 + α2 (r − r0)
2 − α3 (r − r0)

3
]

(11)

or

ϕ (x) ≈ D
(

−1 + α2x2 − α3x3
)

; x = r − r0.
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Fig. 1. Nearest neighbors of absorber (A) and back-scatterer (S) in XAFS of
diamond crystal.

For the diamond crystals, with the aid of Eq.(11) the anharmonic correlated effective
potential from Eq.(2) is resulted as

Veff (x) = ϕ (x) + 3ϕ

(

1

3

µ

M
x

)

+ 3ϕ

(

−
1

3

µ

M
x

)

It is noted that for the diamond structure we have

R̂12R̂1j = −
1

3
; R̂12R̂2j =

1

3
;

µ

M
=

1

2
.

The effective potential now can be re-written as

Veff (x) = ϕ (x) + 3ϕ

(

1

6
x

)

+ 3ϕ

(

−
1

6
x

)

= D

(

−7 +
7

6
α2x2 −

35

36
α3x3

)

(12)

Using the definition y = x − a [2, 4] as the deviation from the equilibrium value of x at
temperature T and Eq. (12), we derive the effective interaction potential

Veff (y) = D
[

−7 + 7
6α2 (y + a)2 − 35

36α3 (y + a)3
]

= D
[(

−7 + 7
6α2a2 − 35

36α3a3
)

+
(

7
3α2a − 35

12α3a2
)

y
]

+ D
[(

7
6α2 − 35

12α3a
)

y2 − 35
36α3y3

]

(13)

Using Eqs (3) and (13), it is easy to derive keff and k3:

keff = 2D

(

7

6
α2 −

35

12
α3a

)

≈
7

3
Dα2 = µω2

E ; k3 = −
35

36
Dα3. (14)

the Einstein frequency and Einstein temperature

ωE =

√

keff

µ
≈

√

7

3

Dα2

µ
; θE =

~ωE

kB

=
~

kB

√

7

3

Dα2

µ
. (15)
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From the Eqs (6), (8), (14) and (15) we obtain the cumulants of diamond crystals:

σ(1) = a (T ) = σ
(1)
0

1 + z

1 − z
; σ

(1)
0 = −

3k3σ
2
0

keff
=

5α

4
σ2

0 ; (16)

σ2 = σ2
0

1 + z

1 − z
=

kB

2µ

√

3µ

7Dα2

1 + z

1 − z
; (17)

σ(3) = σ
(3)
0

1 + 10z + z2

(1 − z)2
; σ

(3)
0 = −

2k3σ
4
0

keff

=
5α

6
σ4

0 . (18)

where

σ2
0 =

~ωE

2keff

=
~

2µωE

=
kB

2µ

√

3µ

7Dα2
. (19)

II.2. Stillinger-Weber interaction potential:

Recently, there has been intense interest in developing the simple model interatomic
potentials which would permit the direct calculation of the structural, thermodynamic
properties and EXAFS cumulants of complex systems. Pair potentials have long been
used to describe rare gas atoms, simple metals and highly ionic systems. However, since
pair potentials are completely inapplicable to strongly covalent systems, a natural first step
was to include the three-body potential in the expansion of the energy of N interacting
particles. One of these empirical many-body potentials was developed for silicon [15] and
germanium [16] as described by the following equations:

ϕ (r) = Φij + Wijk,

where the pair potential has the form

Φij =

{

εA
[

B
( rij

σ

)−4
− 1

]

exp
[

( rij

σ
− b

)−1
]

if rij < b ,

0 if rij ≥ b
(20)

and the three-body potential is given as

Wijk = ελ exp

[

γ (rij − b)−1 + γ
(rik

σ
− b

)−1
] (

cos θijk +
1

3

)2

(21)

where rij is the distance between two atoms of index i and j, θijk is the angle formed
by the ij bond and the ik bond, ε is the cohesive energy per bond, b is a dimensionless
parameter which represents the cutoff distance of the interaction and all other values are
adjustable parameters.

The minimum distance r = r0 of Stillinger-Weber potential can be determined from
experiment or the minimum condition of the potential energy as: dϕ (r) /dr = 0

Expanding the Stillinger-Weber potential to third order at its minimum r = r0, we
have:

ϕ (r) = ϕ (r0) +
1

2!
ϕ′′ (r0) (r − r0)

2 +
1

3!
ϕ(3) (r0) (r − r0)

3 + ...

or:

ϕ (x) ≈ ϕ (r0) +
1

2!
ϕ′′ (r0)x2 +

1

3!
ϕ(3) (r0) x3 (22)
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The Einstein effective potential can be written as

Veff (x) = ϕ (x) + 3ϕ
(

1
3

µ
M

x
)

+ 3ϕ
(

−1
3

µ
M

x
)

= ϕ (x) + 3ϕ
(

1
6x

)

+ 3ϕ
(

−1
6x

)

= 7ϕ (r0) + 7
6

1
2!ϕ

′′ (r0)x2 + 1
3!ϕ

(3) (r0)x3 (23)

Using the definition y = x−a [2, 4], and Eq. (23), we derive the effective interaction
potential

Veff (y) = 7ϕ (r0) + 7
6

ϕ′′(r0)
2! (y + a)2 + ϕ(3)(r0)

3! (y + a)3 (24)

Using Eqs. (3) and (24), it is easy to derive the effective force constant keff , the
cubic anharmonicity parameter k3, the Einstein frequency and Einstein temperature

keff = 2

[

7

6

ϕ′′ (r0)

2!
+ 3

ϕ(3) (r0)

3!
a

]

≈
7

6
ϕ′′ (r0) (25)

k3 =
ϕ(3) (r0)

3!
=

ϕ(3) (r0)

6
(26)

keff = µω2
E ⇒ ωE =

√

keff

µ
≈

√

7

6

ϕ′′ (r0)

µ
; θE =

~ωE

kB
=

~

kB

√

7

6

ϕ′′ (r0)

µ
. (27)

From the Eqs. (6), (8), (25) and (26) we obtain the cumulants of silicon and
gemanium crystals using the Stilling-Weber potential:

σ(1) = a (T ) = σ
(1)
0

1 + z

1− z
; σ

(1)
0 = −

3k3σ
2
0

keff
; σ2

0 =
~ωE

2keff
=

~

2µωE
; (28)

σ2 = σ2
0

1 + z

1− z
; (29)

σ(3) = σ
(3)
0

1 + 10z + z2

(1 − z)2
; σ

(3)
0 = −

2k3σ
4
0

keff
; (30)

III. RESULTS AND DISCUSSIONS

The expressions derived in section II have been used to evaluate the first, second
and third EXAFS cumulants of germanium and silicon. We used the potential parameters
D and r0 of the Morse potentials (Table 1) and Stilling Weber potentials parameters for
Si and Ge crystals (Table 2).

Table 1. Parameters of the Morse potentials for Si and Ge crystals [14]

Crystals α(Å−1) r0(Å) D (eV)

Si 1.56 2.34 1.83

Ge 1.50 2.44 1.63

In Fig. 2, we present the temperature dependence of the first cumulants of Ge crystal
as a function of the temperature T(K), calculated by using the ACEM with the Stilling-
Weber and Morse interaction potentials and results of G. Dalba [17]. The ACEM (Morse)
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Table 2. Parameters of the Stillinger-Weber potentials for Si [15] and Ge crystals [16]

Crystals ε (eV) A B σ (Å) λ
Si 2.1672 7.049556277 0.6022245584 2.0951 21.00
Ge 1.9300 7.049556277 0.6022245584 2.1810 31.00
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Fig. 2. Temperature dependence of the anharmonic correlated Einstein model
(ACEM) first cumulants by using the Stilling-Weber(S-W) and Morse potentials
(Morse) for Ge crystal.

calculations of the first cumulant of Ge crystal are in good agreement with the G. Dalba’s
results. One sees in Fig. 2 that the ACEM (Morse) σ(1) values are considerably higher
than the ACEM (S-W) calculation results. The rapid increasing in the first cumulants
also indicates the stronger anharmonicity contribution of the thermal lattice vibration at
high temperature.
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Fig. 3. Temperature dependence of the Second cumulant of Ge crystal.

In Fig. 3, we present the temperature dependence of the second cumulant of germa-
nium calculated by using the ACEM (Morse) and ACEM (S-W) as well as the available
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values of experiment [18] and other theories [18-23]. In this figure, we can see that, the
second cumulant results calculated by using ACEM (Morse) are in good agreement with
the experiment values [18], ab-initio [18] and Fornasini et al.’s results [20]. Our calculated
second cumulant values have the same way dependence on temperature as experimental
and other theoretical results. The ACEM (Morse) calculated second cumulants of Ge
crystal are large different from the ACEM (S-W) calculated results at the temperature
region higher than 300 K.
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Fig. 4. Temperature dependence of the third cumulant of Ge crystal.

The third cumulant of Ge crystal exhibits a flat constant behavior at low temper-
ature (Fig. 4). A T 2 dependence is obtained for the third cumulant in previous studies
[17, 20] above 200 K and our ACEM results are consistent with these results [17, 20].
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Fig. 5. Temperature dependence of the third cumulant of Si crystal.

In Fig. 5 we present the temperature dependence of the third cumulant of Si crystal.
The difference between the ACEM calculated results by using Morse and Stillinger-Weber
interaction potentials for the third cumulant of Si crystal is also large at the temperature
region higher than 300 K.
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Fig. 6. Temperature dependence of the second cumulant of Si crystal.

In Fig.6 we show the ACEM (Morse and S-W) calculations of the second cumulants
of silicon as a function of temperature T , together with those of experimental results for the
crystal silicon (c-Si) [19] and M. Benfatto’s results [24] by symbols �, ◦, respectively. The

calculated second cumulant σ(2) by ACEM with the Morse potential is in good agreement
with the experimental results.

IV. CONCLUSIONS

We have presented the anharmonic correlated Einstein model (ACEM) by using the
Stilling-Weber and Morse interaction potentials, and investigated the EXAFS cumulants
of germanium and silicon. The first, second and third cumulants of Ge and Si crystals are
calculated as a function of the temperature. The calculated results are in good agreement
with the previous theories and corresponding experimental results, and they also demon-
strate the present ACEM (Morse) calculations of second cumulants give slightly better
results compared to those by ACEM calculations with the Stillinger-Weber potentials.
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