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Abstract. The electronic properties of strongly correlated systems with binary type of disorder
are investigated using the coherent potential approximation. For half-filled system, two transi-
tions from a band insulator via a metallic state to a Mott insulator are found with increasing the
correlation strength of only one of the constituents. Our phase diagram is consistent with those
obtained by the dynamical mean field theory.

Keywords: metal-insulator transition; phase diagram; disordered Hubbard model.

Classification numbers: 71.27.+a.

I. INTRODUCTION

In many materials, both the disorder and the correlation effects are present at the same
time. The strong correlation effect between electrons has provided us a lot of interesting phenom-
ena, such as high transition temperature superconductivity, metal-insulator transition (MIT), spin-
charge-orbital orderings and so on. On the other hand, real materials are always subject to different
kinds of disorder, such as vacancies, impurities and non-stoichiometric composition. Therefore,
the disorder and the electron correlation effects should be considered together to understand the
electronic properties of the system.

A generic model to study the common influence of disorder and correlations is the Hubbard
model including diagonal disorder. For this model, the MIT at noninteger filling have been found
by Byczuk et al. [1, 2]. They have shown that at a particular density, equal to the disorder concen-
tration x (or 1+ x), the interplay between disorder-induced band splitting and correlation-induced
Mott transition gives rise to a new type of MIT. Recently, a very interesting study on MIT in the
disordered and correlated system SrTi1−xRuxO3 has been performed [3]. To explain this experi-
ment, Lombardo et al. [4] proposed a model Hamiltonian where both Ru and Ti sites are included.
Here, besides the difference between local energies of Ru and Ti (εA 6= εB), a difference between
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local Coulomb repulsion UA 6=UB is introduced. This model was solved using the dynamical mean
field theory (DMFT) with the non-crossing approximation (NCA) as the impurity solver. The dis-
order was treated by the coherent potential approximation (CPA). For half-filled systems, various
metal-insulator transitions were described by spectral analysis and a phase diagram was obtained.

It should be noted that the NCA is performed at finite temperature, therefore we propose
now to consider the phase diagram at zero temperature using the other method. In this paper we
employ the CPA to handle both disorder and correlations in the fully diagonal disordered Hubbard
model. Our results support the main results obtained in Ref. [4] and show the simple way to
study disordered transition metal oxides where the strong correlated 3d orbitals hybridize with
non-correlated 2d orbitals.

II. MODEL AND SOLVING METHOD

We consider the following Hamiltonian with correlations and binary type of disorder

H =−t ∑
<i j>σ

(c†
iσ c jσ +H.c.)+∑

iσ
εiniσ +∑

i
Uini↑ni↓, (1)

where ciσ (c
†
iσ ) annihilates (creates) an electron with spin σ at site i, niσ = c†

iσ ciσ and the sum
< i j > is the sum over nearest neighbor sites of a Bethe lattice. A fraction x of sites (sites A)
have a local on-site energy εi = εA and a local on-site Coulomb repulsion Ui =UA and a fraction
1− x of sites (sites B) have a local on-site energy εi = εB and a local on-site Coulomb repulsion
Ui =UB. In addition, we define ∆ = εA− εB the energy difference between the two types of sites.
This model describes to an AxB1−x alloy with fully diagonal disorder.

In the alloy-analog approach the many-body Hamiltonian (1) is replaced by a one-particle
Hamiltonian of the form

H̃ = ∑
iσ

ε̃iσ c†
iσ ciσ − t ∑

<i j>σ

(c†
iσ ciσ +H.c.), (2)

where the random potential ε̃iσ takes the values ε̃γ(γ = 1,4) with the probabilities p(ν)σ [5]

ε̃iσ =


εA = ε̃(1), p(1)σ = x(1−nA−σ ),

εA +UA = ε̃(2), p(2)σ = xnA−σ ,

εB = ε̃(3), p(3)σ = (1− x)(1−nB−σ ),

εB +UB = ε̃(4), p(4)σ = (1− x)nB.

(3)

The mean occupation numbers nA−σ and nB−σ must be determined self-consistently. Hereafter, we
focus on the paramagnetic case, for which nAσ = nA−σ = nA/2,nBσ = nB−σ = nB/2 and all the one-
electron quantities become spin-independent. The local coherent Green function corresponding to
the Hamiltonian (2) takes the form [6]

G(ω) =
2

W

[
ω−Σ(ω)−

√
(ω−Σ(ω))2−W 2

]
, (4)

provided that a semi-elliptic density of states (DOS) is made for non-interacting electrons ρ0(z) =
2

πW 2

√
W 2− z2 (W is the half-width of the band) and Σ(ω) denotes the coherent potential which

is determined self-consistently. The CPA demands that the scattering matrix vanishes on average
over all possible disorder configurations.
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This is equivalent to

G(ω) =
4

∑
ν=1

p(ν)G(ω)(ν), (5)

where

Gν(ω) =
G(ω)

1− (ε̃(ν)−Σ(ω))G(ω)
. (6)

For a given mean electron number (per site) n the Fermi energy EF at zero temperature is deter-
mined by

n = 2
∫ EF

−∞

ρ(ω)dω = xnA +(1− x)nB, (7)

where

nA = 2
∫ EF

−∞

dω

[
(1−nA/2)ρ(1)(ω)+(nA/2)ρ(2)(ω)

]
, (8)

nB = 2
∫ EF

−∞

dω

[
(1−nB/2)ρ(3)(ω)+(nB/2)ρ(4)(ω)

]
, (9)

ρ
(ν)(ω) =− 1

π
ImG(ν)(ω). (10)

From the self-consistent CPA equations (4) - (10) one can determine the local one-particle DOS
ρA/B(ω), the occupation numbers nA,nB and the double occupancies dA,dB as functions of the
model parameters ∆,UA and UB. A metal is distinguished from an insulator by a finite total DOS
at the Fermi level ρ(EF) = xρA(EF)+(1− x)ρB(EF).

III. RESULTS AND DISCUSSION

For numerical results the input parameters are the local on-site energies εA = ∆/2,εB =
−∆/2, the interaction strengths UA,UB and the band filling n. We focus on the half-filled case with
x = 0.5 and n = 1. Through this work we set W as the unit of the energy. Figure 1 shows the
local DOS for each type of sites ρA(ω) and ρB(ω) for UA = 1.25,∆ = 1.5 and four values of UB.
The general appearance of the DOS displays four structures. Two of these structures are mainly
composed of A states (solid lines) and the other two of B states (dotted lines). For UB = 0.1 and
4.0, corresponding to the band insulating and Mott insulating phases, the DOS show a gap around
the Fermi level EF . In contrast, the DOS at EF for UB = 1.0 and 2.0 are nonzero, which indicate
a metallic phase. It should be noted that, despite UA keeps a constant value, the A−DOS evolves
remarkably when UB changes. Similar behaviors of the DOS were also found in the DMFT study
of this system [4].

Figure 1 demonstrates that for fixed ∆ and UA two transitions from a band insulator via a
metallic state to a Mott insulator are found with increasing UB. To clarify the nature of these insu-
lating states we calculate the occupation numbers nασ and double occupancies dα =< nα↑nα↓ >
with α being A and B. These quantities are plotted in Fig.2 for UA = 1.25 and ∆ = 1.5. For small
UB, only B sites are occupied and A sites are almost empty, correlation effects are weak in the
occupied B band and dB is large. The corresponding insulating state is clearly a band insulator. As
UB is increased, the double occupancy rapidly decreases for B sites. For larger UB, both types of
site are strongly correlated with almost zero double occupancies and nAσ ≈ nBσ → 1/2. Therefore,
the insulating state is a Mott-Hubbard insulator.



162 METAL-INSULATOR PHASE DIAGRAM FOR THE FULLY DIAGONAL DISORDERED HUBBARD MODE ...

Fig. 1. Density of states for various values of UB, for UA = 1.25 and ∆= 1.5 for the model
at half-filling. Energy ω and parameters ∆,UA,UB are in energy unit set by W = 1.EF
refers to the position of Fermi energy.
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Fig. 2. Electronic occupation numbers and double occupancies as functions of UB for
UA = 1.25 and ∆ = 1.5.
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Fig. 3. Metal-insulator phase diagram at zero temperature for UA = 1.25 for the fully
diagonal disordered Hubbard model at half-filling.

Repeating the calculations for a fixed UA and different values of ∆ and UB we constructed
the metal-insulator phase diagram for the fully diagonal disordered Hubbard model at half-filling
in the (∆,UB) plane, which we report in Fig.3. The shape of our metallic region is similar to
those obtained in [4], keeping in mind that in our study the energy unit is the half-bandwidth W .
It is interesting to note that paramagnetic solutions of the ionic Hubbard model at half-filling in
dimensions D > 2 also indicate that the band and the Mott insulator phases are separated by a
metallic phase [7-10].

IV. CONCLUSION

We have studied the MIT in the half-filled Hubbard model with full diagonal disorder by
means of the coherent potential approximation. Within this approximation in combination with
the semi-elliptical model for the bare DOS we calculate the site selective DOS, the corresponding
occupation numbers and the double occupancies. For a fixed UA, we derive the UB−∆ phase
diagram at zero temperature which is consistent with those obtained from DMFT by the NCA as
the impurity solver at finite temperature.

The calculations presented here can be extended to the case away from half-filling and/or
at finite temperature. Within the CPA one can also evaluate the temperature dependence of the
conductivity and derive a phase diagram on the disorder-interaction plane. This is left to future
work.
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