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Abstract. Neutrino masses and mixing in an extended standard model acquiring an A4 flavor
symmetry are considered. The corresponding three-neutrino mixing matrix obtained via a per-
turbative method allows us to determine the Dirac CP violation phase (δCP) as a function of the
mixing angles (θ12,θ23,θ13). Then, numerical values and distributions of δCP are given. The latter
values are quite close to the global fits of the experimental data for both the normal ordering and
inverse ordering of the neutrino masses.
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I. INTRODUCTION

Standard model (SM) [1–4] has been confirmed as an excellent model of elementary parti-
cles and their interactions, especially after the discovery of the Brout-Englert-Higgs boson (Higg
boson) by ATLAS and CMS [5, 6], which are the two biggest LHC collaborations (see [7] for a
review on the discovering of the Higgs boson). The SM, however, cannot explain a number of
phenomena including that of the neutrino masses and mixing [8, 9]. They, therefore, call for an
extension of the SM. One of the extensions of the SM which has attracted great interest for last
ten years is that with a flavor symmetry. A widely investigated flavor symmetry is based on the
discrete group A4 (see, for example, [10,11]). This symmetry can make a neutrino mixing scheme
tribi-maximal (TBM). The recent experimental data [12,13], however, shows that the mixing angle
θ13 and the Dirac CP-violation phase (CPV) δCP are non-zero. That means that the TBM scheme is
no longer valid. Consequently, many attempts to explain these new phenomena have been made.
Here, in this paper, as reported in [14], we use a perturbation method to diagonalize a general
neutrino mass matrix and obtain a Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing
matrix from which a relation between δCP and the mixing angles θi j can be derived. This relation
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allows us, using experimental data of the mixing angles, to calculate δCP numerically, for both the
normal ordering (NO) and inverse ordering (IO) of neutrino masses. This means that the present
paper is an extended work of [14] in which only δCP for an NO was considered.

The plan of this paper is the following. In the next section we will make a quick introduction
to the representations of A4 group and an A4-symmetric neutrino mass model. Section 3 deals
with a perturbation approach to the problem of neutrino masses and mixing for this model, from
where a mass spectrum and a relation between δCP and θi j can be obtained. Then, numerical
values and distributions of δCP in both NO and IO are presented.

II. NEUTRINO MASS MODEL WITH AN A4 FLAVOR SYMMETRY

Quick introduction to representations of A4 group
Let us give a concise introduction to representations of A4 which are widely given in the

literature (see, for example, [15, 16]). This group is composed of 12 elements and generated by
two basic permutations S and T,

S2 = T 3 = (ST )3 = 1. (1)
It has a three-dimensional unitary representation generated by

S =

 1 0 0
0 −1 0
0 0 −1

 , T =

 0 1 0
0 0 1
1 0 0

 , (2)

and three one-dimensional unitary representations 1, 1
′
and 1

′′
generated by

1 : S = 1 T = 1, (3a)

1
′
: S = 1 T = ei2π/3 ≡ ω, (3b)

1
′′

: S = 1 T = ei4π/3 ≡ ω
2. (3c)

As in the case of an arbitrary group, applications of A4 often require to know the multiplication
rule of its (irreducible) representations

1×1 = 1, 1
′×1

′′
= 1, 1

′′×1
′
= 1, 1

′×1
′
= 1

′′
, 1

′′×1
′′
= 1

′
, (4a)

3×3 = 1+1
′
+1

′′
+31 +32. (4b)

Let us explain the rule (4b) in more details, while the first ones are trivial. For two triplets, say
3a ∼ (a1,a2,a3) and 3b ∼ (b1,b2,b3), their direct product can be decomposed into irreducible
representations in the following way:

1 = a1b1 +a2b2 +a3b3, (5a)

1
′
= a1b1 +ω

2a2b2 +ωa3b3, (5b)

1
′′
= a1b1 +ωa2b2 +ω

2a3b3, (5c)

31 ∼ (a2b3,a3b1,a1b2), (5d)

32 ∼ (a3b2,a1b3,a2b1). (5e)
The information given here is used in constructing an A4-invariant action (Lagrangian) of the

considered model, including the Yukawa terms (6).
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The model generality
In principle, an A4 flavor symmetry can be applied to a neutrino mixing model with an

arbitrary number of Majorana neutrinos but here we will consider, as an example, a model with
three active Majorana neutrinos, for which the neutrino mass matrix is symmetric and parametrized
by 6 independent parameters. Similar models have been studied widely before (see, for example,
in [17–19]) but the main goal of this paper (and [14]) is to concentrate on considering the Dirac
CPV phase (see also [20]). Besides the SM leptons transforming now also under A4 as a triplet
(left-handed leptons lL, l = e,µ,τ) or singlets (right-handed leptons eR, µR and τR), the lepton
sector of this model includes an A4 triplet N which is an SU(2)L singlet (right-handed neutrino).
The scalar sector consists of the SM Higgs φh which is an A4 singlet, and five new SU(2)L-singlet
scalars including two A4-triplets (denoted as φE , φN) and three A4-singlets (denoted as ξ , ξ

′
, ξ

′′
).

The A4- and SU(2)L transformation rules of the leptons and the scalars in the present model are
listed in the table given below. It is enough for us to construct an A4-invariant Lagrangian.

Table 1. A4 and SU(2)L symmetry of leptons and scalars.

lL eR µR τR N φE φN ξ ξ
′

ξ
′′

φh

A4 3 1 1
′

1
′′

3 3 3 1 1
′

1
′′

1
SU(2)L 2 1 1 1 1 1 1 1 1 1 2

The Lagrangian of the model includes the new Yukawa term

−L new
Y = λe(lLφh)eR

φE

Λ
+λµ

(
lLφh

)′′
µR

φE

Λ
+λτ

(
lLφh

)′
τR

φE

Λ
+λN lLφ̃hN

+ cN
(
NcN

)
φN + cξ

(
NcN

)
ξ + c

ξ
′
(
NcN

)′′
ξ
′
+ c

ξ
′′
(
NcN

)′
ξ
′′
+H.c. (6)

From here, by denoting the VEVs of the scalars as

〈ξ 〉= ua, 〈ξ
′〉= ub, 〈ξ

′′〉= uc, 〈φE〉= (u1,u2,u3) , 〈φN〉= (v1,v2,v3) , 〈φh〉= v, (7)

the mass matrix of the charged leptons has the form

Mlept = v

 κeu1 κeu2 κeu3
κµu1 ωκµu2 ω2κµu3
κτu1 ω2κτu2 ωκτu3

 , (8)

where

κe =
λe

Λ
, κµ =

λµ

Λ
, κτ =

λτ

Λ
. (9)

To keep maximally the SM Higgs VEV structure, we can assume 〈φE〉= (u,u,u), thus, the charged
lepton mass matrix becomes

Mlept =UL

 yev 0 0
0 yµv 0
0 0 yτv

≡UL

 me 0 0
0 mµ 0
0 0 mτ

, (10)
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where

UL = 1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 , (11)

ye = uκe, yµ = uκµ , yτ = uκτ , (12)
and me, mµ , mτ are the charged lepton masses.

In the neutrino subsector, we obtain the following Majorana mass matrix

MN =

 ca + cb + cd ε3 ε2
ε3 ca +ωcb +ω2cd ε1
ε2 ε1 ca +ω2cb +ωcd

≡
 a b c

b e d
c d f

 , (13)

where ca = cξ ua, cb = c
ξ
′ub, cd = c

ξ
′′uc, ε1 = cNv1, ε2 = cNv2, ε3 = cNv3, and Dirac mass matrix

MD =

 λN1v 0 0
0 λN2v 0
0 0 λN3v

≡
 x 0 0

0 y 0
0 0 z

 . (14)

The seesaw mechanism gives us the neutrino mass matrix,

Mν =−MT
DM−1

N MD, (15)

which, with (13) and (14) taken into account, can be written as

Mν =
−1

det(M)

 (
d2− e f

)
x2 (−cd +b f )xy (−bd + ce)xz

(−cd +b f )xy
(
c2−a f

)
y2 (−bc+ad)yz

(−bd + ce)xz (−bc+ad)yz
(
b2−ae

)
z2

 , (16)

with det(M) = 2bcd− c2e−b2 f −a
(
d2− e f

)
being the determinant of MN .

Diagonalizing a neutrino mass matrix, such as the one in (16), is often a difficult task. To
solve this problem different methods and tricks have been proposed. Here we will use a perturba-
tion approach to solving this problem.

III. NEUTRINO MIXING AND THE CP VIOLATION PHASE

Let us work in the basis where the lepton mass matrix is diagonal. In this basis Mν becomes

Mν =UT
L MνUL ≡

 A B C
B E D
C D F

 . (17)

The current experimental data have shown that the PMNS neutrino mixing matrix UPMNS is a small
deviation from the TBM form and we have (see [14] and also [21])

Mν = M0 +λV, (18)

with

M0 =

 A B −B
B E −(A−E +B)
−B −(A−E +B) E

, λV =

 0 0 e1
0 0 e3
e1 e3 e2

 , (19)
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where λ is a perturbation, i.e., small, parameter and M0 is a non-perturbative (TBM level) mass
matrix which can be diagonalized by the TBM neutrino mixing matrix

UT BM =


√

2
3

√
1
3 0

−
√

1
6

√
1
3

√
1
2√

1
6 −

√
1
3

√
1
2

×P∼
(
|10〉, |20〉, |30〉

)
×P, (20)

as
diag(m0

1,m
0
2,m

0
3) =U†

T BMM0UT BM. (21)

Here P is a matrix of Majorana phases which are not given explicitly because they play no role
in the CP violation process. Using the perturbation expansion of the basis |n〉 around the non-
perturbative one, |n0〉,

|n〉= |n0〉+λ ∑
k 6=n
|k0〉 Vkn

m0
n−m0

k
+O(λ 2); n,k = 1,2,3, (22)

where
Vkn = 〈k|V |n〉, (23)

we can diagonalize the matrix Mν by the PMNS matrix

UPMNS =


√

2
3 +
√

1
3 X

√
1
3 −
√

2
3 X −

√
2
3Y −

√
1
3 Z

−
√

1
6 +
√

1
3 X +

√
1
2Y

√
1
3 +
√

1
6 X +

√
1
2 Z

√
1
2 +
√

1
6Y −

√
1
3 Z√

1
6 −
√

1
3 X +

√
1
2Y −

√
1
3 −
√

1
6 X +

√
1
2 Z

√
1
2 −
√

1
6Y +

√
1
3 Z

×P+∆U, (24)

where ∆U is a higher order perturbative correction to UPMNS and

X =

√
2

6

(
2e3− e1− e2

m0
1−m0

2

)
, Y =

√
3

6

(
2e1 + e2

m0
1−m0

3

)
, Z =

1√
6

(
e1− e2

m0
2−m0

3

)
. (25)

Here we discuss only the CP-violation Dirac phase δCP, while the mass spectrum derived by the
above-described diagonalization of the neutrino mass matrix Mν is a subject of a future work be-
cause more analysis on the VEV’s of the scalars and the Yukawa coupling coefficients as well as
different phenomena and experimental results is needed. Since the CP violation is expected to be
small the symmetric matrix Mν is near to a Hermitian matrix, therefore, the matrix (24) is near to
an unitary one.

Denoting the matrix elements of (24) by Ui j, i, j = 1,2,3, we get the relation

U21 +
√

2U22−U31−
√

2U32 = 2U11−
√

2U12 +∆Ui j, (26)

where ∆Ui j is a higher order perturbative correction. Fitting the matrix (24) with the elements of
the matrix UPMNS in the canonical form

UPMNS =

 c12c13 s12c13 s13e−iδ

−c23s12− s13s23c12eiδ c23c12− s13s23s12eiδ s23c13

s23s12− s13c23c12eiδ −s23c12− s13c23s12eiδ c23c13,

×P, (27)
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where si j = sinθi j, ci j = cosθi j; i, j = 1,2,3, we obtain from (26) the following relation between
δCP ≡ δ and the mixing angles θi j:

cosδ tanθ13 =
(
√

2− tanθ12)

(1+
√

2tanθ12)(1− tanθ23)

(√
2

c23
− 1+ tanθ23

c13

)
. (28)

Solving (28) for δ ∈ [0,2π] we can get two solutions: if a value δ0 is a solution of (28), the value
2π − δ0 is the other solution. Therefore, we can choose to discuss one of these solutions, for
example, the bigger one.

In general, both theoretically and experimentally, it is not very easy to find δCP but the
relation (28) allows us to determine δCP numerically via the experimental data on the mixing
angles θi j. The distributions of δCP are plotted in Fig. 1 and Fig. 2 for a normal- and an inverse-
ordering. Here, a value of δCP is calculated event by event using equation (28) with the value
of sinθi j taken randomly (within 3σ range) based on a Gaussian distribution having the mean
and the standard deviation (σ ) to be the best fit value and the sigmas, respectively, of sinθi j
determined experimentally and given in [12, 13]. These figures show that δCP distributes in the
region 3.1 < δCP < 5.8 (for an NO) and 3.1 < δCP < 6.3 (for an IO). This distributions have a
mean value at δCP = 4.28 (for an NO) and at δCP = 4.56 (for an IO) which is close, between
1σ , to the global fit values (GFV’s) to the experimental data and have a maximum density around
δCP = 4.45 (for an NO) and δCP = 4.55 (for an IO) between 1σ region from the GFV [12,13]. For
more information, δCP versus sin2

θ13 are depicted in Fig. 3 for an NO and in Fig. 4 for an IO.

Mean    1.999
RMS    0.2568

 CPδ
0 1 2 3 4 5 6 7

E
nt

rie
s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Mean    1.999
RMS    0.2568

Mean    4.284
RMS    0.2549
Mean    4.284
RMS    0.2549

 (for an NO)CPδDistribution of 

Fig. 1. Distribution of δCP for a normal ordering.
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Fig. 2. Distribution of δCP for an inverse ordering.
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Fig. 3. δCP versus sin2
θ13 for a normal ordering.
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 (for an IO)13θ2 versus sinCPδ
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Fig. 4. δCP versus sin2
θ13 for an inverse ordering.

IV. CONCLUSION

A model of neutrino mass and mixing with an A4 flavor symmetry is considered. The mass
matrix is diagonalized and the mixing matrix is found by using a perturbation method. Then, a
relation between the CP-violation Dirac phase δCP and the mixing angles θi j can be established. It
allows us to determine δCP via the experimental data on θi j. The result is quite good (near the 1σ

region of the global fit) for both the normal- and inverse- ordering of the neutrino masses [12,13],
therefore, the neutrino mass and mixing matrices are more explicitly fixed.

In this paper a first order perturbation is used but a higher order perturbation is also being
considered.
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[20] Dinh Nguyen Dinh, Nguyen Anh Ky, Phi Quang Văn and Nguyen Thi Hong Vân, arXiv:1602.07437 [hep-ph].
[21] B. Brahmachari and A. Raychaudhuri, Phys. Rev. D 86 (2012) 051302, arXiv:1204.5619 [hep-ph].




	I. Introduction
	II. Neutrino mass model with an A4 flavor symmetry
	Quick introduction to representations of A4 group
	The model generality

	III. Neutrino mixing and the CP violation phase
	IV. Conclusion
	ACKNOWLEDGMENT 
	REFERENCES

